import os import warnings import cv2 import numpy as np import torch from einops import rearrange from huggingface_hub import hf_hub_download from PIL import Image from ..util import HWC3, nms, resize_image, safe_step from .model import pidinet class PidiNetDetector: def __init__(self, netNetwork): self.netNetwork = netNetwork @classmethod def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False): filename = filename or "table5_pidinet.pth" if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only) netNetwork = pidinet() netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path)['state_dict'].items()}) netNetwork.eval() return cls(netNetwork) def to(self, device): self.netNetwork.to(device) return self def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, apply_filter=False, **kwargs): if "return_pil" in kwargs: warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning) output_type = "pil" if kwargs["return_pil"] else "np" if type(output_type) is bool: warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions") if output_type: output_type = "pil" device = next(iter(self.netNetwork.parameters())).device if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) assert input_image.ndim == 3 input_image = input_image[:, :, ::-1].copy() with torch.no_grad(): image_pidi = torch.from_numpy(input_image).float().to(device) image_pidi = image_pidi / 255.0 image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') edge = self.netNetwork(image_pidi)[-1] edge = edge.cpu().numpy() if apply_filter: edge = edge > 0.5 if safe: edge = safe_step(edge) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) detected_map = edge[0, 0] detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) if scribble: detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map