Spaces:
Runtime error
Runtime error
File size: 26,174 Bytes
7ae68fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao ([email protected])
# Modified by Zigang Geng ([email protected])
# ------------------------------------------------------------------------------
from __future__ import annotations
import logging
import os
import json
import copy
import math
import random
from pathlib import Path
from typing import Any
import cv2
import numpy as np
import torch
import torchvision
from einops import rearrange
from PIL import Image
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from pycocotools.coco import COCO
logger = logging.getLogger(__name__)
colors = {
'red': (255, 0, 0),
'green': (0, 255, 0),
'blue': (0, 0, 255),
'yellow': (255, 255, 0),
'cyan': (0, 255, 255),
'magenta': (255, 0, 255),
'gray': (128, 128, 128),
'white': (255, 255, 255),
'black': (0, 0, 0)}
def readTXT(txt_path):
with open(txt_path, 'r') as f:
listInTXT = [line.strip() for line in f]
return listInTXT
class PoseDataset(Dataset):
def __init__(self, root, image_set, is_train, max_prompt_num=5, min_prompt_num=1,
radius=10, size=256, transparency=0.0, sample_weight=1.0, transform=None):
self.sample_weight = sample_weight
self.max_prompt_num = max_prompt_num
self.min_prompt_num = min_prompt_num
self.radius = radius
self.transparency = transparency
self.num_joints = 0
self.pixel_std = 200
self.flip_pairs = []
self.parent_ids = []
self.keypoints_type = {}
self.is_train = is_train
self.image_set = image_set
self.root = root
self.scale_factor = 0.35
self.rotation_factor = 45
self.flip = True
self.num_joints_half_body = 8
self.prob_half_body = 0.3
self.image_size = np.array((size, size))
self.heatmap_size = np.array((size, size))
self.transform = transform
self.db = []
pose_diverse_prompt_path = 'dataset/prompt/prompt_pose.txt'
self.pose_diverse_prompt_list = []
with open(pose_diverse_prompt_path) as f:
line = f.readline()
while line:
line = line.strip('\n')
self.pose_diverse_prompt_list.append(line)
line = f.readline()
def _get_db(self):
raise NotImplementedError
def evaluate(self, preds, output_dir, *args, **kwargs):
raise NotImplementedError
def half_body_transform(self, joints, joints_vis):
upper_joints = []
lower_joints = []
for joint_id in range(self.num_joints):
if joints_vis[joint_id][0] > 0:
if joint_id in self.upper_body_ids:
upper_joints.append(joints[joint_id])
else:
lower_joints.append(joints[joint_id])
if np.random.randn() < 0.5 and len(upper_joints) > 2:
selected_joints = upper_joints
else:
selected_joints = lower_joints \
if len(lower_joints) > 2 else upper_joints
if len(selected_joints) < 2:
return None, None
selected_joints = np.array(selected_joints, dtype=np.float32)
center = selected_joints.mean(axis=0)[:2]
left_top = np.amin(selected_joints, axis=0)
right_bottom = np.amax(selected_joints, axis=0)
w = right_bottom[0] - left_top[0]
h = right_bottom[1] - left_top[1]
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array(
[
w * 1.0 / self.pixel_std,
h * 1.0 / self.pixel_std
],
dtype=np.float32
)
scale = scale * 1.5
return center, scale
def __len__(self,):
return int(len(self.db) * self.sample_weight)
def __getitem__(self, idx):
if self.sample_weight >= 1:
idx = idx % len(self.db)
else:
idx = int(idx / self.sample_weight) + random.randint(0, int(1 / self.sample_weight) - 1)
db_rec = copy.deepcopy(self.db[idx])
image_file = db_rec['image']
filename = db_rec['filename'] if 'filename' in db_rec else ''
imgnum = db_rec['imgnum'] if 'imgnum' in db_rec else ''
data_numpy = cv2.imread(
image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION
)
data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB)
if data_numpy is None:
logger.error('=> fail to read {}'.format(image_file))
raise ValueError('Fail to read {}'.format(image_file))
joints = db_rec['joints_3d']
joints_vis = db_rec['joints_3d_vis']
c = db_rec['center']
s = db_rec['scale']
score = db_rec['score'] if 'score' in db_rec else 1
r = 0
if self.is_train:
if (np.sum(joints_vis[:, 0]) > self.num_joints_half_body
and np.random.rand() < self.prob_half_body):
c_half_body, s_half_body = self.half_body_transform(
joints, joints_vis
)
if c_half_body is not None and s_half_body is not None:
c, s = c_half_body, s_half_body
sf = self.scale_factor
rf = self.rotation_factor
s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
r = np.clip(np.random.randn()*rf, -rf*2, rf*2) \
if random.random() <= 0.6 else 0
if self.flip and random.random() <= 0.5:
data_numpy = data_numpy[:, ::-1, :]
joints, joints_vis = fliplr_joints(
joints, joints_vis, data_numpy.shape[1], self.flip_pairs)
c[0] = data_numpy.shape[1] - c[0] - 1
trans = get_affine_transform(c, s, r, self.image_size)
input = cv2.warpAffine(
data_numpy,
trans,
(int(self.image_size[0]), int(self.image_size[1])),
flags=cv2.INTER_LINEAR)
if self.transform:
input = self.transform(input)
for i in range(self.num_joints):
if joints_vis[i, 0] > 0.0:
joints[i, 0:2] = affine_transform(joints[i, 0:2], trans)
target, prompt = self.generate_target(input, joints, joints_vis)
# return Image.fromarray(input), Image.fromarray(target), prompt
image_0 = rearrange(2 * torch.tensor(np.array(input)).float() / 255 - 1, "h w c -> c h w")
image_1 = rearrange(2 * torch.tensor(np.array(target)).float() / 255 - 1, "h w c -> c h w")
return dict(edited=image_1, edit=dict(c_concat=image_0, c_crossattn=prompt))
def generate_target(self, input, joints, joints_vis):
'''
:param input: [height, width, 3]
:param joints: [num_joints, 3]
:param joints_vis: [num_joints, 3]
:return: target
'''
radius = self.radius
target = copy.deepcopy(input)
joint_num = random.randint(self.min_prompt_num, self.max_prompt_num)
joint_ids = np.random.choice([i for i in range(self.num_joints)], joint_num, replace=False)
random_color_names = random.sample(list(colors.keys()), len(joint_ids))
random_marker_names = ['circle' for i in range(len(joint_ids))]
prompt = ""
for color_idx, joint_id in enumerate(joint_ids):
feat_stride = self.image_size / self.heatmap_size
mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - radius), int(mu_y - radius)]
br = [int(mu_x + radius + 1), int(mu_y + radius + 1)]
if ul[0] >= self.heatmap_size[0] or ul[1] >= self.heatmap_size[1] \
or br[0] < 0 or br[1] < 0:
# If not, just return the image as is
joints_vis[joint_id][0] = 0
continue
marker_size = 2 * radius + 1
g = np.zeros((marker_size, marker_size))
x, y = np.indices((marker_size, marker_size))
interval = int((marker_size - marker_size / math.sqrt(2)) // 2)
mask = (x - radius) ** 2 + (y - radius) ** 2 <= radius ** 2 + 1
g[mask] = 1
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], self.heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], self.heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], self.heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], self.heatmap_size[1])
v = joints_vis[joint_id][0]
random_color_name = random_color_names[color_idx]
random_color = colors[random_color_name]
prompt += random.choice(self.pose_diverse_prompt_list).format(
color=random_color_name,
joint=self.keypoints_type[joint_id])
if v > 0.5:
target[img_y[0]:img_y[1], img_x[0]:img_x[1]][g[g_y[0]:g_y[1], g_x[0]:g_x[1]]>0] \
= self.transparency*target[img_y[0]:img_y[1], img_x[0]:img_x[1]][g[g_y[0]:g_y[1], g_x[0]:g_x[1]]>0] \
+ (1-self.transparency)*np.array(random_color)
return target, prompt
class COCODataset(PoseDataset):
def __init__(self, root, image_set, is_train, max_prompt_num=5, min_prompt_num=1,
radius=10, size=256, transparency=0.0, sample_weight=1.0, transform=None):
super().__init__(root, image_set, is_train, max_prompt_num, min_prompt_num,
radius, size, transparency, sample_weight, transform)
self.keypoints_type = {
0: "nose",
1: "left eye",
2: "right eye",
3: "left ear",
4: "right ear",
5: "left shoulder",
6: "right shoulder",
7: "left elbow",
8: "right elbow",
9: "left wrist",
10: "right wrist",
11: "left hip",
12: "right hip",
13: "left knee",
14: "right knee",
15: "left ankle",
16: "right ankle"
}
self.image_width = size
self.image_height = size
self.aspect_ratio = self.image_width * 1.0 / self.image_height
self.pixel_std = 200
self.coco = COCO(self._get_ann_file_keypoint())
# deal with class names
cats = [cat['name']
for cat in self.coco.loadCats(self.coco.getCatIds())]
self.classes = ['__background__'] + cats
logger.info('=> classes: {}'.format(self.classes))
self.num_classes = len(self.classes)
self._class_to_ind = dict(zip(self.classes, range(self.num_classes)))
self._class_to_coco_ind = dict(zip(cats, self.coco.getCatIds()))
self._coco_ind_to_class_ind = dict(
[
(self._class_to_coco_ind[cls], self._class_to_ind[cls])
for cls in self.classes[1:]
]
)
# load image file names
self.image_set_index = self._load_image_set_index()
self.num_images = len(self.image_set_index)
logger.info('=> num_images: {}'.format(self.num_images))
self.num_joints = 17
self.flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8],
[9, 10], [11, 12], [13, 14], [15, 16]]
self.parent_ids = None
self.upper_body_ids = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
self.lower_body_ids = (11, 12, 13, 14, 15, 16)
if 'coco' in self.root:
self.db = self._get_db()
logger.info('=> load {} samples'.format(len(self.db)))
def _get_ann_file_keypoint(self):
""" self.root / annotations / person_keypoints_train2017.json """
if 'coco' in self.root:
prefix = 'person_keypoints' \
if 'test' not in self.image_set else 'image_info'
return os.path.join(
self.root,
'annotations',
prefix + '_' + self.image_set + '.json'
)
elif 'crowdpose' in self.root:
prefix = 'crowdpose'
return os.path.join(
self.root,
'json',
prefix + '_' + self.image_set + '.json'
)
elif 'aic' in self.root:
prefix = 'aic'
return os.path.join(
self.root,
'annotations',
prefix + '_' + self.image_set + '.json'
)
else:
raise ValueError('Please write the path for this new dataset.')
def _load_image_set_index(self):
""" image id: int """
image_ids = self.coco.getImgIds()
return image_ids
def _get_db(self):
gt_db = self._load_coco_keypoint_annotations()
return gt_db
def _load_coco_keypoint_annotations(self):
""" ground truth bbox and keypoints """
gt_db = []
for index in self.image_set_index:
gt_db.extend(self._load_coco_keypoint_annotation_kernal(index))
return gt_db
def _load_coco_keypoint_annotation_kernal(self, index):
"""
coco ann: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id']
iscrowd:
crowd instances are handled by marking their overlaps with all categories to -1
and later excluded in training
bbox:
[x1, y1, w, h]
:param index: coco image id
:return: db entry
"""
im_ann = self.coco.loadImgs(index)[0]
width = im_ann['width']
height = im_ann['height']
annIds = self.coco.getAnnIds(imgIds=index, iscrowd=False)
objs = self.coco.loadAnns(annIds)
# sanitize bboxes
valid_objs = []
for obj in objs:
x, y, w, h = obj['bbox']
x1 = np.max((0, x))
y1 = np.max((0, y))
x2 = np.min((width - 1, x1 + np.max((0, w - 1))))
y2 = np.min((height - 1, y1 + np.max((0, h - 1))))
if 'crowdpose' in self.root:
obj['area'] = 1
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
obj['clean_bbox'] = [x1, y1, x2-x1, y2-y1]
valid_objs.append(obj)
objs = valid_objs
rec = []
for obj in objs:
cls = self._coco_ind_to_class_ind[obj['category_id']]
if cls != 1:
continue
# ignore objs without keypoints annotation
if max(obj['keypoints']) == 0:
continue
joints_3d = np.zeros((self.num_joints, 3), dtype=np.float32)
joints_3d_vis = np.zeros((self.num_joints, 3), dtype=np.float32)
for ipt in range(self.num_joints):
joints_3d[ipt, 0] = obj['keypoints'][ipt * 3 + 0]
joints_3d[ipt, 1] = obj['keypoints'][ipt * 3 + 1]
joints_3d[ipt, 2] = 0
t_vis = obj['keypoints'][ipt * 3 + 2]
if t_vis > 1:
t_vis = 1
joints_3d_vis[ipt, 0] = t_vis
joints_3d_vis[ipt, 1] = t_vis
joints_3d_vis[ipt, 2] = 0
center, scale = self._box2cs(obj['clean_bbox'][:4])
rec.append({
'image': self.image_path_from_index(index, im_ann),
'center': center,
'scale': scale,
'joints_3d': joints_3d,
'joints_3d_vis': joints_3d_vis,
'filename': '',
'imgnum': 0,
})
return rec
def _box2cs(self, box):
x, y, w, h = box[:4]
return self._xywh2cs(x, y, w, h)
def _xywh2cs(self, x, y, w, h):
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array(
[w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def image_path_from_index(self, index, im_ann):
""" example: images / train2017 / 000000119993.jpg """
if 'coco' in self.root:
file_name = '%012d.jpg' % index
if '2014' in self.image_set:
file_name = 'COCO_%s_' % self.image_set + file_name
prefix = 'test2017' if 'test' in self.image_set else self.image_set
data_name = prefix
image_path = os.path.join(
self.root, 'images', data_name, file_name)
return image_path
elif 'crowdpose' in self.root:
file_name = f'{index}.jpg'
image_path = os.path.join(
self.root, 'images', file_name)
return image_path
elif 'aic' in self.root:
file_name = im_ann["file_name"]
image_path = os.path.join(
self.root, 'ai_challenger_keypoint_train_20170902', 'keypoint_train_images_20170902', file_name)
return image_path
def flip_back(output_flipped, matched_parts):
'''
ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width)
'''
assert output_flipped.ndim == 4,\
'output_flipped should be [batch_size, num_joints, height, width]'
output_flipped = output_flipped[:, :, :, ::-1]
for pair in matched_parts:
tmp = output_flipped[:, pair[0], :, :].copy()
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
output_flipped[:, pair[1], :, :] = tmp
return output_flipped
def fliplr_joints(joints, joints_vis, width, matched_parts):
"""
flip coords
"""
# Flip horizontal
joints[:, 0] = width - joints[:, 0] - 1
# Change left-right parts
for pair in matched_parts:
joints[pair[0], :], joints[pair[1], :] = \
joints[pair[1], :], joints[pair[0], :].copy()
joints_vis[pair[0], :], joints_vis[pair[1], :] = \
joints_vis[pair[1], :], joints_vis[pair[0], :].copy()
return joints*joints_vis, joints_vis
def get_affine_transform(
center, scale, rot, output_size,
shift=np.array([0, 0], dtype=np.float32), inv=0
):
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
print(scale)
scale = np.array([scale, scale])
scale_tmp = scale * 200.0
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = get_dir([0, src_w * -0.5], rot_rad)
dst_dir = np.array([0, dst_w * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def affine_transform(pt, t):
new_pt = np.array([pt[0], pt[1], 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2]
def get_3rd_point(a, b):
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
def get_dir(src_point, rot_rad):
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
class CrowdPoseDataset(COCODataset):
def __init__(self, root, image_set, is_train, max_prompt_num=5, min_prompt_num=1,
radius=10, size=256, transparency=0.0, sample_weight=1.0, transform=None):
super().__init__(root, image_set, is_train, max_prompt_num, min_prompt_num,
radius, size, transparency, sample_weight, transform)
self.keypoints_type = {
0: 'left_shoulder',
1: 'right_shoulder',
2: 'left_elbow',
3: 'right_elbow',
4: 'left_wrist',
5: 'right_wrist',
6: 'left_hip',
7: 'right_hip',
8: 'left_knee',
9: 'right_knee',
10: 'left_ankle',
11: 'right_ankle',
12: 'top_head',
13: 'neck'
}
self.num_joints = 14
self.prob_half_body = -1
self.flip_pairs = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]
self.parent_ids = None
self.upper_body_ids = (0, 1, 2, 3, 4, 5, 12, 13)
self.lower_body_ids = (6, 7, 8, 9, 10, 11)
self.db = self._get_db()
logger.info('=> load {} samples'.format(len(self.db)))
class AICDataset(COCODataset):
def __init__(self, root, image_set, is_train, max_prompt_num=5, min_prompt_num=1,
radius=10, size=256, transparency=0.0, sample_weight=1.0, transform=None):
super().__init__(root, image_set, is_train, max_prompt_num, min_prompt_num,
radius, size, transparency, sample_weight, transform)
self.keypoints_type = {
0: "right_shoulder",
1: "right_elbow",
2: "right_wrist",
3: "left_shoulder",
4: "left_elbow",
5: "left_wrist",
6: "right_hip",
7: "right_knee",
8: "right_ankle",
9: "left_hip",
10: "left_knee",
11: "left_ankle",
12: "head_top",
13: "neck"
}
self.num_joints = 14
self.prob_half_body = -1
self.flip_pairs = [[0, 3], [1, 4], [2, 5], [6, 9], [7, 10], [8, 11]]
self.parent_ids = None
self.upper_body_ids = (0, 1, 2, 3, 4, 5, 12, 13)
self.lower_body_ids = (6, 7, 8, 9, 10, 11)
self.db = self._get_db()
logger.info('=> load {} samples'.format(len(self.db)))
class MPIIDataset(PoseDataset):
def __init__(self, root, image_set, is_train, max_prompt_num=5, min_prompt_num=1,
radius=10, size=256, transparency=0.0, sample_weight=1.0, transform=None):
super().__init__(root, image_set, is_train, max_prompt_num, min_prompt_num,
radius, size, transparency, sample_weight, transform)
self.keypoints_type = {
0: 'right_ankle',
1: 'right_knee',
2: 'right_hip',
3: 'left_hip',
4: 'left_knee',
5: 'left_ankle',
6: 'pelvis',
7: 'thorax',
8: 'upper_neck',
9: 'head_top',
10: 'right_wrist',
11: 'right_elbow',
12: 'right_shoulder',
13: 'left_shoulder',
14: 'left_elbow',
15: 'left_wrist'
}
self.data_format = 'jpg'
self.num_joints = 16
self.prob_half_body = -1
self.flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
self.parent_ids = None
self.upper_body_ids = (7, 8, 9, 10, 11, 12, 13, 14, 15)
self.lower_body_ids = (0, 1, 2, 3, 4, 5, 6)
self.db = self._get_db()
logger.info('=> load {} samples'.format(len(self.db)))
def _get_db(self):
# create train/val split
file_name = os.path.join(
self.root, 'annot', self.image_set+'.json'
)
with open(file_name) as anno_file:
anno = json.load(anno_file)
gt_db = []
for a in anno:
image_name = a['image']
c = np.array(a['center'], dtype=np.float32)
s = np.array([a['scale'], a['scale']], dtype=np.float32)
# Adjust center/scale slightly to avoid cropping limbs
if c[0] != -1:
c[1] = c[1] + 15 * s[1]
s = s * 1.25
# MPII uses matlab format, index is based 1,
# we should first convert to 0-based index
c = c - 1
joints_3d = np.zeros((self.num_joints, 3), dtype=np.float32)
joints_3d_vis = np.zeros((self.num_joints, 3), dtype=np.float32)
if self.image_set != 'test':
joints = np.array(a['joints'])
joints[:, 0:2] = joints[:, 0:2] - 1
joints_vis = np.array(a['joints_vis'])
assert len(joints) == self.num_joints, \
'joint num diff: {} vs {}'.format(len(joints),
self.num_joints)
joints_3d[:, 0:2] = joints[:, 0:2]
joints_3d_vis[:, 0] = joints_vis[:]
joints_3d_vis[:, 1] = joints_vis[:]
image_dir = 'images.zip@' if self.data_format == 'zip' else 'images'
gt_db.append(
{
'image': os.path.join(self.root, image_dir, image_name),
'center': c,
'scale': s,
'joints_3d': joints_3d,
'joints_3d_vis': joints_3d_vis,
'filename': '',
'imgnum': 0,
}
)
return gt_db
|