Spaces:
Runtime error
Runtime error
File size: 20,814 Bytes
7ae68fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
# --------------------------------------------------------
# InstructDiffusion
# Based on instruct-pix2pix (https://github.com/timothybrooks/instruct-pix2pix)
# Removed Pytorch-lightning and supported deepspeed by Zigang Geng ([email protected])
# --------------------------------------------------------
import argparse, os, sys, datetime, glob
import numpy as np
import time
import json
import pickle
import wandb
import deepspeed
from packaging import version
from omegaconf import OmegaConf
from functools import partial
from PIL import Image
from timm.utils import AverageMeter
import torch
import torchvision
import torch.cuda.amp as amp
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, Dataset, ConcatDataset
sys.path.append("./stable_diffusion")
from ldm.data.base import Txt2ImgIterableBaseDataset
from ldm.util import instantiate_from_config
from ldm.modules.ema import LitEma
from utils.logger import create_logger
from utils.utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper
from utils.deepspeed import create_ds_config
def wandb_log(*args, **kwargs):
if dist.get_rank() == 0:
wandb.log(*args, **kwargs)
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=False,
nargs="?",
help="train",
)
parser.add_argument(
"--no-test",
type=str2bool,
const=True,
default=False,
nargs="?",
help="disable test",
)
parser.add_argument(
"-p",
"--project",
help="name of new or path to existing project"
)
parser.add_argument(
"-d",
"--debug",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enable post-mortem debugging",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=23,
help="seed for seed_everything",
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="logs",
help="directory for logging dat shit",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="scale base-lr by ngpu * batch_size * n_accumulate",
)
parser.add_argument(
"--amd",
action="store_true",
default=False,
help="amd",
)
parser.add_argument(
"--local_rank",
type=int,
# required=False,
default=int(os.environ.get('LOCAL_RANK', 0)),
help="local rank for DistributedDataParallel",
)
return parser
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class DataModuleFromConfig():
def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
shuffle_val_dataloader=False):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size * 2
self.use_worker_init_fn = use_worker_init_fn
if train is not None:
if "target" in train:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
else:
for ds in train:
ds_name = str([key for key in ds.keys()][0])
self.dataset_configs[ds_name] = ds
self.train_dataloader = self._train_concat_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
if predict is not None:
self.dataset_configs["predict"] = predict
self.predict_dataloader = self._predict_dataloader
self.wrap = wrap
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config(data_cfg)
def setup(self, stage=None):
self.datasets = dict(
(k, instantiate_from_config(self.dataset_configs[k]))
for k in self.dataset_configs)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
def _train_concat_dataloader(self):
is_iterable_dataset = isinstance(self.datasets['ds1'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
concat_dataset = []
for ds in self.datasets.keys():
concat_dataset.append(self.datasets[ds])
concat_dataset = ConcatDataset(concat_dataset)
sampler_train = torch.utils.data.DistributedSampler(
concat_dataset, num_replicas=dist.get_world_size(), rank=dist.get_rank(), shuffle=True
)
return DataLoader(concat_dataset, batch_size=self.batch_size, sampler=sampler_train,
num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True)
def _train_dataloader(self):
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
sampler_train = torch.utils.data.DistributedSampler(
self.datasets["train"], num_replicas=dist.get_world_size(), rank=dist.get_rank(), shuffle=True
)
return DataLoader(self.datasets["train"], batch_size=self.batch_size, sampler=sampler_train,
num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True)
def _val_dataloader(self, shuffle=False):
if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=init_fn,
shuffle=shuffle, persistent_workers=True)
def _test_dataloader(self, shuffle=False):
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
# do not shuffle dataloader for iterable dataset
shuffle = shuffle and (not is_iterable_dataset)
return DataLoader(self.datasets["test"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle, persistent_workers=True)
def _predict_dataloader(self, shuffle=False):
if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True)
def train_one_epoch(config, model, model_ema, data_loader, val_data_loader, optimizer, epoch, lr_scheduler, scaler):
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
accumul_steps = config.trainer.accumulate_grad_batches
batch_time = AverageMeter()
loss_meter = AverageMeter()
val_loss_meter = AverageMeter()
norm_meter = AverageMeter()
loss_scale_meter = AverageMeter()
loss_scale_meter_min = AverageMeter()
start = time.time()
end = time.time()
for idx, batch in enumerate(data_loader):
batch_size = batch['edited'].shape[0]
if config.model.params.deepspeed != '':
loss, _ = model(batch, idx, accumul_steps)
model.backward(loss)
model.step()
loss_scale = optimizer.cur_scale
grad_norm = model.get_global_grad_norm()
with torch.no_grad():
if idx % config.trainer.accumulate_grad_batches == 0:
model_ema(model)
loss_number = loss.item()
else:
with amp.autocast(enabled=config.model.params.fp16):
loss, _ = model(batch, idx, accumul_steps)
if config.trainer.accumulate_grad_batches > 1:
loss = loss / config.trainer.accumulate_grad_batches
scaler.scale(loss).backward()
# loss.backward()
if config.trainer.clip_grad > 0.0:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.trainer.clip_grad)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.trainer.accumulate_grad_batches == 0:
scaler.step(optimizer)
optimizer.zero_grad()
scaler.update()
# scaler.unscale_grads()
# optimizer.step()
# optimizer.zero_grad()
# lr_scheduler.step_update(epoch * num_steps + idx)
else:
optimizer.zero_grad()
scaler.scale(loss).backward()
if config.trainer.clip_grad > 0.0:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.trainer.clip_grad)
else:
grad_norm = get_grad_norm(model.parameters())
scaler.step(optimizer)
scaler.update()
# lr_scheduler.step_update(epoch * num_steps + idx)
loss_scale = scaler.get_scale()
loss_number = loss.item() * config.trainer.accumulate_grad_batches
torch.cuda.synchronize()
loss_meter.update(loss_number, batch_size)
if grad_norm is not None:
norm_meter.update(grad_norm)
else:
norm_meter.update(0.0)
loss_scale_meter.update(loss_scale)
# loss_scale_meter.update(0.0)
batch_time.update(time.time() - end)
end = time.time()
if idx % 100 == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'loss_scale {loss_scale_meter.val:.4f} ({loss_scale_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
if (epoch * num_steps + idx) % 100 == 0:
log_message = dict(
lr=optimizer.param_groups[0]['lr'],
time=batch_time.val,
epoch=epoch,
iter=idx,
loss=loss_meter.val,
grad_norm=norm_meter.val,
loss_scale=loss_scale_meter.val,
memory=torch.cuda.max_memory_allocated() / (1024.0 * 1024.0),
global_iter=epoch * num_steps + idx)
# log_message.update({'ref_img': wandb.Image(unnormalize(img[:8].cpu().float())), 'mask': wandb.Image(mask[:8].cpu().float().unsqueeze(1))})
# if x_rec is not None:
# log_message.update({'rec_img': wandb.Image(unnormalize(x_rec[:8].cpu().float()))})
wandb_log(
data=log_message,
step=epoch * num_steps + idx,
)
if idx == num_steps - 1:
with torch.no_grad():
model_ema.store(model.parameters())
model_ema.copy_to(model)
for val_idx, batch in enumerate(val_data_loader):
batch_size = batch['edited'].shape[0]
loss, _ = model(batch, -1, 1)
loss_number = loss.item()
val_loss_meter.update(loss_number, batch_size)
if val_idx % 10 == 0:
logger.info(
f'Val: [{val_idx}/{len(val_data_loader)}]\t'
f'loss {val_loss_meter.val:.4f} ({val_loss_meter.avg:.4f})\t')
if val_idx == 50:
break
model_ema.restore(model.parameters())
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
if __name__ == "__main__":
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# add cwd for convenience and to make classes in this file available when
# running as `python main.py`
# (in particular `main.DataModuleFromConfig`)
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
assert opt.name
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
nowname = f"{cfg_name}_{opt.name}"
logdir = os.path.join(opt.logdir, nowname)
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
if opt.amd:
os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.local_rank)
torch.distributed.init_process_group(backend='gloo', init_method='env://', world_size=world_size, rank=rank)
else:
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
seed = opt.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
os.makedirs(logdir, exist_ok=True)
os.makedirs(ckptdir, exist_ok=True)
os.makedirs(cfgdir, exist_ok=True)
# init and save configs
# config: the configs in the config file
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
if config.model.params.deepspeed != '':
create_ds_config(opt, config, cfgdir)
if dist.get_rank() == 0:
run = wandb.init(
id=nowname,
name=nowname,
project='readoutpose',
config=OmegaConf.to_container(config, resolve=True),
)
logger = create_logger(output_dir=logdir, dist_rank=dist.get_rank(), name=f"{nowname}")
resume_file = auto_resume_helper(config, ckptdir)
if resume_file:
resume = True
logger.info(f'resume checkpoint in {resume_file}')
else:
resume = False
logger.info(f'no checkpoint found in {ckptdir}, ignoring auto resume')
# model
model = instantiate_from_config(config.model)
model_ema = LitEma(model, decay_resume=config.model.params.get('ema_resume', 0.9999))
# data
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.prepare_data()
data.setup()
data_loader_train = data.train_dataloader()
data_loader_val = data.val_dataloader()
print("#### Data #####")
for k in data.datasets:
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
# configure learning rate
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
ngpu = dist.get_world_size()
if 'accumulate_grad_batches' in config.trainer:
accumulate_grad_batches = config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
if opt.scale_lr:
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print(
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
else:
model.learning_rate = base_lr
print("++++ NOT USING LR SCALING ++++")
print(f"Setting learning rate to {model.learning_rate:.2e}")
if not opt.amd:
model.cuda()
if config.model.params.fp16 and config.model.params.deepspeed == '':
scaler = amp.GradScaler()
param_groups = model.parameters()
else:
scaler = None
param_groups = model.parameters()
if config.model.params.deepspeed != '':
model, optimizer, _, _ = deepspeed.initialize(
args=config,
model=model,
model_parameters=param_groups,
dist_init_required=False,
)
for name, param in model.named_parameters():
param.global_name = name
model_without_ddp = model
lr_scheduler = None
model_ema = model_ema.to(next(model.parameters()).device)
else:
optimizer, lr_scheduler = model.configure_optimizers()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[opt.local_rank], broadcast_buffers=False)
model_without_ddp = model.module
# print(optimizer.param_groups[1])
if opt.resume != '':
resume_file = opt.resume
if resume_file:
_, start_epoch = load_checkpoint(resume_file, config, model_without_ddp, model_ema, optimizer, lr_scheduler, scaler, logger)
else:
start_epoch = 0
logger.info("Start training")
start_time = time.time()
for epoch in range(start_epoch, config.trainer.max_epochs):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(config, model, model_ema, data_loader_train, data_loader_val, optimizer, epoch, lr_scheduler, scaler)
if epoch % config.trainer.save_freq == 0:
save_checkpoint(ckptdir, config, epoch, model_without_ddp, model_ema, 0., optimizer, lr_scheduler, scaler, logger)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
|