import gradio as gr from huggingface_hub import InferenceClient import pandas as pd import matplotlib.pyplot as plt import io import sqlite3 # Initialize the InferenceClient with the specified model client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta") # Specify the path to your CSV file here csv_file_path = 'Movies.csv' # Load dataset into a dataframe df = pd.read_csv(csv_file_path) # Function to generate SQL queries def generate_sql_query(prompt, table_metadata): input_text = f"Generate an SQL query for the table with the following structure: {table_metadata}. Prompt: {prompt}" response = "" for message in client.chat_completion( messages=[{"role": "system", "content": input_text}], max_tokens=512, stream=True, temperature=0.7, top_p=0.95, ): token = message.choices[0].delta.content response += token return response # Function to execute SQL query on the dataframe def execute_query(df, query): try: with sqlite3.connect(':memory:') as conn: df.to_sql('data', conn, index=False, if_exists='replace') result_df = pd.read_sql_query(query, conn) return result_df except Exception as e: return str(e) # Function to create a plot from the result dataframe def create_plot(df): fig, ax = plt.subplots() df.plot(ax=ax) buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) return buf # Gradio function to handle user input and interaction def respond(user_prompt, system_message, max_tokens, temperature, top_p): table_metadata = str(df.dtypes.to_dict()) sql_query = generate_sql_query(user_prompt, table_metadata) result_df = execute_query(df, sql_query) if isinstance(result_df, str): return sql_query, result_df, None # Return the error message plot = create_plot(result_df) return sql_query, result_df.head().to_html(), plot # Gradio UI components def create_demo(): with gr.Blocks() as demo: user_prompt = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="User Prompt") system_message = gr.Textbox(value="You are an AI assistant that generates SQL queries based on user prompts.", label="System message") max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") output_sql_query = gr.Textbox(label="Generated SQL Query") output_result_df = gr.HTML(label="Query Result") output_plot = gr.Image(label="Result Plot") submit_btn = gr.Button("Submit") submit_btn.click(respond, inputs=[user_prompt, system_message, max_tokens, temperature, top_p], outputs=[output_sql_query, output_result_df, output_plot]) return demo if __name__ == "__main__": demo = create_demo() demo.launch()