Upload 4 files
Browse files- README.md +9 -7
- app.py +427 -0
- requirements.txt +11 -0
- space.yaml +7 -0
README.md
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.43.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: FinBrief
|
3 |
+
emoji: 💵
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: gray
|
6 |
sdk: streamlit
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
+
license: mit
|
10 |
+
short_description: Financial PDF Document Summarization web-App
|
11 |
---
|
12 |
|
13 |
+
|
14 |
+
# Install Rust
|
15 |
+
RUN apt-get update && apt-get install -y cargo
|
app.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import spacy
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
import subprocess
|
7 |
+
import os
|
8 |
+
os.environ["TRANSFORMERS_CACHE"] = "/home/user/.cache/huggingface"
|
9 |
+
os.environ["HF_HOME"] = "/home/user/.cache/huggingface"
|
10 |
+
os.environ["TORCH_HOME"] = "/home/user/.cache/torch"
|
11 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import nltk
|
15 |
+
from nltk.tokenize import sent_tokenize
|
16 |
+
import traceback
|
17 |
+
|
18 |
+
# Set Streamlit page config
|
19 |
+
st.set_page_config(page_title="FinBrief: Financial Document Insights", layout="wide")
|
20 |
+
|
21 |
+
try:
|
22 |
+
nlp = spacy.load("en_core_web_sm")
|
23 |
+
st.write("spaCy model loaded successfully!")
|
24 |
+
print("spaCy model loaded successfully!")
|
25 |
+
except OSError:
|
26 |
+
st.write("Failed to load spaCy model. Attempting to install...")
|
27 |
+
print("Failed to load spaCy model. Attempting to install...")
|
28 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
29 |
+
try:
|
30 |
+
nlp = spacy.load("en_core_web_sm")
|
31 |
+
st.write("spaCy model installed and loaded successfully!")
|
32 |
+
print("spaCy model installed and loaded successfully!")
|
33 |
+
except Exception as e:
|
34 |
+
st.write(f"Still failed to load spaCy model: {e}")
|
35 |
+
print(f"Still failed to load spaCy model: {e}")
|
36 |
+
nlp = None # Mark spaCy as failed
|
37 |
+
|
38 |
+
model_name = "kritsadaK/bart-financial-summarization"
|
39 |
+
|
40 |
+
try:
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
42 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
|
43 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
44 |
+
st.write("Hugging Face summarization model loaded successfully!")
|
45 |
+
print("Hugging Face summarization model loaded successfully!")
|
46 |
+
except Exception as e:
|
47 |
+
st.write(f"Failed to load Hugging Face summarization model: {e}")
|
48 |
+
print(f"Failed to load Hugging Face summarization model: {e}")
|
49 |
+
summarizer = None # Mark Hugging Face model as failed
|
50 |
+
|
51 |
+
# Store models in Streamlit session state
|
52 |
+
st.session_state["nlp"] = nlp
|
53 |
+
st.session_state["summarizer"] = summarizer
|
54 |
+
|
55 |
+
# UI: Show clear error messages if models failed
|
56 |
+
if nlp is None:
|
57 |
+
st.error("The spaCy model failed to load. Ensure it is installed.")
|
58 |
+
if summarizer is None:
|
59 |
+
st.error("The summarization model failed to load. Check the model path or internet connection.")
|
60 |
+
|
61 |
+
st.title("FinBrief: Financial Document Insights")
|
62 |
+
st.write("Upload a financial document for analysis.")
|
63 |
+
|
64 |
+
|
65 |
+
# Initialize session state
|
66 |
+
if "nlp" not in st.session_state:
|
67 |
+
st.session_state["nlp"] = nlp
|
68 |
+
if "summarizer" not in st.session_state:
|
69 |
+
st.session_state["summarizer"] = summarizer
|
70 |
+
|
71 |
+
# Set up NLTK data directory
|
72 |
+
nltk_data_dir = os.path.join(os.getcwd(), 'nltk_data')
|
73 |
+
if not os.path.exists(nltk_data_dir):
|
74 |
+
os.makedirs(nltk_data_dir)
|
75 |
+
nltk.data.path.append(nltk_data_dir)
|
76 |
+
|
77 |
+
def download_nltk_punkt():
|
78 |
+
try:
|
79 |
+
nltk.data.find('tokenizers/punkt')
|
80 |
+
st.write("NLTK 'punkt' tokenizer is already installed.")
|
81 |
+
print("NLTK 'punkt' tokenizer is already installed.")
|
82 |
+
except LookupError:
|
83 |
+
st.write("NLTK 'punkt' tokenizer not found. Attempting to download...")
|
84 |
+
print("NLTK 'punkt' tokenizer not found. Attempting to download...")
|
85 |
+
try:
|
86 |
+
nltk.download('punkt', download_dir=nltk_data_dir, quiet=True)
|
87 |
+
nltk.data.find('tokenizers/punkt')
|
88 |
+
st.write("NLTK 'punkt' tokenizer downloaded successfully.")
|
89 |
+
print("NLTK 'punkt' tokenizer downloaded successfully.")
|
90 |
+
except Exception as e:
|
91 |
+
st.error(f"NLTK 'punkt' tokenizer download failed: {e}")
|
92 |
+
print(f"NLTK 'punkt' tokenizer download failed: {e}")
|
93 |
+
|
94 |
+
# Call the function at the beginning of script
|
95 |
+
download_nltk_punkt()
|
96 |
+
|
97 |
+
# Debugging: Check session state initialization
|
98 |
+
print(f"Session State - NLP: {st.session_state['nlp'] is not None}, Summarizer: {st.session_state['summarizer'] is not None}")
|
99 |
+
|
100 |
+
# # Load the summarization model locally
|
101 |
+
# try:
|
102 |
+
# local_model_path = "./local_models/bart-financial"
|
103 |
+
# summarizer = pipeline("summarization", model=local_model_path, tokenizer=local_model_path)
|
104 |
+
# st.write("Local summarization model loaded successfully!")
|
105 |
+
# except Exception as e:
|
106 |
+
# summarizer = None # Handle case where model is missing
|
107 |
+
# st.write("Failed to load local summarization model.")
|
108 |
+
|
109 |
+
|
110 |
+
# Define regex patterns to extract structured data
|
111 |
+
patterns = {
|
112 |
+
"Fund Name": r"^(.*?) Fund", # Extracts the name before "Fund"
|
113 |
+
"CUSIP": r"CUSIP\s+(\d+)",
|
114 |
+
"Inception Date": r"Inception Date\s+([\w\s\d]+)",
|
115 |
+
"Benchmark": r"Benchmark\s+([\w\s\d]+)",
|
116 |
+
"Expense Ratio": r"Expense Information.*?(\d+\.\d+%)",
|
117 |
+
"Total Assets": r"Total Assets\s+USD\s+([\d,]+)",
|
118 |
+
"Portfolio Turnover": r"Portfolio Holdings Turnover.*?(\d+\.\d+%)",
|
119 |
+
"Cash Allocation": r"% of Portfolio in Cash\s+(\d+\.\d+%)",
|
120 |
+
"Alpha": r"Alpha\s+(-?\d+\.\d+%)",
|
121 |
+
"Standard Deviation": r"Standard Deviation\s+(\d+\.\d+%)"
|
122 |
+
}
|
123 |
+
|
124 |
+
# Set the title and layout
|
125 |
+
st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")
|
126 |
+
|
127 |
+
# Custom styling (this remains unchanged)
|
128 |
+
st.markdown(
|
129 |
+
"""
|
130 |
+
<style>
|
131 |
+
.sidebar .sidebar-content {
|
132 |
+
background-color: #f7f7f7;
|
133 |
+
color: #333;
|
134 |
+
}
|
135 |
+
.css-1d391kg {
|
136 |
+
background-color: #f0f4f8;
|
137 |
+
}
|
138 |
+
.stButton>button {
|
139 |
+
background-color: #4CAF50;
|
140 |
+
color: white;
|
141 |
+
padding: 10px 20px;
|
142 |
+
border-radius: 5px;
|
143 |
+
font-size: 16px;
|
144 |
+
}
|
145 |
+
.stTextArea textarea {
|
146 |
+
border: 2px solid #4CAF50;
|
147 |
+
border-radius: 5px;
|
148 |
+
padding: 10px;
|
149 |
+
}
|
150 |
+
</style>
|
151 |
+
""",
|
152 |
+
unsafe_allow_html=True,
|
153 |
+
)
|
154 |
+
|
155 |
+
# Function to extract text and tables using pdfplumber
|
156 |
+
def extract_text_tables_pdfplumber(pdf_file):
|
157 |
+
import io
|
158 |
+
import pdfplumber
|
159 |
+
|
160 |
+
print("\nPDFPlumber: Extracting text and tables...")
|
161 |
+
with pdfplumber.open(io.BytesIO(pdf_file.read())) as pdf:
|
162 |
+
all_text = ""
|
163 |
+
all_tables = []
|
164 |
+
|
165 |
+
for page in pdf.pages:
|
166 |
+
page_text = page.extract_text()
|
167 |
+
if page_text:
|
168 |
+
all_text += page_text + "\n"
|
169 |
+
|
170 |
+
# Extract tables
|
171 |
+
tables = page.extract_tables()
|
172 |
+
all_tables.extend(tables) # Store all tables
|
173 |
+
|
174 |
+
if all_text.strip():
|
175 |
+
print(all_text[:1000]) # Print first 1000 characters for verification
|
176 |
+
return all_text, all_tables
|
177 |
+
else:
|
178 |
+
print("No text extracted. The PDF might be image-based.")
|
179 |
+
return None, None
|
180 |
+
|
181 |
+
def split_text_into_chunks(text, tokenizer, max_tokens=1024):
|
182 |
+
sentences = nltk.sent_tokenize(text)
|
183 |
+
chunks = []
|
184 |
+
current_chunk = ''
|
185 |
+
current_length = 0
|
186 |
+
|
187 |
+
for sentence in sentences:
|
188 |
+
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
|
189 |
+
sentence_length = len(sentence_tokens)
|
190 |
+
|
191 |
+
# If adding the next sentence exceeds the max_tokens limit
|
192 |
+
if current_length + sentence_length > max_tokens:
|
193 |
+
if current_chunk:
|
194 |
+
chunks.append(current_chunk.strip())
|
195 |
+
# Start a new chunk
|
196 |
+
current_chunk = sentence
|
197 |
+
current_length = sentence_length
|
198 |
+
else:
|
199 |
+
current_chunk += ' ' + sentence
|
200 |
+
current_length += sentence_length
|
201 |
+
|
202 |
+
if current_chunk:
|
203 |
+
chunks.append(current_chunk.strip())
|
204 |
+
|
205 |
+
return chunks
|
206 |
+
|
207 |
+
def remove_duplicate_sentences(text):
|
208 |
+
sentences = nltk.sent_tokenize(text)
|
209 |
+
unique_sentences = []
|
210 |
+
seen_sentences = set()
|
211 |
+
|
212 |
+
for sentence in sentences:
|
213 |
+
# Normalize the sentence to ignore case and punctuation for comparison
|
214 |
+
normalized_sentence = sentence.strip().lower()
|
215 |
+
if normalized_sentence not in seen_sentences:
|
216 |
+
seen_sentences.add(normalized_sentence)
|
217 |
+
unique_sentences.append(sentence)
|
218 |
+
|
219 |
+
return ' '.join(unique_sentences)
|
220 |
+
|
221 |
+
# Ensure session state is initialized
|
222 |
+
if "pdf_text" not in st.session_state:
|
223 |
+
st.session_state["pdf_text"] = ""
|
224 |
+
if "pdf_tables" not in st.session_state:
|
225 |
+
st.session_state["pdf_tables"] = [] # Initialize as an empty list
|
226 |
+
|
227 |
+
# Step 0: Upload PDF
|
228 |
+
st.sidebar.header("Upload Your Financial Document")
|
229 |
+
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type="pdf")
|
230 |
+
|
231 |
+
if uploaded_file is not None:
|
232 |
+
st.sidebar.write(f"You uploaded: {uploaded_file.name}")
|
233 |
+
|
234 |
+
# Extract text and tables
|
235 |
+
pdf_text, pdf_tables = extract_text_tables_pdfplumber(uploaded_file)
|
236 |
+
|
237 |
+
if pdf_text is not None:
|
238 |
+
# Store results in session state
|
239 |
+
st.session_state["pdf_text"] = pdf_text
|
240 |
+
st.session_state["pdf_tables"] = pdf_tables # Save tables separately
|
241 |
+
|
242 |
+
st.sidebar.success("PDF uploaded and text extracted!")
|
243 |
+
else:
|
244 |
+
st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")
|
245 |
+
st.error("No text extracted from the uploaded PDF.")
|
246 |
+
|
247 |
+
# Step 1: Display Extracted Text
|
248 |
+
st.subheader("Extracted Text")
|
249 |
+
if st.session_state["pdf_text"]:
|
250 |
+
st.text_area("Document Text", st.session_state["pdf_text"], height=400)
|
251 |
+
else:
|
252 |
+
st.warning("No text extracted yet. Upload a PDF to start.")
|
253 |
+
|
254 |
+
|
255 |
+
# Step 2: Display Extracted Tables (Fixed Error)
|
256 |
+
st.subheader("Extracted Tables")
|
257 |
+
if st.session_state["pdf_tables"]: # Check if tables exist
|
258 |
+
for idx, table in enumerate(st.session_state["pdf_tables"]):
|
259 |
+
st.write(f"Table {idx+1}")
|
260 |
+
st.write(pd.DataFrame(table)) # Display tables as DataFrames
|
261 |
+
else:
|
262 |
+
st.info("No tables extracted.")
|
263 |
+
|
264 |
+
# Retrieve variables from session state
|
265 |
+
nlp = st.session_state["nlp"]
|
266 |
+
summarizer = st.session_state["summarizer"]
|
267 |
+
pdf_text = st.session_state["pdf_text"]
|
268 |
+
pdf_tables = st.session_state["pdf_tables"]
|
269 |
+
|
270 |
+
# Ensure that the models are loaded
|
271 |
+
if nlp is None or summarizer is None:
|
272 |
+
st.error("Models are not properly loaded. Please check your model paths and installation.")
|
273 |
+
else:
|
274 |
+
# Step 3: Named Entity Recognition (NER)
|
275 |
+
st.subheader("NER Analysis")
|
276 |
+
|
277 |
+
# Display full extracted text, not just first 1000 characters
|
278 |
+
example_text = st.text_area(
|
279 |
+
"Enter or paste text for analysis",
|
280 |
+
height=400,
|
281 |
+
value=st.session_state["pdf_text"] if st.session_state["pdf_text"] else ""
|
282 |
+
)
|
283 |
+
|
284 |
+
if st.button("Analyze"):
|
285 |
+
# Ensure full extracted text is used for analysis
|
286 |
+
text_for_analysis = st.session_state["pdf_text"].strip() if st.session_state["pdf_text"] else example_text.strip()
|
287 |
+
|
288 |
+
if text_for_analysis:
|
289 |
+
with st.spinner("Analyzing text..."):
|
290 |
+
# Extract structured financial data using regex (Now using full text)
|
291 |
+
extracted_data = {
|
292 |
+
key: (match.group(1) if match else "N/A")
|
293 |
+
for key, pattern in patterns.items()
|
294 |
+
if (match := re.search(pattern, text_for_analysis, re.IGNORECASE))
|
295 |
+
}
|
296 |
+
|
297 |
+
# Use spaCy to extract additional financial terms (Now using full text)
|
298 |
+
doc = nlp(text_for_analysis)
|
299 |
+
financial_entities = [(ent.text, ent.label_) for ent in doc.ents if ent.label_ in ["MONEY", "PERCENT", "ORG", "DATE"]]
|
300 |
+
|
301 |
+
# Store extracted data in a structured dictionary
|
302 |
+
structured_data = {**extracted_data, "Named Entities Extracted": financial_entities}
|
303 |
+
|
304 |
+
# Display results
|
305 |
+
st.write("Entities Found:")
|
306 |
+
st.write(pd.DataFrame(financial_entities, columns=["Entity", "Label"]))
|
307 |
+
|
308 |
+
st.write("Structured Data Extracted:")
|
309 |
+
st.write(pd.DataFrame([structured_data]))
|
310 |
+
|
311 |
+
else:
|
312 |
+
st.error("Please provide some text for analysis.")
|
313 |
+
|
314 |
+
# Step 4: Summarization
|
315 |
+
st.subheader("Summarization")
|
316 |
+
st.write("Generate concise summaries of financial documents.")
|
317 |
+
|
318 |
+
# Text summarization input
|
319 |
+
input_text = st.text_area(
|
320 |
+
"Enter text to summarize",
|
321 |
+
height=200,
|
322 |
+
value=st.session_state.get("pdf_text", "") if "pdf_text" in st.session_state else ""
|
323 |
+
)
|
324 |
+
|
325 |
+
if st.button("Summarize"):
|
326 |
+
text_to_summarize = input_text.strip()
|
327 |
+
if text_to_summarize:
|
328 |
+
try:
|
329 |
+
# Display original text length
|
330 |
+
input_length = len(text_to_summarize.split())
|
331 |
+
st.write(f"Original text length: {input_length} words")
|
332 |
+
|
333 |
+
# Define the maximum number of tokens the model can handle
|
334 |
+
max_input_tokens = 1024 # BART's maximum input length
|
335 |
+
|
336 |
+
# Function to split text into chunks based on tokens (modified to avoid overlaps)
|
337 |
+
def split_text_into_chunks(text, tokenizer, max_tokens=max_input_tokens):
|
338 |
+
sentences = nltk.sent_tokenize(text)
|
339 |
+
chunks = []
|
340 |
+
current_chunk = ''
|
341 |
+
current_length = 0
|
342 |
+
|
343 |
+
for sentence in sentences:
|
344 |
+
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
|
345 |
+
sentence_length = len(sentence_tokens)
|
346 |
+
|
347 |
+
# If adding the sentence exceeds max_tokens, start a new chunk
|
348 |
+
if current_length + sentence_length > max_tokens:
|
349 |
+
if current_chunk:
|
350 |
+
chunks.append(current_chunk.strip())
|
351 |
+
current_chunk = sentence
|
352 |
+
current_length = sentence_length
|
353 |
+
else:
|
354 |
+
current_chunk += ' ' + sentence
|
355 |
+
current_length += sentence_length
|
356 |
+
|
357 |
+
if current_chunk:
|
358 |
+
chunks.append(current_chunk.strip())
|
359 |
+
|
360 |
+
return chunks
|
361 |
+
|
362 |
+
# Function to remove duplicate sentences
|
363 |
+
def remove_duplicate_sentences(text):
|
364 |
+
sentences = nltk.sent_tokenize(text)
|
365 |
+
unique_sentences = []
|
366 |
+
seen_sentences = set()
|
367 |
+
|
368 |
+
for sentence in sentences:
|
369 |
+
normalized_sentence = sentence.strip().lower()
|
370 |
+
if normalized_sentence not in seen_sentences:
|
371 |
+
seen_sentences.add(normalized_sentence)
|
372 |
+
unique_sentences.append(sentence)
|
373 |
+
|
374 |
+
return ' '.join(unique_sentences)
|
375 |
+
|
376 |
+
# Split the text into manageable chunks
|
377 |
+
chunks = split_text_into_chunks(text_to_summarize, tokenizer)
|
378 |
+
st.write(f"Text has been split into {len(chunks)} chunks.")
|
379 |
+
|
380 |
+
# Summarize each chunk
|
381 |
+
summaries = []
|
382 |
+
for i, chunk in enumerate(chunks):
|
383 |
+
st.write(f"Summarizing chunk {i+1}/{len(chunks)}...")
|
384 |
+
# Adjust summary length parameters as needed
|
385 |
+
chunk_length = len(chunk.split())
|
386 |
+
max_summary_length = min(150, chunk_length // 2)
|
387 |
+
min_summary_length = max(50, max_summary_length // 2)
|
388 |
+
|
389 |
+
try:
|
390 |
+
summary_output = summarizer(
|
391 |
+
chunk,
|
392 |
+
max_length=max_summary_length,
|
393 |
+
min_length=min_summary_length,
|
394 |
+
do_sample=False,
|
395 |
+
truncation=True
|
396 |
+
)
|
397 |
+
chunk_summary = summary_output[0]['summary_text'].strip()
|
398 |
+
|
399 |
+
if not chunk_summary:
|
400 |
+
st.warning(f"The summary for chunk {i+1} is empty.")
|
401 |
+
else:
|
402 |
+
summaries.append(chunk_summary)
|
403 |
+
# Optionally display the summary of the current chunk
|
404 |
+
# st.write(f"Summary of chunk {i+1}:")
|
405 |
+
# st.write(chunk_summary)
|
406 |
+
# st.write("---")
|
407 |
+
|
408 |
+
except Exception as e:
|
409 |
+
st.error(f"Summarization failed for chunk {i+1}: {e}")
|
410 |
+
st.text(traceback.format_exc())
|
411 |
+
continue
|
412 |
+
|
413 |
+
if summaries:
|
414 |
+
# Combine summaries
|
415 |
+
combined_summary = ' '.join(summaries)
|
416 |
+
# Remove duplicate sentences
|
417 |
+
final_summary = remove_duplicate_sentences(combined_summary)
|
418 |
+
st.write("Final Summary:")
|
419 |
+
st.success(final_summary)
|
420 |
+
else:
|
421 |
+
st.error("No summaries were generated.")
|
422 |
+
|
423 |
+
except Exception as e:
|
424 |
+
st.error("An error occurred during summarization.")
|
425 |
+
st.text(traceback.format_exc())
|
426 |
+
else:
|
427 |
+
st.error("Please provide text to summarize.")
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.37.1
|
2 |
+
spacy==3.8.4
|
3 |
+
pandas==2.2.2
|
4 |
+
numpy==1.26.4
|
5 |
+
transformers==4.48.1
|
6 |
+
tokenizers==0.21.0
|
7 |
+
pdfplumber==0.11.5
|
8 |
+
flax==0.8.3
|
9 |
+
huggingface-hub==0.29.1
|
10 |
+
torch
|
11 |
+
nltk==3.8.1
|
space.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: FinBrief
|
3 |
+
python_version: 3.8.19
|
4 |
+
sdk: streamlit
|
5 |
+
app_file: app.py
|
6 |
+
pinned: false
|
7 |
+
license: mit
|