finbreif3 / app.py
KKowenn's picture
Update app.py
647728d verified
raw
history blame
20.6 kB
import streamlit as st
import spacy
import pandas as pd
import re
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import subprocess
import os
os.environ["TRANSFORMERS_CACHE"] = "/home/user/.cache/huggingface"
os.environ["HF_HOME"] = "/home/user/.cache/huggingface"
os.environ["TORCH_HOME"] = "/home/user/.cache/torch"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
import torch
import nltk
from nltk.tokenize import sent_tokenize
import traceback
from collections import Counter
# Set Streamlit page config
st.set_page_config(page_title="FinBrief: Financial Document Insights", layout="wide")
try:
nlp = spacy.load("en_core_web_sm")
st.write("spaCy model loaded successfully!")
print("spaCy model loaded successfully!")
except OSError:
st.write("Failed to load spaCy model. Attempting to install...")
print("Failed to load spaCy model. Attempting to install...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
try:
nlp = spacy.load("en_core_web_sm")
st.write("spaCy model installed and loaded successfully!")
print("spaCy model installed and loaded successfully!")
except Exception as e:
st.write(f"Still failed to load spaCy model: {e}")
print(f"Still failed to load spaCy model: {e}")
nlp = None # Mark spaCy as failed
model_name = "kritsadaK/bart-financial-summarization"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
st.write("Hugging Face summarization model loaded successfully!")
print("Hugging Face summarization model loaded successfully!")
except Exception as e:
st.write(f"Failed to load Hugging Face summarization model: {e}")
print(f"Failed to load Hugging Face summarization model: {e}")
summarizer = None # Mark Hugging Face model as failed
# Store models in Streamlit session state
st.session_state["nlp"] = nlp
st.session_state["summarizer"] = summarizer
# UI: Show clear error messages if models failed
if nlp is None:
st.error("The spaCy model failed to load. Ensure it is installed.")
if summarizer is None:
st.error("The summarization model failed to load. Check the model path or internet connection.")
st.title("FinBrief: Financial Document Insights")
st.write("Upload a financial document for analysis.")
# Initialize session state
if "nlp" not in st.session_state:
st.session_state["nlp"] = nlp
if "summarizer" not in st.session_state:
st.session_state["summarizer"] = summarizer
# Set up NLTK data directory
nltk_data_dir = os.path.join(os.getcwd(), 'nltk_data')
if not os.path.exists(nltk_data_dir):
os.makedirs(nltk_data_dir)
nltk.data.path.append(nltk_data_dir)
def download_nltk_punkt():
try:
nltk.data.find('tokenizers/punkt')
st.write("NLTK 'punkt' tokenizer is already installed.")
print("NLTK 'punkt' tokenizer is already installed.")
except LookupError:
st.write("NLTK 'punkt' tokenizer not found. Attempting to download...")
print("NLTK 'punkt' tokenizer not found. Attempting to download...")
try:
nltk.download('punkt', download_dir=nltk_data_dir, quiet=True)
nltk.data.find('tokenizers/punkt')
st.write("NLTK 'punkt' tokenizer downloaded successfully.")
print("NLTK 'punkt' tokenizer downloaded successfully.")
except Exception as e:
st.error(f"NLTK 'punkt' tokenizer download failed: {e}")
print(f"NLTK 'punkt' tokenizer download failed: {e}")
# Call the function at the beginning of script
download_nltk_punkt()
# Debugging: Check session state initialization
print(f"Session State - NLP: {st.session_state['nlp'] is not None}, Summarizer: {st.session_state['summarizer'] is not None}")
# Define regex patterns to extract structured data
patterns = {
"Fund Name": r"^(.*?) Fund", # Extracts the name before "Fund"
"CUSIP": r"CUSIP\s+(\d+)",
"Inception Date": r"Inception Date\s+([\w\s\d]+)",
"Benchmark": r"Benchmark\s+([\w\s\d]+)",
"Expense Ratio": r"Expense Information.*?(\d+\.\d+%)",
"Total Assets": r"Total Assets\s+USD\s+([\d,]+)",
"Portfolio Turnover": r"Portfolio Holdings Turnover.*?(\d+\.\d+%)",
"Cash Allocation": r"% of Portfolio in Cash\s+(\d+\.\d+%)",
"Alpha": r"Alpha\s+(-?\d+\.\d+%)",
"Standard Deviation": r"Standard Deviation\s+(\d+\.\d+%)"
}
# Set the title and layout
st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")
# Custom styling (this remains unchanged)
st.markdown(
"""
<style>
.sidebar .sidebar-content {
background-color: #f7f7f7;
color: #333;
}
.css-1d391kg {
background-color: #f0f4f8;
}
.stButton>button {
background-color: #4CAF50;
color: white;
padding: 10px 20px;
border-radius: 5px;
font-size: 16px;
}
.stTextArea textarea {
border: 2px solid #4CAF50;
border-radius: 5px;
padding: 10px;
}
</style>
""",
unsafe_allow_html=True,
)
# Function to extract text and tables using pdfplumber
def extract_text_tables_pdfplumber(pdf_file):
import io
import pdfplumber
print("\nPDFPlumber: Extracting text and tables...")
with pdfplumber.open(io.BytesIO(pdf_file.read())) as pdf:
all_text = ""
all_tables = []
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
all_text += page_text + "\n"
# Extract tables
tables = page.extract_tables()
all_tables.extend(tables) # Store all tables
if all_text.strip():
print(all_text[:1000]) # Print first 1000 characters for verification
return all_text, all_tables
else:
print("No text extracted. The PDF might be image-based.")
return None, None
# NEW: Function to evaluate chunk relevance
def evaluate_chunk_relevance(chunk, keywords=None):
"""
Evaluate the relevance of a text chunk based on various factors.
Returns a score representing the chunk's relevance.
"""
if not keywords:
# Default financial keywords
keywords = ["fund", "portfolio", "performance", "return", "asset", "investment",
"expense", "risk", "benchmark", "allocation", "strategy", "market",
"growth", "income", "dividend", "yield", "capital", "equity", "bond",
"summary", "overview", "highlight", "key", "important", "significant"]
score = 0
# Factor 1: Length of the chunk (longer chunks often contain more information)
word_count = len(chunk.split())
score += min(word_count / 100, 5) # Cap at 5 points
# Factor 2: Keyword presence
# Count keywords in lowercase text
lower_chunk = chunk.lower()
keyword_count = sum(1 for keyword in keywords if keyword.lower() in lower_chunk)
keyword_density = keyword_count / max(1, word_count) * 100
score += min(keyword_density * 2, 10) # Cap at 10 points
# Factor 3: Presence of numbers (financial documents often contain important numbers)
number_count = len(re.findall(r'\d+\.?\d*%?', chunk))
score += min(number_count / 5, 5) # Cap at 5 points
# Factor 4: Structured information (lists, tables, etc.)
bullet_count = len(re.findall(r'•|\*|-|–|[0-9]+\.', chunk))
score += min(bullet_count, 5) # Cap at 5 points
# Factor 5: Presence of section headers
header_patterns = [
r'^[A-Z][A-Za-z\s]+:', # Title followed by colon
r'^[A-Z][A-Z\s]+', # ALL CAPS text
r'^\d+\.\s+[A-Z]' # Numbered section
]
header_count = sum(1 for pattern in header_patterns if re.search(pattern, chunk, re.MULTILINE))
score += min(header_count * 2, 5) # Cap at 5 points
return score
# NEW: Function to rank and select the best chunks
def rank_and_select_chunks(chunks, max_chunks=5, keywords=None):
"""
Rank chunks by relevance and return the top chunks.
"""
# Evaluate each chunk
chunk_scores = [(chunk, evaluate_chunk_relevance(chunk, keywords)) for chunk in chunks]
# Sort chunks by score (highest first)
sorted_chunks = sorted(chunk_scores, key=lambda x: x[1], reverse=True)
# Select the top N chunks
top_chunks = [chunk for chunk, score in sorted_chunks[:max_chunks]]
# Print scores for debugging
print("Chunk scores:")
for i, (chunk, score) in enumerate(sorted_chunks):
print(f"Chunk {i+1}: Score {score:.2f}, Length {len(chunk.split())} words")
print(f"First 100 chars: {chunk[:100]}...")
return top_chunks
def split_text_into_chunks(text, tokenizer, max_tokens=512):
sentences = nltk.sent_tokenize(text)
chunks = []
current_chunk = ''
current_length = 0
for sentence in sentences:
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
sentence_length = len(sentence_tokens)
# If adding the next sentence exceeds the max_tokens limit
if current_length + sentence_length > max_tokens:
if current_chunk:
chunks.append(current_chunk.strip())
# Start a new chunk
current_chunk = sentence
current_length = sentence_length
else:
current_chunk += ' ' + sentence
current_length += sentence_length
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def remove_duplicate_sentences(text):
sentences = nltk.sent_tokenize(text)
unique_sentences = []
seen_sentences = set()
for sentence in sentences:
# Normalize the sentence to ignore case and punctuation for comparison
normalized_sentence = sentence.strip().lower()
if normalized_sentence not in seen_sentences:
seen_sentences.add(normalized_sentence)
unique_sentences.append(sentence)
return ' '.join(unique_sentences)
# Ensure session state is initialized
if "pdf_text" not in st.session_state:
st.session_state["pdf_text"] = ""
if "pdf_tables" not in st.session_state:
st.session_state["pdf_tables"] = [] # Initialize as an empty list
# Step 0: Upload PDF
st.sidebar.header("Upload Your Financial Document")
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type="pdf")
if uploaded_file is not None:
st.sidebar.write(f"You uploaded: {uploaded_file.name}")
# Extract text and tables
pdf_text, pdf_tables = extract_text_tables_pdfplumber(uploaded_file)
if pdf_text is not None:
# Store results in session state
st.session_state["pdf_text"] = pdf_text
st.session_state["pdf_tables"] = pdf_tables # Save tables separately
st.sidebar.success("PDF uploaded and text extracted!")
else:
st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")
st.error("No text extracted from the uploaded PDF.")
# Step 1: Display Extracted Text
st.subheader("Extracted Text")
if st.session_state["pdf_text"]:
st.text_area("Document Text", st.session_state["pdf_text"], height=400)
else:
st.warning("No text extracted yet. Upload a PDF to start.")
# Step 2: Display Extracted Tables (Fixed Error)
st.subheader("Extracted Tables")
if st.session_state["pdf_tables"]: # Check if tables exist
for idx, table in enumerate(st.session_state["pdf_tables"]):
st.write(f"Table {idx+1}")
st.write(pd.DataFrame(table)) # Display tables as DataFrames
else:
st.info("No tables extracted.")
# Retrieve variables from session state
nlp = st.session_state["nlp"]
summarizer = st.session_state["summarizer"]
pdf_text = st.session_state["pdf_text"]
pdf_tables = st.session_state["pdf_tables"]
# Ensure that the models are loaded
if nlp is None or summarizer is None:
st.error("Models are not properly loaded. Please check your model paths and installation.")
else:
# Step 3: Named Entity Recognition (NER)
st.subheader("NER Analysis")
# Display full extracted text, not just first 1000 characters
example_text = st.text_area(
"Enter or paste text for analysis",
height=400,
value=st.session_state["pdf_text"] if st.session_state["pdf_text"] else ""
)
if st.button("Analyze"):
# Ensure full extracted text is used for analysis
text_for_analysis = st.session_state["pdf_text"].strip() if st.session_state["pdf_text"] else example_text.strip()
if text_for_analysis:
with st.spinner("Analyzing text..."):
# Extract structured financial data using regex (Now using full text)
extracted_data = {
key: (match.group(1) if match else "N/A")
for key, pattern in patterns.items()
if (match := re.search(pattern, text_for_analysis, re.IGNORECASE))
}
doc = nlp(text_for_analysis)
financial_entities = [(ent.text, ent.label_) for ent in doc.ents if ent.label_ in ["MONEY", "PERCENT", "ORG", "DATE"]]
# Store extracted data in a structured dictionary
structured_data = {**extracted_data, "Named Entities Extracted": financial_entities}
# Display results
st.write("Entities Found:")
st.write(pd.DataFrame(financial_entities, columns=["Entity", "Label"]))
st.write("Structured Data Extracted:")
st.write(pd.DataFrame([structured_data]))
else:
st.error("Please provide some text for analysis.")
# Step 4: Summarization
st.subheader("Summarization")
st.write("Generate concise summaries of financial documents.")
# Add customization options for summarization with chunk selection
st.sidebar.header("Summarization Settings")
max_chunks_to_process = st.sidebar.slider(
"Max chunks to summarize",
min_value=1,
max_value=10,
value=3,
help="Select fewer chunks for faster processing but less comprehensive summaries"
)
# Allow users to add custom keywords
custom_keywords = st.sidebar.text_input(
"Add custom keywords (comma separated)",
value="",
help="Add domain-specific keywords to improve chunk selection"
)
# Text summarization input
input_text = st.text_area(
"Enter text to summarize",
height=200,
value=st.session_state.get("pdf_text", "") if "pdf_text" in st.session_state else ""
)
# Add option to see chunk selection details
show_chunk_details = st.sidebar.checkbox("Show chunk selection details", value=False)
if st.button("Summarize"):
text_to_summarize = input_text.strip()
if text_to_summarize:
try:
# Display original text length
input_length = len(text_to_summarize.split())
st.write(f"Original text length: {input_length} words")
# Process custom keywords if provided
keywords = None
if custom_keywords:
keywords = [kw.strip() for kw in custom_keywords.split(",") if kw.strip()]
st.write(f"Using custom keywords: {', '.join(keywords)}")
# Split the text into manageable chunks
chunks = split_text_into_chunks(text_to_summarize, tokenizer)
st.write(f"Text has been split into {len(chunks)} chunks.")
# NEW: Rank and select the best chunks instead of processing all of them
selected_chunks = rank_and_select_chunks(
chunks,
max_chunks=max_chunks_to_process,
keywords=keywords
)
st.write(f"Selected {len(selected_chunks)} highest-ranked chunks for summarization.")
# Show chunk selection details if requested
if show_chunk_details:
with st.expander("Chunk Selection Details"):
for i, chunk in enumerate(selected_chunks):
st.markdown(f"**Chunk {i+1}**")
st.write(f"Length: {len(chunk.split())} words")
st.text(chunk[:300] + "..." if len(chunk) > 300 else chunk)
st.write("---")
# Summarize each selected chunk
summaries = []
with st.spinner(f"Summarizing {len(selected_chunks)} chunks..."):
for i, chunk in enumerate(selected_chunks):
st.write(f"Summarizing chunk {i+1}/{len(selected_chunks)}...")
# Adjust summary length parameters as needed
chunk_length = len(chunk.split())
max_summary_length = min(150, chunk_length // 2)
min_summary_length = max(50, max_summary_length // 2)
try:
summary_output = summarizer(
chunk,
max_length=max_summary_length,
min_length=min_summary_length,
do_sample=False,
truncation=True
)
chunk_summary = summary_output[0]['summary_text'].strip()
if not chunk_summary:
st.warning(f"The summary for chunk {i+1} is empty.")
else:
summaries.append(chunk_summary)
except Exception as e:
st.error(f"Summarization failed for chunk {i+1}: {e}")
st.text(traceback.format_exc())
continue
if summaries:
# Combine summaries and remove duplicates
combined_summary = ' '.join(summaries)
final_summary = remove_duplicate_sentences(combined_summary)
# Calculate compression ratio
summary_length = len(final_summary.split())
compression_ratio = (1 - summary_length / input_length) * 100
st.subheader("Final Summary")
st.success(final_summary)
st.write(f"Summary length: {summary_length} words ({compression_ratio:.1f}% compression)")
# Display summary statistics
st.subheader("Summary Statistics")
stats_col1, stats_col2 = st.columns(2)
with stats_col1:
st.metric("Original Length", f"{input_length} words")
st.metric("Total Chunks", str(len(chunks)))
with stats_col2:
st.metric("Summary Length", f"{summary_length} words")
st.metric("Chunks Processed", str(len(selected_chunks)))
else:
st.error("No summaries were generated.")
except Exception as e:
st.error("An error occurred during summarization.")
st.text(traceback.format_exc())
else:
st.error("Please provide text to summarize.")
# Add help information
st.sidebar.markdown("---")
with st.sidebar.expander("How Chunk Selection Works"):
st.markdown("""
The chunk selection algorithm ranks text chunks based on:
1. **Keyword density** - Presence of financial terms
2. **Length** - Longer chunks often contain more information
3. **Numbers** - Financial documents with numbers are often important
4. **Structure** - Lists and bullet points signal key information
5. **Headers** - Section headers often introduce important content
Adjust the settings above to customize the selection process.
""")