File size: 14,612 Bytes
803ef66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from datasets import load_dataset
from huggingface_hub import Repository
from huggingface_hub import HfApi, HfFolder, Repository, create_repo
import os
import pandas as pd
import gradio as gr
from PIL import Image
import numpy as np
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
from CLIP import load as load_clip
from rich import print as rp

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
big = False if device == torch.device('cpu') else True

# Parameters
IMG_SIZE = 1024 if big else 256
BATCH_SIZE = 1 if big else 1
EPOCHS = 12
LR = 0.0002
dataset_id = "K00B404/pix2pix_flux_set"
model_repo_id = "K00B404/pix2pix_flux"

# Global model variable
global_model = None

# CLIP
clip_model, clip_tokenizer = load_clip()

def load_model():
    """Load the models at startup"""
    global global_model
    weights_name = 'big_model_weights.pth' if big else 'small_model_weights.pth'
    try:
        checkpoint = torch.load(weights_name, map_location=device)
        model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
        model.load_state_dict(checkpoint['model_state_dict'])
        model.to(device)
        model.eval()
        global_model = model
        rp("Model loaded successfully!")
        return model
    except Exception as e:
        rp(f"Error loading model: {e}")
        model = big_UNet().to(device) if big else small_UNet().to(device)
        global_model = model
        return model

class Pix2PixDataset(torch.utils.data.Dataset):
    def __init__(self, combined_data, transform, clip_tokenizer):
        self.data = combined_data
        self.transform = transform
        self.clip_tokenizer = clip_tokenizer
        self.original_folder = 'images_dataset/original/'
        self.target_folder = 'images_dataset/target/'

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        original_img_filename = os.path.basename(self.data.iloc[idx]['image_path'])
        original_img_path = os.path.join(self.original_folder, original_img_filename)
        target_img_path = os.path.join(self.target_folder, original_img_filename)

        original_img = Image.open(original_img_path).convert('RGB')
        target_img = Image.open(target_img_path).convert('RGB')
        
        # Transform images
        original = self.transform(original_img)
        target = self.transform(target_img)
        
        # Get prompts from the DataFrame
        original_prompt = self.data.iloc[idx]['original_prompt']
        enhanced_prompt = self.data.iloc[idx]['enhanced_prompt']
        
        # Tokenize the prompts using CLIP tokenizer
        original_tokens = self.clip_tokenizer(original_prompt, return_tensors="pt", padding=True, truncation=True, max_length=77)
        enhanced_tokens = self.clip_tokenizer(enhanced_prompt, return_tensors="pt", padding=True, truncation=True, max_length=77)
        
        return original, target, original_tokens, enhanced_tokens



class UNetWrapper:
    def __init__(self, unet_model, repo_id, epoch, loss, optimizer, scheduler=None):
        self.loss = loss
        self.epoch = epoch
        self.model = unet_model
        self.optimizer = optimizer
        self.scheduler = scheduler
        self.repo_id = repo_id
        self.token = os.getenv('NEW_TOKEN')  # Ensure the token is set in the environment
        self.api = HfApi(token=self.token)

    def save_checkpoint(self, save_path):
        """Save checkpoint with model, optimizer, and scheduler states."""
        self.save_dict = {
            'model_state_dict': self.model.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'scheduler_state_dict': self.scheduler.state_dict() if self.scheduler else None,
            'model_config': {
                'big': isinstance(self.model, big_UNet),
                'img_size': 1024 if isinstance(self.model, big_UNet) else 256
            },
            'epoch': self.epoch,
            'loss': self.loss
        }
        torch.save(self.save_dict, save_path)
        print(f"Checkpoint saved at epoch {self.epoch}, loss: {self.loss}")

    def load_checkpoint(self, checkpoint_path):
        """Load model, optimizer, and scheduler states from the checkpoint."""
        checkpoint = torch.load(checkpoint_path, map_location=device)
        self.model.load_state_dict(checkpoint['model_state_dict'])
        self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        if self.scheduler and checkpoint['scheduler_state_dict']:
            self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
        self.epoch = checkpoint['epoch']
        self.loss = checkpoint['loss']
        print(f"Checkpoint loaded: epoch {self.epoch}, loss: {self.loss}")

    def push_to_hub(self, pth_name):
        """Push model checkpoint and metadata to the Hugging Face Hub."""
        try:
            self.api.upload_file(
                path_or_fileobj=pth_name,
                path_in_repo=pth_name,
                repo_id=self.repo_id,
                token=self.token,
                repo_type="model"
            )
            print(f"Model checkpoint successfully uploaded to {self.repo_id}")
        except Exception as e:
            print(f"Error uploading model: {e}")

        
   
            
        # Create and upload model card
        model_card = f"""---
tags:
- unet
- pix2pix
- pytorch
library_name: pytorch
license: wtfpl
datasets:
- K00B404/pix2pix_flux_set
language:
- en
pipeline_tag: image-to-image
---
# Pix2Pix UNet Model
## Model Description
Custom UNet model for Pix2Pix image translation.
- **Image Size:** {self.save_dict['model_config']['img_size']}
- **Model Type:** {"big" if big else "small"}_UNet ({self.save_dict['model_config']['img_size']})
## Usage
```python
import torch
from small_256_model import UNet as small_UNet
from big_1024_model import UNet as big_UNet
big = True
# Load the model
name='big_model_weights.pth' if big else 'small_model_weights.pth'
checkpoint = torch.load(name)
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
```
## Model Architecture
{str(self.model)} """
        rp(model_card)
    try:
        # Save and upload README
        with open("README.md", "w") as f:
            f.write(f"# Pix2Pix UNet Model\n\n"
                    f"- **Image Size:** {self.save_dict['model_config']['img_size']}\n"
                    f"- **Model Type:** {'big' if big else 'small'}_UNet ({self.save_dict['model_config']['img_size']})\n"
                    f"## Model Architecture\n{str(self.model)}")
        
        self.api.upload_file(
            path_or_fileobj="README.md",
            path_in_repo="README.md",
            repo_id=self.repo_id,
            token=self.token,
            repo_type="model"
        )
        
        # Clean up local files
        os.remove(pth_name)
        os.remove("README.md")
        
        print(f"Model successfully uploaded to {self.repo_id}")
        
    except Exception as e:
        print(f"Error uploading model: {e}")

def prepare_input(image, device='cpu'):
    """Prepare image for inference"""
    transform = transforms.Compose([
        transforms.Resize((IMG_SIZE, IMG_SIZE)),
        transforms.ToTensor(),
    ])
    
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    input_tensor = transform(image).unsqueeze(0).to(device)
    return input_tensor

def run_inference(image):
    """Run inference on a single image"""
    global global_model
    if global_model is None:
        return "Error: Model not loaded"
    
    global_model.eval()
    input_tensor = prepare_input(image, device)
    
    with torch.no_grad():
        output = global_model(input_tensor)
    
    # Convert output to image
    output = output.cpu().squeeze(0).permute(1, 2, 0).numpy()
    output = ((output - output.min()) / (output.max() - output.min()) * 255).astype(np.uint8)
    rp(output[0])
    return output
    
def to_hub(model, epoch, loss):
    wrapper = UNetWrapper(model, model_repo_id, epoch, loss)
    wrapper.push_to_hub()

    
def train_model(epochs, save_interval=1):
    """Training function with checkpoint saving and model uploading."""
    global global_model
    
    # Load combined data CSV
    data_path = 'combined_data.csv'
    combined_data = pd.read_csv(data_path)
    
    # Define the transformation
    transform = transforms.Compose([
        transforms.Resize((IMG_SIZE, IMG_SIZE)),
        transforms.ToTensor(),
    ])
    
    # Initialize dataset and dataloader
    dataset = Pix2PixDataset(combined_data, transform, clip_tokenizer)
    dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)

    model = global_model
    criterion = nn.L1Loss()
    optimizer = optim.Adam(model.parameters(), lr=LR)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)  # Example scheduler
    wrapper = UNetWrapper(model, model_repo_id, epoch=0, loss=0.0, optimizer=optimizer, scheduler=scheduler)

    output_text = []

    for epoch in range(epochs):
        model.train()
        running_loss = 0.0

        for i, (original, target, original_prompt_tokens, enhanced_prompt_tokens) in enumerate(dataloader):
            # Move data to device
            original, target = original.to(device), target.to(device)
            original_prompt_tokens = original_prompt_tokens.input_ids.to(device).float()
            enhanced_prompt_tokens = enhanced_prompt_tokens.input_ids.to(device).float()
            
            optimizer.zero_grad()

            # Forward pass
            output = model(target)
            img_loss = criterion(output, original)
            total_loss = img_loss
            total_loss.backward()
            optimizer.step()

            running_loss += total_loss.item()

            if i % 10 == 0:
                status = f"Epoch [{epoch}/{epochs}], Step [{i}/{len(dataloader)}], Loss: {total_loss.item():.8f}"
                print(status)
                output_text.append(status)
        
        # Update the epoch and loss for checkpoint
        wrapper.epoch = epoch + 1
        wrapper.loss = running_loss / len(dataloader)
        
        # Save checkpoint at specified intervals
        if (epoch + 1) % save_interval == 0:
            checkpoint_path = f'big_checkpoint_epoch_{epoch+1}.pth' if big else   f'small_checkpoint_epoch_{epoch+1}.pth'
            wrapper.save_checkpoint(checkpoint_path)
            wrapper.push_to_hub(checkpoint_path)

        scheduler.step()  # Update learning rate scheduler

    global_model = model  # Update global model after training
    return model, "\n".join(output_text)

    
def train_model_old(epochs):
    """Training function"""
    global global_model
    
    # Load combined data CSV
    data_path = 'combined_data.csv'  # Adjust this path
    combined_data = pd.read_csv(data_path)
    
    # Define the transformation
    transform = transforms.Compose([
        transforms.Resize((IMG_SIZE, IMG_SIZE)),
        transforms.ToTensor(),
    ])
    
    # Initialize the dataset and dataloader
    dataset = Pix2PixDataset(combined_data, transform, clip_tokenizer)
    dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)

    model = global_model
    criterion = nn.L1Loss()  # L1 loss for image reconstruction
    optimizer = optim.Adam(model.parameters(), lr=LR)
    output_text = []
    
    for epoch in range(epochs):
        model.train()
        for i, (original, target, original_prompt_tokens, enhanced_prompt_tokens) in enumerate(dataloader):
            # Move images and prompt embeddings to the appropriate device (CPU or GPU)
            original, target = original.to(device), target.to(device)
            original_prompt_tokens = original_prompt_tokens.input_ids.to(device).float()  # Convert to float
            enhanced_prompt_tokens = enhanced_prompt_tokens.input_ids.to(device).float()  # Convert to float
            
            optimizer.zero_grad()
        
            # Forward pass through the model
            output = model(target)
        
            # Compute image reconstruction loss
            img_loss = criterion(output, original)
            rp(f"Image {i} Loss:{img_loss}")
            
            # Combine losses
            total_loss = img_loss  # Add any other losses if necessary
            total_loss.backward()
        
            # Optimizer step
            optimizer.step()

            if i % 10 == 0:
                status = f"Epoch [{epoch}/{epochs}], Step [{i}/{len(dataloader)}], Loss: {total_loss.item():.8f}"
                rp(status)
                output_text.append(status)
        
        # Push model to Hugging Face Hub at the end of each epoch
        to_hub(model, epoch, total_loss)
        
    global_model = model  # Update the global model after training
    return model, "\n".join(output_text)

def gradio_train(epochs):
    # Gradio training interface function
    model, training_log = train_model(int(epochs))
    #to_hub(model)
    return f"{training_log}\n\nModel trained for {epochs} epochs and pushed to {model_repo_id}"

def gradio_inference(input_image):
    # Gradio inference interface function
    output_image = run_inference(input_image)  # Assuming `run_inference` returns a tuple (output_image, other_data)
    rp(output_image)
    # If `run_inference` returns a tuple, you should only return the image part
    return output_image  # Ensure you're only returning the processed output image


# Create Gradio interface with tabs
with gr.Blocks() as app:
    gr.Markdown("# Pix2Pix Model Training and Inference")
    
    with gr.Tab("Train"):
        epochs_input = gr.Number(value=EPOCHS, label="Number of epochs")
        train_button = gr.Button("Train")
        training_output = gr.Textbox(label="Training Log", interactive=False)
        train_button.click(gradio_train, inputs=[epochs_input], outputs=[training_output])
    
    with gr.Tab("Inference"):
        image_input = gr.Image(type='numpy')
        prompt_input = gr.Textbox(label="Prompt")
        inference_button = gr.Button("Generate")
        inference_output = gr.Image(type='numpy', label="Generated Image")
        inference_button.click(gradio_inference, inputs=[image_input], outputs=[inference_output])

load_model()
app.launch()