import streamlit as st import tempfile import logging from typing import List from langchain.document_loaders import PyPDFLoader # Updated import from langchain.embeddings import HuggingFaceEmbeddings # Updated import from langchain.vectorstores import FAISS # Updated import from langchain.chains.summarize import load_summarize_chain from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.prompts import PromptTemplate from transformers import pipeline # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Constants EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2' DEFAULT_MODEL = "meta-llama/Meta-Llama-3.1-8B" @st.cache_resource def load_embeddings(): """Load and cache the embedding model.""" try: return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) except Exception as e: logger.error(f"Failed to load embeddings: {e}") st.error("Failed to load the embedding model. Please try again later.") return None @st.cache_resource def load_llm(model_name): """Load and cache the language model.""" try: pipe = pipeline("text2text-generation", model=model_name, max_length=512) return pipe except Exception as e: logger.error(f"Failed to load LLM: {e}") st.error(f"Failed to load the model {model_name}. Please try again.") return None def process_pdf(file) -> List[Document]: """Process the uploaded PDF file.""" try: with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: temp_file.write(file.getvalue()) temp_file_path = temp_file.name loader = PyPDFLoader(file_path=temp_file_path) pages = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) documents = text_splitter.split_documents(pages) return documents except Exception as e: logger.error(f"Error processing PDF: {e}") st.error("Failed to process the PDF. Please make sure it's a valid PDF file.") return [] def create_vector_store(documents: List[Document], embeddings): """Create the vector store.""" try: return FAISS.from_documents(documents, embeddings) except Exception as e: logger.error(f"Error creating vector store: {e}") st.error("Failed to create the vector store. Please try again.") return None def summarize_report(documents: List[Document], llm) -> str: """Summarize the report using the loaded model.""" try: prompt_template = """ You are an AI specialized in summarizing comprehensive reports with a focus on funding, finances, and global comparisons. Given the detailed report content below, generate a concise and structured summary using bullet points and emojis... """ prompt = PromptTemplate.from_template(prompt_template) chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt) summary = chain.invoke(documents) return summary['output_text'] except Exception as e: logger.error(f"Error summarizing report: {e}") st.error("Failed to summarize the report. Please try again.") return "" def main(): st.title("Report Summarizer") model_option = st.sidebar.text_input("Enter model name", value=DEFAULT_MODEL) uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf") llm = load_llm(model_option) embeddings = load_embeddings() if not llm or not embeddings: return if uploaded_file: with st.spinner("Processing PDF..."): documents = process_pdf(uploaded_file) if documents: with st.spinner("Creating vector store..."): db = create_vector_store(documents, embeddings) if db and st.button("Summarize"): with st.spinner(f"Generating structured summary using {model_option}..."): summary = summarize_report(documents, llm) if summary: st.subheader("Structured Summary:") st.markdown(summary) else: st.warning("Failed to generate summary. Please try again.") if __name__ == "__main__": main()