Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from PIL import Image
|
5 |
+
import warnings
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Disable warnings for cleaner output
|
10 |
+
transformers.logging.set_verbosity_error()
|
11 |
+
transformers.logging.disable_progress_bar()
|
12 |
+
warnings.filterwarnings('ignore')
|
13 |
+
|
14 |
+
# Set device - will use CUDA if available, otherwise CPU
|
15 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
16 |
+
torch.set_default_device(device)
|
17 |
+
|
18 |
+
# Model configuration
|
19 |
+
model_name = 'qnguyen3/nanoLLaVA-1.5'
|
20 |
+
|
21 |
+
print(f"Loading model {model_name} on {device}...")
|
22 |
+
|
23 |
+
# Create model
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
device_map='auto',
|
28 |
+
trust_remote_code=True)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
30 |
+
model_name,
|
31 |
+
trust_remote_code=True)
|
32 |
+
|
33 |
+
print("Model loaded successfully!")
|
34 |
+
|
35 |
+
def analyze_character(image_path, analysis_type):
|
36 |
+
"""
|
37 |
+
Analyze a character image for dramaturgical insights
|
38 |
+
|
39 |
+
Args:
|
40 |
+
image_path: Path to the character image
|
41 |
+
analysis_type: Type of character analysis to perform
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
str: The generated character analysis
|
45 |
+
"""
|
46 |
+
# Load and process image
|
47 |
+
try:
|
48 |
+
image = Image.open(image_path).convert('RGB')
|
49 |
+
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
|
50 |
+
except Exception as e:
|
51 |
+
return f"Error processing image: {str(e)}"
|
52 |
+
|
53 |
+
# Create prompt based on analysis type
|
54 |
+
if analysis_type == "full_analysis":
|
55 |
+
prompt = ("Analyze this character as a dramaturg would. Describe their appearance, "
|
56 |
+
"potential personality traits, character archetype, suitable roles, and how they might "
|
57 |
+
"function within a dramatic narrative. Consider costume, posture, expression, and visual symbolism.")
|
58 |
+
elif analysis_type == "archetype":
|
59 |
+
prompt = ("Identify the potential character archetype(s) represented in this image. "
|
60 |
+
"Consider both classical archetypes (hero, mentor, trickster, etc.) and modern "
|
61 |
+
"interpretations. Explain your reasoning based on visual cues.")
|
62 |
+
elif analysis_type == "historical_context":
|
63 |
+
prompt = ("Analyze this character's appearance in terms of historical context. "
|
64 |
+
"Identify the likely time period, cultural influences, and how these elements "
|
65 |
+
"would influence the character's role in a dramatic work. Consider costume details, "
|
66 |
+
"props, and stylistic elements.")
|
67 |
+
else:
|
68 |
+
prompt = "Describe this character in detail for dramatic casting purposes."
|
69 |
+
|
70 |
+
# Format input for the model using ChatML format
|
71 |
+
messages = [
|
72 |
+
{"role": "system", "content": "You are an expert dramaturg with deep knowledge of character analysis, theatrical traditions, and visual storytelling."},
|
73 |
+
{"role": "user", "content": f'<image>\n{prompt}'}
|
74 |
+
]
|
75 |
+
|
76 |
+
text = tokenizer.apply_chat_template(
|
77 |
+
messages,
|
78 |
+
tokenize=False,
|
79 |
+
add_generation_prompt=True
|
80 |
+
)
|
81 |
+
|
82 |
+
# Split text around image placeholder
|
83 |
+
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
|
84 |
+
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
|
85 |
+
|
86 |
+
# Generate response
|
87 |
+
try:
|
88 |
+
output_ids = model.generate(
|
89 |
+
input_ids,
|
90 |
+
images=image_tensor,
|
91 |
+
max_new_tokens=1024,
|
92 |
+
temperature=0.7,
|
93 |
+
top_p=0.9,
|
94 |
+
use_cache=True)[0]
|
95 |
+
|
96 |
+
response = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
97 |
+
return response
|
98 |
+
except Exception as e:
|
99 |
+
return f"Error generating analysis: {str(e)}"
|
100 |
+
|
101 |
+
# Create Gradio interface
|
102 |
+
def create_ui():
|
103 |
+
with gr.Blocks(title="Dramaturg Character Analyzer") as demo:
|
104 |
+
gr.Markdown("# Dramaturg Character Analyzer")
|
105 |
+
gr.Markdown("Upload a character image to receive a dramaturgical analysis")
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column():
|
109 |
+
input_image = gr.Image(type="filepath", label="Upload Character Image")
|
110 |
+
analysis_type = gr.Radio(
|
111 |
+
["full_analysis", "archetype", "historical_context", "basic_description"],
|
112 |
+
label="Analysis Type",
|
113 |
+
value="full_analysis"
|
114 |
+
)
|
115 |
+
analyze_btn = gr.Button("Analyze Character")
|
116 |
+
|
117 |
+
with gr.Column():
|
118 |
+
output_text = gr.Textbox(label="Character Analysis", lines=20)
|
119 |
+
|
120 |
+
analyze_btn.click(
|
121 |
+
fn=analyze_character,
|
122 |
+
inputs=[input_image, analysis_type],
|
123 |
+
outputs=output_text
|
124 |
+
)
|
125 |
+
|
126 |
+
return demo
|
127 |
+
|
128 |
+
# Main function
|
129 |
+
if __name__ == "__main__":
|
130 |
+
demo = create_ui()
|
131 |
+
demo.launch(share=True)
|
132 |
+
print("Dramaturg Character Analyzer is now running!")
|