Kathirsci's picture
Update app.py
07fb84b verified
raw
history blame
5.96 kB
import streamlit as st
import tempfile
import logging
from typing import List
import torch
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "microsoft/phi-2"
# Check for GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
@st.cache_resource
def load_embeddings():
"""Load and cache the embedding model."""
try:
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
st.error("Failed to load the embedding model. Please try again later.")
return None
@st.cache_resource
def load_llm(model_name):
"""Load and cache the language model."""
try:
pipe = pipeline("text-generation", model=model_name, device=device, max_length=1024)
return HuggingFacePipeline(pipeline=pipe)
except Exception as e:
logger.error(f"Failed to load LLM: {e}")
st.error(f"Failed to load the model {model_name}. Please try another model or check your internet connection.")
return None
def process_pdf(file) -> List[Document]:
"""Process the uploaded PDF file."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(file.getvalue())
temp_file_path = temp_file.name
loader = PyPDFLoader(file_path=temp_file_path)
pages = loader.load()
# Check for empty documents
if not pages:
st.warning("No text extracted from the PDF. Please ensure it's a valid PDF file.")
return []
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=200)
documents = text_splitter.split_documents(pages)
return documents
except Exception as e:
logger.error(f"Error processing PDF: {e}")
st.error("Failed to process the PDF. Please make sure it's a valid PDF file.")
return []
def create_vector_store(documents: List[Document], embeddings):
"""Create the vector store."""
try:
return FAISS.from_documents(documents, embeddings)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
st.error("Failed to create the vector store. Please try again.")
return None
def summarize_report(documents: List[Document], llm) -> str:
"""Summarize the report using the loaded model."""
try:
prompt_template = """
<s>[INST] You are an advanced AI assistant with expertise in summarizing technical documents. Your goal is to create a clear, concise, and well-organized summary using Markdown formatting. Focus on extracting and presenting the essential points of the document effectively.
*Instructions:*
- Analyze the provided context and input carefully.
- Identify and highlight the key points, main arguments, and important details.
- Format the summary using Markdown for clarity:
- Use # for main headers and ## for subheaders.
- Use **text** for important terms or concepts.
- Provide a brief introduction, followed by the main points, and a concluding summary if applicable.
- Ensure the summary is easy to read and understand, avoiding unnecessary jargon.
*Example Summary Format:*
# Overview
*Document Title:* Technical Analysis Report
*Summary:*
The report provides an in-depth analysis of the recent technical advancements in AI. It covers key areas such as ...
# Key Findings
- *Finding 1:* Description of finding 1.
- *Finding 2:* Description of finding 2.
# Conclusion
The analysis highlights the significant advancements and future directions for AI technology.
*Your Response:* [/INST]</s> {input}
Context: {context}
"""
prompt = PromptTemplate.from_template(prompt_template)
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
summary = chain.run(documents)
return summary
except Exception as e:
logger.error(f"Error summarizing report: {e}")
st.error("Failed to summarize the report. Please try again.")
return ""
def main():
st.title("Report Summarizer")
model_option = st.sidebar.selectbox("Llm Model", options=["ChocoWu/nextgpt_7b_tiva_v0", "google-t5/t5-11b"])
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
llm = load_llm(model_option)
embeddings = load_embeddings()
if not llm or not embeddings:
return
if uploaded_file:
with st.spinner("Processing PDF..."):
documents = process_pdf(uploaded_file)
if documents:
with st.spinner("Creating vector store..."):
db = create_vector_store(documents, embeddings)
if db and st.button("Summarize"):
with st.spinner(f"Generating structured summary using {model_option}..."):
summary = summarize_report(documents, llm)
if summary:
st.subheader("Structured Summary:")
st.markdown(summary)
else:
st.warning("Failed to generate summary. Please try again.")
if __name__ == "__main__":
main()