Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- README.md +4 -0
- app.py +31 -19
- json2kadi.py +90 -153
README.md
CHANGED
|
@@ -10,3 +10,7 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
Demo: https://huggingface.co/spaces/Kadi-IAM/KadiTextract
|
| 15 |
+
|
| 16 |
+
A simple web app to obtain structured output from text input using Large Language Models (LLMs).
|
app.py
CHANGED
|
@@ -1,14 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
import groq
|
| 5 |
from difflib import Differ
|
| 6 |
-
from json2kadi import
|
| 7 |
from kadi_apy.lib.conversion import json_to_kadi
|
| 8 |
|
| 9 |
# Set api key of Groq
|
| 10 |
api_key = os.getenv("GROQ_API")
|
| 11 |
|
|
|
|
| 12 |
example_1 = (
|
| 13 |
"""John B. Goodenough (1922–2023) was a renowned American physicist and materials scientist,
|
| 14 |
best known for his pioneering work in developing the lithium-ion battery. He earned a Ph.D. in physics from
|
|
@@ -141,7 +147,11 @@ example_4 = (
|
|
| 141 |
""",
|
| 142 |
)
|
| 143 |
|
|
|
|
| 144 |
def generate_response(prompt):
|
|
|
|
|
|
|
|
|
|
| 145 |
if not prompt:
|
| 146 |
return "No transcription available. Please try speaking again."
|
| 147 |
|
|
@@ -162,6 +172,8 @@ def generate_response(prompt):
|
|
| 162 |
|
| 163 |
|
| 164 |
def post_process_output(output):
|
|
|
|
|
|
|
| 165 |
# 1. remove json mark
|
| 166 |
output = output.replace("```", "")
|
| 167 |
output = output.replace("null", '""')
|
|
@@ -172,6 +184,7 @@ def post_process_output(output):
|
|
| 172 |
return output
|
| 173 |
|
| 174 |
|
|
|
|
| 175 |
extract_info_prompt = """
|
| 176 |
You are an data scientist, extract information from text with given template in json format. Do not add any explanation.
|
| 177 |
|
|
@@ -184,6 +197,8 @@ Template:
|
|
| 184 |
|
| 185 |
|
| 186 |
def extract_info(input_text, structure_template):
|
|
|
|
|
|
|
| 187 |
# validate structure_template is json
|
| 188 |
try:
|
| 189 |
structure_template = json.dumps(json.loads(structure_template), indent=4)
|
|
@@ -202,11 +217,13 @@ def extract_info(input_text, structure_template):
|
|
| 202 |
except Exception as e:
|
| 203 |
print("Error in json format, retrying...")
|
| 204 |
continue
|
| 205 |
-
|
| 206 |
return structured_output
|
| 207 |
|
| 208 |
|
| 209 |
def diff_texts(text1, text2):
|
|
|
|
|
|
|
| 210 |
d = Differ()
|
| 211 |
return [
|
| 212 |
(token[2:], token[0] if token[0] != " " else None)
|
|
@@ -215,6 +232,8 @@ def diff_texts(text1, text2):
|
|
| 215 |
|
| 216 |
|
| 217 |
def transform_json_to_kadi_schema(input_json_str):
|
|
|
|
|
|
|
| 218 |
input_json = json.loads(input_json_str)
|
| 219 |
try:
|
| 220 |
output_json = my_json_to_kadi(input_json)
|
|
@@ -225,6 +244,7 @@ def transform_json_to_kadi_schema(input_json_str):
|
|
| 225 |
return json.dumps(output_json, indent=2)
|
| 226 |
|
| 227 |
|
|
|
|
| 228 |
example_structure_template = """
|
| 229 |
{
|
| 230 |
"Material": {
|
|
@@ -252,7 +272,10 @@ example_structure_template = """
|
|
| 252 |
"""
|
| 253 |
|
| 254 |
|
|
|
|
| 255 |
def suggest_template(input_text):
|
|
|
|
|
|
|
| 256 |
if not input_text.strip():
|
| 257 |
raise gr.Error("The input text should not be empty.")
|
| 258 |
combined_prompt = f"""
|
|
@@ -282,6 +305,7 @@ def suggest_template(input_text):
|
|
| 282 |
return output
|
| 283 |
|
| 284 |
|
|
|
|
| 285 |
with gr.Blocks() as demo:
|
| 286 |
gr.Markdown(
|
| 287 |
"### A simple web app to obtain structured output from text input using Large Language Models (LLMs)."
|
|
@@ -305,16 +329,6 @@ with gr.Blocks() as demo:
|
|
| 305 |
placeholder="Enter your structure template here.",
|
| 306 |
)
|
| 307 |
|
| 308 |
-
# with gr.Accordion("Show detailed writing instruction", open=False):
|
| 309 |
-
# gr.Markdown(
|
| 310 |
-
# "Note: modify **[topic]** in writing instruction accordingly."
|
| 311 |
-
# )
|
| 312 |
-
# prompt_input = gr.Textbox(
|
| 313 |
-
# label="Writing instruction",
|
| 314 |
-
# value="I am writing a paper on [topic] for a leading academic journal and would like help refining a specific section. Please rephrase the section to enhance clarity, coherence, and conciseness, ensuring smooth transitions between paragraphs and logical flow. Remove any unnecessary jargon and maintain a formal, professional tone suitable for an academic audience.",
|
| 315 |
-
# lines=5,
|
| 316 |
-
# )
|
| 317 |
-
|
| 318 |
with gr.Row():
|
| 319 |
suggest_btn = gr.Button("Suggest template", scale=1)
|
| 320 |
submit_btn = gr.Button("Extract", variant="primary", scale=2)
|
|
@@ -322,12 +336,6 @@ with gr.Blocks() as demo:
|
|
| 322 |
with gr.Column():
|
| 323 |
output = gr.Textbox(label="Structured Output", show_copy_button=True)
|
| 324 |
with gr.Accordion("Show Kadi-compatible output", open=False):
|
| 325 |
-
# output_diff = gr.HighlightedText(
|
| 326 |
-
# label="Diff",
|
| 327 |
-
# combine_adjacent=True,
|
| 328 |
-
# show_legend=True,
|
| 329 |
-
# color_map={"-": "red", "+": "green"},
|
| 330 |
-
# )
|
| 331 |
output_kadi = gr.Textbox(
|
| 332 |
label="Kadi compatible metadata output",
|
| 333 |
lines=5,
|
|
@@ -335,9 +343,12 @@ with gr.Blocks() as demo:
|
|
| 335 |
)
|
| 336 |
|
| 337 |
gr.Markdown()
|
| 338 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 339 |
gr.Markdown("")
|
| 340 |
|
|
|
|
| 341 |
submit_btn.click(
|
| 342 |
fn=extract_info, inputs=[text_input, structure_template], outputs=output
|
| 343 |
)
|
|
@@ -349,6 +360,7 @@ with gr.Blocks() as demo:
|
|
| 349 |
fn=transform_json_to_kadi_schema, inputs=[output], outputs=output_kadi
|
| 350 |
)
|
| 351 |
|
|
|
|
| 352 |
gr.Markdown()
|
| 353 |
gr.Markdown()
|
| 354 |
gr.Markdown()
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This application demo shows how to extract structured information using LLMs
|
| 3 |
+
and transfer it as metadata in Kadi.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
import os
|
| 7 |
import json
|
| 8 |
import gradio as gr
|
| 9 |
import groq
|
| 10 |
from difflib import Differ
|
| 11 |
+
from json2kadi import my_json_to_kadi
|
| 12 |
from kadi_apy.lib.conversion import json_to_kadi
|
| 13 |
|
| 14 |
# Set api key of Groq
|
| 15 |
api_key = os.getenv("GROQ_API")
|
| 16 |
|
| 17 |
+
# Examples
|
| 18 |
example_1 = (
|
| 19 |
"""John B. Goodenough (1922–2023) was a renowned American physicist and materials scientist,
|
| 20 |
best known for his pioneering work in developing the lithium-ion battery. He earned a Ph.D. in physics from
|
|
|
|
| 147 |
""",
|
| 148 |
)
|
| 149 |
|
| 150 |
+
|
| 151 |
def generate_response(prompt):
|
| 152 |
+
"""
|
| 153 |
+
Get response (structured json) from LLMs.
|
| 154 |
+
"""
|
| 155 |
if not prompt:
|
| 156 |
return "No transcription available. Please try speaking again."
|
| 157 |
|
|
|
|
| 172 |
|
| 173 |
|
| 174 |
def post_process_output(output):
|
| 175 |
+
"""Clean up output."""
|
| 176 |
+
|
| 177 |
# 1. remove json mark
|
| 178 |
output = output.replace("```", "")
|
| 179 |
output = output.replace("null", '""')
|
|
|
|
| 184 |
return output
|
| 185 |
|
| 186 |
|
| 187 |
+
# Basic prompt for extraction
|
| 188 |
extract_info_prompt = """
|
| 189 |
You are an data scientist, extract information from text with given template in json format. Do not add any explanation.
|
| 190 |
|
|
|
|
| 197 |
|
| 198 |
|
| 199 |
def extract_info(input_text, structure_template):
|
| 200 |
+
"""Extract structured output from text input."""
|
| 201 |
+
|
| 202 |
# validate structure_template is json
|
| 203 |
try:
|
| 204 |
structure_template = json.dumps(json.loads(structure_template), indent=4)
|
|
|
|
| 217 |
except Exception as e:
|
| 218 |
print("Error in json format, retrying...")
|
| 219 |
continue
|
| 220 |
+
|
| 221 |
return structured_output
|
| 222 |
|
| 223 |
|
| 224 |
def diff_texts(text1, text2):
|
| 225 |
+
"""Compare two text inputs."""
|
| 226 |
+
|
| 227 |
d = Differ()
|
| 228 |
return [
|
| 229 |
(token[2:], token[0] if token[0] != " " else None)
|
|
|
|
| 232 |
|
| 233 |
|
| 234 |
def transform_json_to_kadi_schema(input_json_str):
|
| 235 |
+
"""Tranform json into Kadi metadata schema."""
|
| 236 |
+
|
| 237 |
input_json = json.loads(input_json_str)
|
| 238 |
try:
|
| 239 |
output_json = my_json_to_kadi(input_json)
|
|
|
|
| 244 |
return json.dumps(output_json, indent=2)
|
| 245 |
|
| 246 |
|
| 247 |
+
# Baisc template for inferring json template
|
| 248 |
example_structure_template = """
|
| 249 |
{
|
| 250 |
"Material": {
|
|
|
|
| 272 |
"""
|
| 273 |
|
| 274 |
|
| 275 |
+
# Infer template from text input based on exmaple template defined above
|
| 276 |
def suggest_template(input_text):
|
| 277 |
+
"""Infer structured template from text input."""
|
| 278 |
+
|
| 279 |
if not input_text.strip():
|
| 280 |
raise gr.Error("The input text should not be empty.")
|
| 281 |
combined_prompt = f"""
|
|
|
|
| 305 |
return output
|
| 306 |
|
| 307 |
|
| 308 |
+
# Graio UI
|
| 309 |
with gr.Blocks() as demo:
|
| 310 |
gr.Markdown(
|
| 311 |
"### A simple web app to obtain structured output from text input using Large Language Models (LLMs)."
|
|
|
|
| 329 |
placeholder="Enter your structure template here.",
|
| 330 |
)
|
| 331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
with gr.Row():
|
| 333 |
suggest_btn = gr.Button("Suggest template", scale=1)
|
| 334 |
submit_btn = gr.Button("Extract", variant="primary", scale=2)
|
|
|
|
| 336 |
with gr.Column():
|
| 337 |
output = gr.Textbox(label="Structured Output", show_copy_button=True)
|
| 338 |
with gr.Accordion("Show Kadi-compatible output", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
output_kadi = gr.Textbox(
|
| 340 |
label="Kadi compatible metadata output",
|
| 341 |
lines=5,
|
|
|
|
| 343 |
)
|
| 344 |
|
| 345 |
gr.Markdown()
|
| 346 |
+
gr.Markdown(
|
| 347 |
+
"Add metadata by copying and pasting in [Kadi](https://kadi.iam.kit.edu/) Record"
|
| 348 |
+
)
|
| 349 |
gr.Markdown("")
|
| 350 |
|
| 351 |
+
# Actions
|
| 352 |
submit_btn.click(
|
| 353 |
fn=extract_info, inputs=[text_input, structure_template], outputs=output
|
| 354 |
)
|
|
|
|
| 360 |
fn=transform_json_to_kadi_schema, inputs=[output], outputs=output_kadi
|
| 361 |
)
|
| 362 |
|
| 363 |
+
# Placeholder
|
| 364 |
gr.Markdown()
|
| 365 |
gr.Markdown()
|
| 366 |
gr.Markdown()
|
json2kadi.py
CHANGED
|
@@ -1,46 +1,43 @@
|
|
| 1 |
import json
|
| 2 |
|
|
|
|
|
|
|
| 3 |
def transform_value(key, value):
|
| 4 |
if isinstance(value, dict):
|
| 5 |
-
if
|
| 6 |
-
value_type = "str" if isinstance(value[
|
| 7 |
return {
|
| 8 |
"key": key,
|
| 9 |
"type": "dict",
|
| 10 |
"value": [
|
| 11 |
-
{"key": "Value", "type": value_type, "value": value[
|
| 12 |
-
{"key": "Unit", "type": "str", "value": value[
|
| 13 |
-
]
|
| 14 |
}
|
| 15 |
else:
|
| 16 |
return {
|
| 17 |
"key": key,
|
| 18 |
"type": "dict",
|
| 19 |
-
"value": [transform_value(k, v) for k, v in value.items()]
|
| 20 |
}
|
| 21 |
elif isinstance(value, list):
|
| 22 |
return {
|
| 23 |
"key": key,
|
| 24 |
"type": "list",
|
| 25 |
-
"value": [transform_value("", item) for item in value]
|
| 26 |
}
|
| 27 |
elif isinstance(value, str):
|
| 28 |
-
return {
|
| 29 |
-
"key": key,
|
| 30 |
-
"type": "str",
|
| 31 |
-
"value": value
|
| 32 |
-
}
|
| 33 |
else:
|
| 34 |
raise ValueError(f"Unsupported value type: {type(value)}")
|
| 35 |
|
|
|
|
| 36 |
def my_json_to_kadi(data):
|
| 37 |
return [transform_value(key, value) for key, value in data.items()]
|
| 38 |
|
| 39 |
|
| 40 |
-
|
| 41 |
# Print the output JSON in a formatted way
|
| 42 |
-
|
| 43 |
-
# Example JSON input
|
| 44 |
input_json = {
|
| 45 |
"Material": {
|
| 46 |
"Name": "LLTO",
|
|
@@ -52,156 +49,96 @@ input_json = {
|
|
| 52 |
"Dendrite Formation Risk": "",
|
| 53 |
"Operating Voltage": "",
|
| 54 |
"Flexibility": "",
|
| 55 |
-
"Processing": ""
|
| 56 |
-
}
|
| 57 |
},
|
| 58 |
"Performance": {
|
| 59 |
"Specific Capacity": {"Value": "", "Unit": ""},
|
| 60 |
"Energy Density": {"Value": "", "Unit": ""},
|
| 61 |
"Capacity Retention": "",
|
| 62 |
-
"Operating Temperature": {"Value": "Room temperature", "Unit": ""}
|
| 63 |
},
|
| 64 |
-
"Usage": {
|
| 65 |
-
"Battery Type": "",
|
| 66 |
-
"Benefits": []
|
| 67 |
-
}
|
| 68 |
}
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
# "Doctor_Patient_Discussion": {
|
| 72 |
-
# "Initial_Observation": {
|
| 73 |
-
# "Symptoms": [
|
| 74 |
-
# "pale",
|
| 75 |
-
# "sore throat",
|
| 76 |
-
# "running a temperature"
|
| 77 |
-
# ],
|
| 78 |
-
# "Initial_Assessment": "You\u2019ve moderate fever."
|
| 79 |
-
# },
|
| 80 |
-
# "Medical_Examination": {
|
| 81 |
-
# "Temperature": "99.8",
|
| 82 |
-
# "Blood_Pressure": "fine",
|
| 83 |
-
# "Doctor_Assessment": "few symptoms of malaria",
|
| 84 |
-
# "Diagnosis": "few symptoms of malaria"
|
| 85 |
-
# },
|
| 86 |
-
# "Treatment_Plan": {
|
| 87 |
-
# "Prescription": [
|
| 88 |
-
# "three medicines",
|
| 89 |
-
# "a syrup"
|
| 90 |
-
# ]
|
| 91 |
-
# }
|
| 92 |
-
# }
|
| 93 |
-
# }
|
| 94 |
-
|
| 95 |
-
# input_json = {
|
| 96 |
-
# "Doctor_Patient_Discussion": {
|
| 97 |
-
# "Initial_Observation": {
|
| 98 |
-
# "Symptoms": [
|
| 99 |
-
# "pale",
|
| 100 |
-
# "sore throat",
|
| 101 |
-
# "running a temperature"
|
| 102 |
-
# ],
|
| 103 |
-
# "Initial_Assessment": "You\u2019ve moderate fever."
|
| 104 |
-
# },
|
| 105 |
-
# "Medical_Examination": {
|
| 106 |
-
# "Temperature": "99.8",
|
| 107 |
-
# "Blood_Pressure": "fine",
|
| 108 |
-
# "Doctor_Assessment": "few symptoms of malaria",
|
| 109 |
-
# "Diagnosis": "few symptoms of malaria"
|
| 110 |
-
# },
|
| 111 |
-
# "Treatment_Plan": {
|
| 112 |
-
# "Prescription": [
|
| 113 |
-
# "three medicines",
|
| 114 |
-
# "a syrup"
|
| 115 |
-
# ]
|
| 116 |
-
# }
|
| 117 |
-
# }
|
| 118 |
-
# }
|
| 119 |
-
|
| 120 |
input_json = {
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
"
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
"
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
"
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
"Cooling": "Cool down to room temperature in furnace",
|
| 189 |
-
"DensityDetermination": "Determine densities by Archimedes’ method"
|
| 190 |
-
},
|
| 191 |
-
"IonicConductivityMeasurements": {
|
| 192 |
-
"Method": "Impedance analysis",
|
| 193 |
-
"Conditions": "At room temperature over the frequency range from 0.1 Hz to 1 MHz with an AC amplitude of 50 mV in the frequency response analyzer (AMTEK GmbH, VersaSTAT 4, Pennsylvania, United States)",
|
| 194 |
-
"Reference": "For further details of the experimental part please refer to our previous work (Schiffmann et al., 2021)"
|
| 195 |
}
|
| 196 |
-
}
|
| 197 |
}
|
| 198 |
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
|
| 206 |
-
|
| 207 |
-
|
|
|
|
| 1 |
import json
|
| 2 |
|
| 3 |
+
|
| 4 |
+
# Transform value in metadata
|
| 5 |
def transform_value(key, value):
|
| 6 |
if isinstance(value, dict):
|
| 7 |
+
if "Value" in value and "Unit" in value:
|
| 8 |
+
value_type = "str" if isinstance(value["Value"], str) else "float"
|
| 9 |
return {
|
| 10 |
"key": key,
|
| 11 |
"type": "dict",
|
| 12 |
"value": [
|
| 13 |
+
{"key": "Value", "type": value_type, "value": value["Value"]},
|
| 14 |
+
{"key": "Unit", "type": "str", "value": value["Unit"]},
|
| 15 |
+
],
|
| 16 |
}
|
| 17 |
else:
|
| 18 |
return {
|
| 19 |
"key": key,
|
| 20 |
"type": "dict",
|
| 21 |
+
"value": [transform_value(k, v) for k, v in value.items()],
|
| 22 |
}
|
| 23 |
elif isinstance(value, list):
|
| 24 |
return {
|
| 25 |
"key": key,
|
| 26 |
"type": "list",
|
| 27 |
+
"value": [transform_value("", item) for item in value],
|
| 28 |
}
|
| 29 |
elif isinstance(value, str):
|
| 30 |
+
return {"key": key, "type": "str", "value": value}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
else:
|
| 32 |
raise ValueError(f"Unsupported value type: {type(value)}")
|
| 33 |
|
| 34 |
+
|
| 35 |
def my_json_to_kadi(data):
|
| 36 |
return [transform_value(key, value) for key, value in data.items()]
|
| 37 |
|
| 38 |
|
|
|
|
| 39 |
# Print the output JSON in a formatted way
|
| 40 |
+
# Some example JSON inputs for testing
|
|
|
|
| 41 |
input_json = {
|
| 42 |
"Material": {
|
| 43 |
"Name": "LLTO",
|
|
|
|
| 49 |
"Dendrite Formation Risk": "",
|
| 50 |
"Operating Voltage": "",
|
| 51 |
"Flexibility": "",
|
| 52 |
+
"Processing": "",
|
| 53 |
+
},
|
| 54 |
},
|
| 55 |
"Performance": {
|
| 56 |
"Specific Capacity": {"Value": "", "Unit": ""},
|
| 57 |
"Energy Density": {"Value": "", "Unit": ""},
|
| 58 |
"Capacity Retention": "",
|
| 59 |
+
"Operating Temperature": {"Value": "Room temperature", "Unit": ""},
|
| 60 |
},
|
| 61 |
+
"Usage": {"Battery Type": "", "Benefits": []},
|
|
|
|
|
|
|
|
|
|
| 62 |
}
|
| 63 |
|
| 64 |
+
# Another test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
input_json = {
|
| 66 |
+
"Experiment": {
|
| 67 |
+
"Material": "LATP powders",
|
| 68 |
+
"SynthesisRoute": "modified sol-gel synthesis route described by (Bucharsky et al., 2015)",
|
| 69 |
+
"Precursors": [
|
| 70 |
+
{
|
| 71 |
+
"Name": "lithium acetate Li(C2H3O2) ⋅2H2O",
|
| 72 |
+
"Purity": "purity ≥ 99 %",
|
| 73 |
+
"Supplier": "Alfa Aesar GmbH & Co KG",
|
| 74 |
+
"Location": "Germany",
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"Name": "aluminum nitrate Al(NO3)3 ⋅9H2O",
|
| 78 |
+
"Purity": "purity ≥ 98.5 %",
|
| 79 |
+
"Supplier": "Merck KGaA",
|
| 80 |
+
"Location": "Germany",
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"Name": "titanium-isopropoxide Ti[OCH(CH3)2]4",
|
| 84 |
+
"Purity": "purity ≥ 98 %",
|
| 85 |
+
"Supplier": "Merck KGaA",
|
| 86 |
+
"Location": "Germany",
|
| 87 |
+
},
|
| 88 |
+
],
|
| 89 |
+
"Procedure": [
|
| 90 |
+
{
|
| 91 |
+
"Step": "Dissolve lithium acetate and aluminum nitrate in distilled water under constant stirring."
|
| 92 |
+
},
|
| 93 |
+
{"Step": "Add titanium-isopropoxide dropwise to the solution."},
|
| 94 |
+
{"Step": "Add phosphoric acid slowly through a drip funnel to form a gel."},
|
| 95 |
+
{"Step": "Dry the gel at room temperature for 24 h."},
|
| 96 |
+
],
|
| 97 |
+
"HeatTreatment": [
|
| 98 |
+
{
|
| 99 |
+
"Step": "First, heat treat samples at 400°C for 6 h to achieve precursor formation and eliminate reaction gases."
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"Step": "Second, process samples at 900°C for 8 h to complete the reaction to crystalline LATP."
|
| 103 |
+
},
|
| 104 |
+
],
|
| 105 |
+
"BatchVariations": [
|
| 106 |
+
{
|
| 107 |
+
"Description": "Prepare one batch with all precursors in stoichiometric quantities (marked as 0.0 wt%)."
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"Description": "Explore different batches with either an excess up to +7.5 wt% or a deficiency up to -15.0 wt% of phosphoric acid compared to the stoichiometric composition."
|
| 111 |
+
},
|
| 112 |
+
],
|
| 113 |
+
"Processing": [
|
| 114 |
+
{"Step": "Process the obtained powders in a planetary ball mill."},
|
| 115 |
+
{
|
| 116 |
+
"Step": "Form pellets by uniaxial pressing and then further densify by cold isostatic pressing at 400 MPa."
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"Step": "All pressed samples have a green density of approximately 62% relative density."
|
| 120 |
+
},
|
| 121 |
+
],
|
| 122 |
+
"Sintering": {
|
| 123 |
+
"TemperatureRange": "850 to 1,050°C",
|
| 124 |
+
"IsothermalSinteringTime": "30 to 540 min",
|
| 125 |
+
"Cooling": "Cool down to room temperature in furnace",
|
| 126 |
+
"DensityDetermination": "Determine densities by Archimedes’ method",
|
| 127 |
+
},
|
| 128 |
+
"IonicConductivityMeasurements": {
|
| 129 |
+
"Method": "Impedance analysis",
|
| 130 |
+
"Conditions": "At room temperature over the frequency range from 0.1 Hz to 1 MHz with an AC amplitude of 50 mV in the frequency response analyzer (AMTEK GmbH, VersaSTAT 4, Pennsylvania, United States)",
|
| 131 |
+
"Reference": "For further details of the experimental part please refer to our previous work (Schiffmann et al., 2021)",
|
| 132 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
}
|
|
|
|
| 134 |
}
|
| 135 |
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
| 138 |
+
# Transform the input JSON
|
| 139 |
+
from kadi_apy.lib.conversion import json_to_kadi
|
| 140 |
+
|
| 141 |
+
output_json = json_to_kadi(input_json)
|
| 142 |
|
| 143 |
+
# Print the output JSON
|
| 144 |
+
print(json.dumps(output_json, indent=2))
|