# Transformers and its models import transformers # For Image Processing from transformers import ViTImageProcessor # For Model from transformers import ViTModel, ViTConfig, pipeline # For data augmentation from torchvision import transforms, datasets # For GPU from transformers import set_seed from torch.optim import AdamW from accelerate import Accelerator, notebook_launcher # For Data Loaders import datasets from torch.utils.data import Dataset, DataLoader # For Display #from tqdm.notebook import tqdm # Other Generic Libraries import torch from PIL import Image import os import streamlit as st import gc from glob import glob import shutil import pandas as pd import numpy as np #import matplotlib.pyplot as plt from io import BytesIO import torch.nn.functional as F # Set the device (GPU or CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initialse Globle Variables MODEL_TRANSFORMER = 'google/vit-base-patch16-224' BATCH_SIZE = 8 # Set Paths data_path = 'employees' model_path = 'vit_pytorch_GPU_1.pt' webcam_path = 'captured_image.jpg' # Set Title st.title("Employee Attendance System") #pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") # Define Image Processor image_processor_prod = ViTImageProcessor.from_pretrained(MODEL_TRANSFORMER, attn_implementation="sdpa", torch_dtype=torch.float16) # Define ML Model class FaceEmbeddingModel(torch.nn.Module): def __init__(self, model_name, embedding_size): super(FaceEmbeddingModel, self).__init__() self.config = ViTConfig.from_pretrained(model_name, id2label=idx_to_label, label2id=label_to_idx, return_dict=True) self.backbone = ViTModel.from_pretrained(model_name, config=self.config) # Load ViT model self.fc = torch.nn.Linear(self.backbone.config.hidden_size, embedding_size) # Convert to 512D feature vector def forward(self, images): x = self.backbone(images).last_hidden_state[:, 0] # Extract embeddings x = self.fc(x) # Convert to 512D embedding return torch.nn.functional.normalize(x) # Normalize for cosine similarity # Load the model model_pretrained = torch.load(model_path, map_location=device, weights_only=False) # Define the ML model - Evaluation function def prod_function(transformer_model, prod_dl, webcam_dl): # Initialize accelerator accelerator = Accelerator() # to INFO for the main process only. if accelerator.is_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # The seed need to be set before we instantiate the model, as it will determine the random head. set_seed(42) # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method. accelerated_model, acclerated_prod_dl, acclerated_webcam_dl = accelerator.prepare(transformer_model, prod_dl, webcam_dl) # Evaluate at the end of the epoch accelerated_model.eval() # Find Embedding of the image to be evaluated for batch in acclerated_webcam_dl: with torch.no_grad(): #img_prod = acclerated_prod_data['pixel_values'] emb_prod = accelerated_model(batch['pixel_values']) prod_preds = [] for batch in acclerated_prod_dl: #img = batch['pixel_values'] with torch.no_grad(): emb = accelerated_model(batch['pixel_values']) distance = F.pairwise_distance(emb, emb_prod) prod_preds.append(distance) return prod_preds # Creation of Dataloader class CustomDatasetProd(Dataset): def __init__(self, pixel_values): self.pixel_values = pixel_values def __len__(self): return len(self.pixel_values) def __getitem__(self, idx): item = { 'pixel_values': self.pixel_values[idx].squeeze(0), } return item # Creation of Dataset class CreateDatasetProd(): def __init__(self, image_processor): super().__init__() self.image_processor = image_processor # Define a transformation pipeline self.transform_prod = transforms.v2.Compose([ transforms.v2.ToImage(), transforms.v2.ToDtype(torch.uint8, scale=False) ]) def get_pixels(self, img_paths): pixel_values = [] for path in img_paths: # Read and process Images img = Image.open(path) img = self.transform_prod(img) # Scaling the video to ML model's desired format img = self.image_processor(img, return_tensors='pt') #, input_data_format='channels_first') pixel_values.append(img['pixel_values'].squeeze(0)) # Force garbage collection del img gc.collect() return pixel_values def get_pixel(self, img_path): # Read and process Images img = Image.open(img_path) img = self.transform_prod(img) # Scaling the video to ML model's desired format img = self.image_processor(img, return_tensors='pt') #, input_data_format='channels_first') pixel_values = img['pixel_values'] #.squeeze(0) # Force garbage collection del img gc.collect() return pixel_values def create_dataset(self, image_paths, webcam=False): if webcam == True: pixel_values = self.get_pixel(image_paths) else: pixel_values = torch.stack(self.get_pixels(image_paths)) return CustomDatasetProd(pixel_values=pixel_values) # Read images from directory image_paths = [] image_file = glob(os.path.join(data_path, '*.jpg')) #st.write(image_file) image_paths.extend(image_file) #st.write('input path size:', len(image_paths)) #st.write(image_paths) # Create DataLoader for Employees image dataset_prod_obj = CreateDatasetProd(image_processor_prod) prod_ds = dataset_prod_obj.create_dataset(image_paths, webcam=False) prod_dl = DataLoader(prod_ds, batch_size=BATCH_SIZE) ## Testing the dataloader #prod_inputs = next(iter(prod_dl)) #st.write(prod_inputs['pixel_values'].shape) about_tab, app_tab = st.tabs(["About the app", "Face Recognition"]) # About the app Tab with about_tab: st.markdown( """ ## Product Description/Objective An AI face recognition app for automated employee attendance uses advanced facial recognition technology to accurately and efficiently track employee attendance. By simply scanning employees' faces upon arrival and departure, the app eliminates the need for traditional timecards or biometric devices, reducing errors and fraud. It provides real-time attendance data, enhances workplace security, and streamlines HR processes for greater productivity and accuracy. ## How does it work ? Our app leverages Google's advanced **Vision Transformer (ViT)** architecture, trained on the **LFW (Labeled Faces in the Wild) dataset**, to deliver highly accurate employee attendance tracking through facial recognition. The AI model intelligently extracts distinct facial features and compares them to the stored data of registered employees. When an employee’s face is scanned, the model analyzes the key features, and a confidence score is generated. A high score indicates a match, confirming the employee’s identity and marking their attendance automatically. This seamless, secure process ensures precise tracking while minimizing errors and enhancing workplace efficiency. ### About the architecture. The Vision Transformer (ViT) is a deep learning architecture designed for image classification tasks, which applies transformer models—originally developed for natural language processing (NLP)—to images. ViT divides an image into fixed-size non-overlapping patches. Each patch is flattened into a 1D vector, which is then linearly embedded into a higher-dimensional space. The patch embeddings are processed using a standard transformer encoder. This consists of layers with multi-head self-attention and feed-forward networks. The transformer is capable of learning global dependencies across the entire image. The Vision Transformer outperforms traditional convolutional neural networks (CNNs) on large-scale datasets, especially when provided with sufficient training data and computational resources. ### About the Dataset. Labeled Faces in the Wild (LFW) is a well-known dataset used primarily for evaluating face recognition algorithms. It consists of a collection of facial images of famous individuals from the web. LFW contains 13,000+ labeled images of 5,749 different individuals. The faces are collected from various sources, with images often showing individuals in different lighting, poses, and backgrounds. LFW is typically used for face verification and face recognition tasks. The goal is to determine if two images represent the same person or not. """) # Gesture recognition Tab with app_tab: # Read image from Camera enable = st.checkbox("Enable camera") picture = st.camera_input("Take a picture", disabled=not enable) if picture is not None: #img = Image.open(picture) #picture.save(webcam_path, "JPEG") #st.write('Image saved as:',webcam_path) ## Create DataLoader for Webcam Image webcam_ds = dataset_prod_obj.create_dataset(picture, webcam=True) webcam_dl = DataLoader(webcam_ds, batch_size=BATCH_SIZE) ## Testing the dataloader #prod_inputs = next(iter(webcam_dl)) #st.write(prod_inputs['pixel_values'].shape) with st.spinner("Wait for it...", show_time=True): # Run the predictions prediction = prod_function(model_pretrained, prod_dl, webcam_dl) predictions = torch.cat(prediction, 0).to(device) match_idx = torch.argmin(predictions) st.write(predictions) st.write(image_paths) # Display the results if predictions[match_idx] <= 0.3: st.write('Welcome: ',image_paths[match_idx].split('/')[-1].split('.')[0]) else: st.write("Match not found")