KanishkJagya1 commited on
Commit
7fc7a14
·
1 Parent(s): b76a3af

sketch - generator

Browse files
Files changed (3) hide show
  1. Procfile +1 -0
  2. app.py +73 -148
  3. requirements.txt +2 -1
Procfile ADDED
@@ -0,0 +1 @@
 
 
1
+ web: python app.py
app.py CHANGED
@@ -1,154 +1,79 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
 
 
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
+ from diffusers import StableDiffusionPipeline
 
 
 
 
3
  import torch
4
 
5
+ # Load models once at the start of the app for efficiency.
6
+ # This prevents reloading the models for every new request, which
7
+ # would be very slow.
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ dtype = torch.float16 if torch.cuda.is_available() and device == "cuda" else torch.float32
10
+
11
+ # Stage 1: Text-to-Sketch model
12
+ # We use a base Stable Diffusion pipeline with a special prompt
13
+ # to generate a line drawing effect.
14
+ try:
15
+ sketch_pipeline = StableDiffusionPipeline.from_pretrained(
16
+ "runwayml/stable-diffusion-v1-5",
17
+ torch_dtype=dtype
18
+ )
19
+ sketch_pipeline.to(device)
20
+ except Exception as e:
21
+ print(f"Error loading sketch pipeline: {e}")
22
+ sketch_pipeline = None
23
+
24
+ # Stage 2: Sketch-to-Image model
25
+ # This pipeline is loaded with the Stable Diffusion base and then
26
+ # a LoRA model is attached to handle the sketch-to-image conversion.
27
+ try:
28
+ image_pipeline = StableDiffusionPipeline.from_pretrained(
29
+ "runwayml/stable-diffusion-v1-5",
30
+ torch_dtype=dtype
31
+ )
32
+ image_pipeline.load_lora("gokaygokay/Sketch-to-Image-Kontext-Dev-LoRA", lora_weights_name="model.safetensors")
33
+ image_pipeline.to(device)
34
+ except Exception as e:
35
+ print(f"Error loading image pipeline or LoRA: {e}")
36
+ image_pipeline = None
37
+
38
+ # The main function that connects the two stages
39
+ def generate_full_image(text_prompt):
40
+ if not sketch_pipeline or not image_pipeline:
41
+ return None, None
42
+
43
+ # Step 1: Generate the sketch from the text prompt
44
+ # The "line drawing" prompt helps steer the model's output
45
+ sketch_prompt = f"line drawing of a {text_prompt}"
46
+ sketch = sketch_pipeline(sketch_prompt).images[0]
47
+
48
+ # Step 2: Generate the final image from the sketch
49
+ # The 'image' input to the pipeline uses the generated sketch
50
+ final_image = image_pipeline(image=sketch, prompt="a realistic human portrait").images[0]
51
+
52
+ return sketch, final_image
53
+
54
+ # Define the Gradio UI using Blocks for a custom layout
55
+ with gr.Blocks(title="Sketch-to-Image Pipeline") as demo:
56
+ gr.Markdown("# Text-to-Sketch-to-Portrait")
57
+ gr.Markdown("Enter a description to generate a sketch, which is then converted into a realistic human portrait.")
58
+
59
+ with gr.Row():
60
+ text_input = gr.Textbox(
61
+ label="Person Description",
62
+ placeholder="e.g., A middle-aged man with a scar on his right cheek and shaggy hair"
63
+ )
64
+
65
+ generate_button = gr.Button("Generate Portrait")
66
+
67
+ with gr.Row():
68
+ sketch_output = gr.Image(label="Generated Sketch", type="pil")
69
+ final_image_output = gr.Image(label="Generated Portrait", type="pil")
70
+
71
+ # Connect the UI components to the Python function
72
+ generate_button.click(
73
+ fn=generate_full_image,
74
+ inputs=text_input,
75
+ outputs=[sketch_output, final_image_output]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  )
77
 
78
+ # Launch the app
79
+ demo.launch()
requirements.txt CHANGED
@@ -3,4 +3,5 @@ diffusers
3
  invisible_watermark
4
  torch
5
  transformers
6
- xformers
 
 
3
  invisible_watermark
4
  torch
5
  transformers
6
+ xformers
7
+ gradio