File size: 5,933 Bytes
b47040f
 
 
d061dc5
b47040f
fae072e
 
 
 
b47040f
 
 
 
 
 
 
 
 
 
 
 
895f085
b47040f
d061dc5
 
 
 
b47040f
 
 
 
 
 
 
 
 
d061dc5
b47040f
 
 
3f068be
81cff83
b47040f
 
 
 
 
 
 
 
 
 
 
3f068be
b47040f
 
d061dc5
 
 
 
 
 
895f085
b47040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9009ba
d061dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47040f
 
 
3f068be
 
b47040f
 
 
 
 
 
 
 
3f068be
ebd2cae
b47040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fae072e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
import tempfile
import logging
import time
from typing import List
from langchain_community.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "llava-v1.6-mistral-7b-hf"

# Cache expiration time for models (adjust as needed)
MODEL_CACHE_EXPIRATION = 3600

@st.cache_resource(ttl=MODEL_CACHE_EXPIRATION)
def load_embeddings():
    """Load and cache the embedding model."""
    try:
        return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
    except Exception as e:
        logger.error(f"Failed to load embeddings: {e}")
        st.error("Failed to load the embedding model. Please try again later.")
        return None

@st.cache_resource(ttl=MODEL_CACHE_EXPIRATION)
def load_llm(model_name):
    """Load and cache the language model."""
    try:
        pipe = pipeline("text-generation", model=model_name, max_length=1024)
        return HuggingFacePipeline(pipeline=pipe)
    except Exception as e:
        logger.error(f"Failed to load LLM: {e}")
        st.error(f"Failed to load the model {model_name}. Please try again.")
        return None

def process_pdf(file) -> List[Document]:
    """Process the uploaded PDF file."""
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
            temp_file.write(file.getvalue())
            temp_file_path = temp_file.name

        loader = PyPDFLoader(file_path=temp_file_path)
        pages = loader.load()

        # Check for empty documents
        if not pages:
            st.warning("No text extracted from the PDF. Please ensure it's a valid PDF file.")
            return []

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=200)
        documents = text_splitter.split_documents(pages)
        return documents
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        st.error("Failed to process the PDF. Please make sure it's a valid PDF file.")
        return []

def create_vector_store(documents: List[Document], embeddings):
    """Create the vector store."""
    try:
        return FAISS.from_documents(documents, embeddings)
    except Exception as e:
        logger.error(f"Error creating vector store: {e}")
        st.error("Failed to create the vector store. Please try again.")
        return None

def summarize_report(documents: List[Document], llm) -> str:
    """Summarize the report using the loaded model."""
    try:
        prompt_template = """
        <s>[INST] You are an advanced AI assistant with expertise in summarizing technical documents. Your goal is to create a clear, concise, and well-organized summary using Markdown formatting. Focus on extracting and presenting the essential points of the document effectively.
        *Instructions:*
        - Analyze the provided context and input carefully.
        - Identify and highlight the key points, main arguments, and important details.
        - Format the summary using Markdown for clarity:
          - Use # for main headers and ## for subheaders.
          - Use **text** for important terms or concepts.
          - Provide a brief introduction, followed by the main points, and a concluding summary if applicable.
        - Ensure the summary is easy to read and understand, avoiding unnecessary jargon.
        *Example Summary Format:*
        # Overview
        *Document Title:* Technical Analysis Report
        *Summary:*
        The report provides an in-depth analysis of the recent technical advancements in AI. It covers key areas such as ...
        # Key Findings
        - *Finding 1:* Description of finding 1.
        - *Finding 2:* Description of finding 2.
        # Conclusion
        The analysis highlights the significant advancements and future directions for AI technology.
        *Your Response:* [/INST]</s> {input}
        Context: {context}
        """

        prompt = PromptTemplate.from_template(prompt_template)
        chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
        summary = chain.run(documents)
        return summary

    except Exception as e:
        logger.error(f"Error summarizing report: {e}")
        st.error("Failed to summarize the report. Please try again.")
        return ""

def main():
    st.title("Report Summarizer")

    model_option = st.sidebar.selectbox("Llm Model", options=["ChocoWu/nextgpt_7b_tiva_v0", "google-t5/t5-11b"])

    uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")

    llm = load_llm(model_option)
    embeddings = load_embeddings()

    if not llm or not embeddings:
        return

    if uploaded_file:
        with st.spinner("Processing PDF..."):
            documents = process_pdf(uploaded_file)

        if documents:
            with st.spinner("Creating vector store..."):
                db = create_vector_store(documents, embeddings)

            if db and st.button("Summarize"):
                with st.spinner(f"Generating structured summary using {model_option}..."):
                    summary = summarize_report(documents, llm)

                    if summary:
                        st.subheader("Structured Summary:")
                        st.markdown(summary)
                    else:
                        st.warning("Failed to generate summary. Please try again.")

if __name__ == "__main__":
    main()