Spaces:
Sleeping
Sleeping
File size: 5,933 Bytes
b47040f d061dc5 b47040f fae072e b47040f 895f085 b47040f d061dc5 b47040f d061dc5 b47040f 3f068be 81cff83 b47040f 3f068be b47040f d061dc5 895f085 b47040f a9009ba d061dc5 b47040f 3f068be b47040f 3f068be ebd2cae b47040f fae072e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import streamlit as st
import tempfile
import logging
import time
from typing import List
from langchain_community.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from langchain.chains.summarize import load_summarize_chain
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.prompts import PromptTemplate
from transformers import pipeline
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
EMBEDDING_MODEL = 'sentence-transformers/all-MiniLM-L6-v2'
DEFAULT_MODEL = "llava-v1.6-mistral-7b-hf"
# Cache expiration time for models (adjust as needed)
MODEL_CACHE_EXPIRATION = 3600
@st.cache_resource(ttl=MODEL_CACHE_EXPIRATION)
def load_embeddings():
"""Load and cache the embedding model."""
try:
return HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
except Exception as e:
logger.error(f"Failed to load embeddings: {e}")
st.error("Failed to load the embedding model. Please try again later.")
return None
@st.cache_resource(ttl=MODEL_CACHE_EXPIRATION)
def load_llm(model_name):
"""Load and cache the language model."""
try:
pipe = pipeline("text-generation", model=model_name, max_length=1024)
return HuggingFacePipeline(pipeline=pipe)
except Exception as e:
logger.error(f"Failed to load LLM: {e}")
st.error(f"Failed to load the model {model_name}. Please try again.")
return None
def process_pdf(file) -> List[Document]:
"""Process the uploaded PDF file."""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(file.getvalue())
temp_file_path = temp_file.name
loader = PyPDFLoader(file_path=temp_file_path)
pages = loader.load()
# Check for empty documents
if not pages:
st.warning("No text extracted from the PDF. Please ensure it's a valid PDF file.")
return []
text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=200)
documents = text_splitter.split_documents(pages)
return documents
except Exception as e:
logger.error(f"Error processing PDF: {e}")
st.error("Failed to process the PDF. Please make sure it's a valid PDF file.")
return []
def create_vector_store(documents: List[Document], embeddings):
"""Create the vector store."""
try:
return FAISS.from_documents(documents, embeddings)
except Exception as e:
logger.error(f"Error creating vector store: {e}")
st.error("Failed to create the vector store. Please try again.")
return None
def summarize_report(documents: List[Document], llm) -> str:
"""Summarize the report using the loaded model."""
try:
prompt_template = """
<s>[INST] You are an advanced AI assistant with expertise in summarizing technical documents. Your goal is to create a clear, concise, and well-organized summary using Markdown formatting. Focus on extracting and presenting the essential points of the document effectively.
*Instructions:*
- Analyze the provided context and input carefully.
- Identify and highlight the key points, main arguments, and important details.
- Format the summary using Markdown for clarity:
- Use # for main headers and ## for subheaders.
- Use **text** for important terms or concepts.
- Provide a brief introduction, followed by the main points, and a concluding summary if applicable.
- Ensure the summary is easy to read and understand, avoiding unnecessary jargon.
*Example Summary Format:*
# Overview
*Document Title:* Technical Analysis Report
*Summary:*
The report provides an in-depth analysis of the recent technical advancements in AI. It covers key areas such as ...
# Key Findings
- *Finding 1:* Description of finding 1.
- *Finding 2:* Description of finding 2.
# Conclusion
The analysis highlights the significant advancements and future directions for AI technology.
*Your Response:* [/INST]</s> {input}
Context: {context}
"""
prompt = PromptTemplate.from_template(prompt_template)
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
summary = chain.run(documents)
return summary
except Exception as e:
logger.error(f"Error summarizing report: {e}")
st.error("Failed to summarize the report. Please try again.")
return ""
def main():
st.title("Report Summarizer")
model_option = st.sidebar.selectbox("Llm Model", options=["ChocoWu/nextgpt_7b_tiva_v0", "google-t5/t5-11b"])
uploaded_file = st.sidebar.file_uploader("Upload your Report", type="pdf")
llm = load_llm(model_option)
embeddings = load_embeddings()
if not llm or not embeddings:
return
if uploaded_file:
with st.spinner("Processing PDF..."):
documents = process_pdf(uploaded_file)
if documents:
with st.spinner("Creating vector store..."):
db = create_vector_store(documents, embeddings)
if db and st.button("Summarize"):
with st.spinner(f"Generating structured summary using {model_option}..."):
summary = summarize_report(documents, llm)
if summary:
st.subheader("Structured Summary:")
st.markdown(summary)
else:
st.warning("Failed to generate summary. Please try again.")
if __name__ == "__main__":
main() |