diff --git "a/modeling_whisper (1).py" "b/modeling_whisper (1).py"
new file mode 100644--- /dev/null
+++ "b/modeling_whisper (1).py"
@@ -0,0 +1,2241 @@
+# coding=utf-8
+# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch Whisper model."""
+
+import math
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
+from ...generation import GenerationMixin
+from ...modeling_attn_mask_utils import AttentionMaskConverter
+from ...modeling_outputs import (
+    BaseModelOutput,
+    BaseModelOutputWithPastAndCrossAttentions,
+    CausalLMOutputWithCrossAttentions,
+    Seq2SeqLMOutput,
+    Seq2SeqModelOutput,
+    SequenceClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+    add_start_docstrings,
+    add_start_docstrings_to_model_forward,
+    is_flash_attn_2_available,
+    is_flash_attn_greater_or_equal_2_10,
+    logging,
+    replace_return_docstrings,
+)
+from .configuration_whisper import WhisperConfig
+from .generation_whisper import WhisperGenerationMixin
+
+
+if is_flash_attn_2_available():
+    from ...modeling_flash_attention_utils import _flash_attention_forward
+
+
+logger = logging.get_logger(__name__)
+
+_HIDDEN_STATES_START_POSITION = 1
+
+_CONFIG_FOR_DOC = "WhisperConfig"
+_CHECKPOINT_FOR_DOC = "openai/whisper-tiny"
+
+
+def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor:
+    """Returns sinusoids for positional embedding"""
+    if channels % 2 != 0:
+        raise ValueError(
+            f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels."
+        )
+    log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
+    inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
+    scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1)
+    return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1)
+
+
+# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
+def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
+    """
+    Shift input ids one token to the right.
+    """
+    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
+    shifted_input_ids[:, 0] = decoder_start_token_id
+
+    if pad_token_id is None:
+        raise ValueError("self.model.config.pad_token_id has to be defined.")
+    # replace possible -100 values in labels by `pad_token_id`
+    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+    return shifted_input_ids
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
+def _compute_mask_indices(
+    shape: Tuple[int, int],
+    mask_prob: float,
+    mask_length: int,
+    attention_mask: Optional[torch.LongTensor] = None,
+    min_masks: int = 0,
+) -> np.ndarray:
+    """
+    Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
+    ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
+    CPU as part of the preprocessing during training.
+
+    Args:
+        shape: The shape for which to compute masks. This should be of a tuple of size 2 where
+               the first element is the batch size and the second element is the length of the axis to span.
+        mask_prob:  The percentage of the whole axis (between 0 and 1) which will be masked. The number of
+                    independently generated mask spans of length `mask_length` is computed by
+                    `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
+                    actual percentage will be smaller.
+        mask_length: size of the mask
+        min_masks: minimum number of masked spans
+        attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
+                        each batch dimension.
+    """
+    batch_size, sequence_length = shape
+
+    if mask_length < 1:
+        raise ValueError("`mask_length` has to be bigger than 0.")
+
+    if mask_length > sequence_length:
+        raise ValueError(
+            f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
+            f" and `sequence_length`: {sequence_length}`"
+        )
+
+    # epsilon is used for probabilistic rounding
+    epsilon = np.random.rand(1).item()
+
+    def compute_num_masked_span(input_length):
+        """Given input length, compute how many spans should be masked"""
+        num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
+        num_masked_span = max(num_masked_span, min_masks)
+
+        # make sure num masked span <= sequence_length
+        if num_masked_span * mask_length > sequence_length:
+            num_masked_span = sequence_length // mask_length
+
+        # make sure num_masked span is also <= input_length - (mask_length - 1)
+        if input_length - (mask_length - 1) < num_masked_span:
+            num_masked_span = max(input_length - (mask_length - 1), 0)
+
+        return num_masked_span
+
+    # compute number of masked spans in batch
+    input_lengths = (
+        attention_mask.sum(-1).detach().tolist()
+        if attention_mask is not None
+        else [sequence_length for _ in range(batch_size)]
+    )
+
+    # SpecAugment mask to fill
+    spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
+    spec_aug_mask_idxs = []
+
+    max_num_masked_span = compute_num_masked_span(sequence_length)
+
+    if max_num_masked_span == 0:
+        return spec_aug_mask
+
+    for input_length in input_lengths:
+        # compute num of masked spans for this input
+        num_masked_span = compute_num_masked_span(input_length)
+
+        # get random indices to mask
+        spec_aug_mask_idx = np.random.choice(
+            np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
+        )
+
+        # pick first sampled index that will serve as a dummy index to pad vector
+        # to ensure same dimension for all batches due to probabilistic rounding
+        # Picking first sample just pads those vectors twice.
+        if len(spec_aug_mask_idx) == 0:
+            # this case can only happen if `input_length` is strictly smaller then
+            # `sequence_length` in which case the last token has to be a padding
+            # token which we can use as a dummy mask id
+            dummy_mask_idx = sequence_length - 1
+        else:
+            dummy_mask_idx = spec_aug_mask_idx[0]
+
+        spec_aug_mask_idx = np.concatenate(
+            [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
+        )
+        spec_aug_mask_idxs.append(spec_aug_mask_idx)
+
+    spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
+
+    # expand masked indices to masked spans
+    spec_aug_mask_idxs = np.broadcast_to(
+        spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
+    )
+    spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
+
+    # add offset to the starting indexes so that indexes now create a span
+    offsets = np.arange(mask_length)[None, None, :]
+    offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
+        batch_size, max_num_masked_span * mask_length
+    )
+    spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
+
+    # ensure that we cannot have indices larger than sequence_length
+    if spec_aug_mask_idxs.max() > sequence_length - 1:
+        spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
+
+    # scatter indices to mask
+    np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
+
+    return spec_aug_mask
+
+
+class WhisperPositionalEmbedding(nn.Embedding):
+    def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
+        super().__init__(num_positions, embedding_dim)
+
+    def forward(self, input_ids, past_key_values_length=0, position_ids=None):
+        if position_ids is None:
+            return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[1]]
+        else:
+            return self.weight[position_ids]
+
+
+class WhisperAttention(nn.Module):
+    """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+    def __init__(
+        self,
+        embed_dim: int,
+        num_heads: int,
+        dropout: float = 0.0,
+        is_decoder: bool = False,
+        bias: bool = True,
+        is_causal: bool = False,
+        layer_idx: Optional[int] = None,
+        config: Optional[WhisperConfig] = None,
+    ):
+        super().__init__()
+        self.embed_dim = embed_dim
+        self.num_heads = num_heads
+        self.dropout = dropout
+        self.head_dim = embed_dim // num_heads
+        self.config = config
+
+        if (self.head_dim * num_heads) != self.embed_dim:
+            raise ValueError(
+                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+                f" and `num_heads`: {num_heads})."
+            )
+        self.scaling = self.head_dim**-0.5
+        self.is_decoder = is_decoder
+        self.is_causal = is_causal
+
+        if layer_idx is None and is_decoder:
+            logger.warning_once(
+                f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
+                "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
+                "when creating this class."
+            )
+        self.layer_idx = layer_idx
+
+        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
+        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+    # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper
+    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        key_value_states: Optional[torch.Tensor] = None,
+        past_key_value: Optional[EncoderDecoderCache] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        layer_head_mask: Optional[torch.Tensor] = None,
+        output_attentions: bool = False,
+        cache_position: Optional[torch.LongTensor] = None,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+        """Input shape: Batch x Time x Channel"""
+
+        # if key_value_states are provided this layer is used as a cross-attention layer
+        # for the decoder
+        is_cross_attention = key_value_states is not None
+        bsz, tgt_len, _ = hidden_states.size()
+
+        # get query proj
+        query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz)
+
+        if past_key_value is not None:
+            is_updated = past_key_value.is_updated.get(self.layer_idx)
+            if is_cross_attention:
+                # after the first generated id, we can subsequently re-use all key/value_states from cache
+                past_key_value.is_updated[self.layer_idx] = True
+                past_key_value = past_key_value.cross_attention_cache
+            else:
+                past_key_value = past_key_value.self_attention_cache
+
+        # use key_value_states if cross attention
+        current_states = key_value_states if key_value_states is not None else hidden_states
+        if is_cross_attention and past_key_value and is_updated:
+            # reuse k,v, cross_attentions
+            key_states = past_key_value.key_cache[self.layer_idx]
+            value_states = past_key_value.value_cache[self.layer_idx]
+        else:
+            key_states = self._shape(self.k_proj(current_states), -1, bsz)
+            value_states = self._shape(self.v_proj(current_states), -1, bsz)
+            if past_key_value is not None:
+                # save all key/value_states to cache to be re-used for fast auto-regressive generation
+                cache_position = cache_position if not is_cross_attention else None
+                key_states, value_states = past_key_value.update(
+                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
+                )
+
+        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
+
+        if attention_mask is not None:  # no matter the length, we just slice it
+            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+            attn_weights = attn_weights + causal_mask
+
+        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+        if layer_head_mask is not None:
+            if layer_head_mask.size() != (self.num_heads,):
+                raise ValueError(
+                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+                    f" {layer_head_mask.size()}"
+                )
+            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights
+
+        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+        attn_output = torch.matmul(attn_probs, value_states)
+
+        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
+            raise ValueError(
+                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+                f" {attn_output.size()}"
+            )
+
+        attn_output = attn_output.transpose(1, 2)
+        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+        # partitioned across GPUs when using tensor-parallelism.
+        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+        attn_output = self.out_proj(attn_output)
+
+        return attn_output, attn_weights, past_key_value
+
+
+class WhisperFlashAttention2(WhisperAttention):
+    """
+    Whisper flash attention module. This module inherits from `WhisperAttention` as the weights of the module stays
+    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
+    flash attention and deal with padding tokens in case the input contains any of them.
+    """
+
+    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+
+        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
+        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
+        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
+        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        key_value_states: Optional[torch.Tensor] = None,
+        past_key_value: Optional[EncoderDecoderCache] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        layer_head_mask: Optional[torch.Tensor] = None,
+        output_attentions: bool = False,
+        cache_position: Optional[torch.LongTensor] = None,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+        if isinstance(past_key_value, StaticCache):
+            raise ValueError(
+                "The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. "
+                "Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers"
+            )
+        # WhisperFlashAttention2 attention does not support output_attentions
+        if output_attentions:
+            raise ValueError("WhisperFlashAttention2 attention does not support output_attentions")
+
+        # if key_value_states are provided this layer is used as a cross-attention layer
+        # for the decoder
+        is_cross_attention = key_value_states is not None
+        bsz, tgt_len, _ = hidden_states.size()
+
+        # get query proj
+        query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim))
+
+        if past_key_value is not None:
+            is_updated = past_key_value.is_updated.get(self.layer_idx)
+            if is_cross_attention:
+                # after the first generated id, we can subsequently re-use all key/value_states from cache
+                past_key_value.is_updated[self.layer_idx] = True
+                past_key_value = past_key_value.cross_attention_cache
+            else:
+                past_key_value = past_key_value.self_attention_cache
+
+        # use key_value_states if cross attention
+        current_states = key_value_states if key_value_states is not None else hidden_states
+        if is_cross_attention and past_key_value and is_updated:
+            # reuse k,v, cross_attentions
+            key_states = past_key_value.key_cache[self.layer_idx]
+            value_states = past_key_value.value_cache[self.layer_idx]
+        else:
+            key_states = self._shape(self.k_proj(current_states), -1, bsz)
+            value_states = self._shape(self.v_proj(current_states), -1, bsz)
+            if past_key_value is not None:
+                # save all key/value_states to cache to be re-used for fast auto-regressive generation
+                cache_position = cache_position if not is_cross_attention else None
+                key_states, value_states = past_key_value.update(
+                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
+                )
+
+        # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]
+        #  We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view.
+        key_states = key_states.transpose(1, 2)
+        value_states = value_states.transpose(1, 2)
+
+        causal_mask = attention_mask
+        if attention_mask is not None:  # no matter the length, we just slice it
+            causal_mask = attention_mask[:, : key_states.shape[-2]]
+
+        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
+        # therefore the input hidden states gets silently casted in float32. Hence, we need
+        # cast them back in the correct dtype just to be sure everything works as expected.
+        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
+        # in fp32. (LlamaRMSNorm handles it correctly)
+
+        input_dtype = query_states.dtype
+        if input_dtype == torch.float32:
+            if torch.is_autocast_enabled():
+                target_dtype = torch.get_autocast_gpu_dtype()
+            # Handle the case where the model is quantized
+            elif hasattr(self.config, "_pre_quantization_dtype"):
+                target_dtype = self.config._pre_quantization_dtype
+            else:
+                target_dtype = self.q_proj.weight.dtype
+
+            logger.warning_once(
+                f"The input hidden states seems to be silently casted in float32, this might be related to"
+                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
+                f" {target_dtype}."
+            )
+
+            query_states = query_states.to(target_dtype)
+            key_states = key_states.to(target_dtype)
+            value_states = value_states.to(target_dtype)
+
+        attn_output = _flash_attention_forward(
+            query_states,
+            key_states,
+            value_states,
+            causal_mask,
+            tgt_len,
+            dropout=self.dropout if self.training else 0.0,
+            is_causal=self.is_causal,
+            use_top_left_mask=self._flash_attn_uses_top_left_mask,
+        )
+
+        attn_output = attn_output.reshape(bsz, tgt_len, -1)
+        attn_output = self.out_proj(attn_output)
+
+        if not output_attentions:
+            attn_weights = None
+
+        return attn_output, attn_weights, past_key_value
+
+
+class WhisperSdpaAttention(WhisperAttention):
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        key_value_states: Optional[torch.Tensor] = None,
+        past_key_value: Optional[EncoderDecoderCache] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        layer_head_mask: Optional[torch.Tensor] = None,
+        output_attentions: bool = False,
+        cache_position: Optional[torch.LongTensor] = None,
+    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+        """Input shape: Batch x Time x Channel"""
+        if output_attentions or layer_head_mask is not None:
+            # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
+            logger.warning_once(
+                "WhisperModel is using WhisperSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
+                ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
+            )
+            return super().forward(
+                hidden_states,
+                key_value_states=key_value_states,
+                past_key_value=past_key_value,
+                attention_mask=attention_mask,
+                layer_head_mask=layer_head_mask,
+                output_attentions=output_attentions,
+                cache_position=cache_position,
+            )
+
+        # if key_value_states are provided this layer is used as a cross-attention layer
+        # for the decoder
+        is_cross_attention = key_value_states is not None
+        bsz, tgt_len, _ = hidden_states.size()
+
+        # get query proj
+        query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)
+
+        if past_key_value is not None:
+            is_updated = past_key_value.is_updated.get(self.layer_idx)
+            if is_cross_attention:
+                # after the first generated id, we can subsequently re-use all key/value_states from cache
+                past_key_value.is_updated[self.layer_idx] = True
+                past_key_value = past_key_value.cross_attention_cache
+            else:
+                past_key_value = past_key_value.self_attention_cache
+
+        # use key_value_states if cross attention
+        current_states = key_value_states if key_value_states is not None else hidden_states
+        if is_cross_attention and past_key_value and is_updated:
+            # reuse k,v, cross_attentions
+            key_states = past_key_value.key_cache[self.layer_idx]
+            value_states = past_key_value.value_cache[self.layer_idx]
+        else:
+            key_states = self._shape(self.k_proj(current_states), -1, bsz)
+            value_states = self._shape(self.v_proj(current_states), -1, bsz)
+            if past_key_value is not None:
+                # save all key/value_states to cache to be re-used for fast auto-regressive generation
+                cache_position = cache_position if not is_cross_attention else None
+                key_states, value_states = past_key_value.update(
+                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
+                )
+
+        causal_mask = attention_mask
+        if attention_mask is not None:  # no matter the length, we just slice it
+            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
+
+        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
+        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
+        # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
+        is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False
+
+        # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
+        # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
+        attn_output = torch.nn.functional.scaled_dot_product_attention(
+            query_states,
+            key_states,
+            value_states,
+            attn_mask=causal_mask,
+            dropout_p=self.dropout if self.training else 0.0,
+            is_causal=is_causal,
+        )
+
+        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
+            raise ValueError(
+                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+                f" {attn_output.size()}"
+            )
+
+        attn_output = attn_output.transpose(1, 2)
+
+        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+        # partitioned across GPUs when using tensor-parallelism.
+        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+        attn_output = self.out_proj(attn_output)
+
+        return attn_output, None, past_key_value
+
+
+WHISPER_ATTENTION_CLASSES = {
+    "eager": WhisperAttention,
+    "flash_attention_2": WhisperFlashAttention2,
+    "sdpa": WhisperSdpaAttention,
+}
+
+
+# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Whisper, MBART->WHISPER
+class WhisperEncoderLayer(nn.Module):
+    def __init__(self, config: WhisperConfig):
+        super().__init__()
+        self.embed_dim = config.d_model
+
+        self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
+            embed_dim=self.embed_dim,
+            num_heads=config.encoder_attention_heads,
+            dropout=config.attention_dropout,
+            config=config,
+        )
+        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+        self.dropout = config.dropout
+        self.activation_fn = ACT2FN[config.activation_function]
+        self.activation_dropout = config.activation_dropout
+        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+        self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask: torch.Tensor,
+        layer_head_mask: torch.Tensor,
+        output_attentions: bool = False,
+    ) -> torch.Tensor:
+        """
+        Args:
+            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+            attention_mask (`torch.FloatTensor`): attention mask of size
+                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+                `(encoder_attention_heads,)`.
+            output_attentions (`bool`, *optional*):
+                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+                returned tensors for more detail.
+        """
+        residual = hidden_states
+        hidden_states = self.self_attn_layer_norm(hidden_states)
+        hidden_states, attn_weights, _ = self.self_attn(
+            hidden_states=hidden_states,
+            attention_mask=attention_mask,
+            layer_head_mask=layer_head_mask,
+            output_attentions=output_attentions,
+        )
+        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+        hidden_states = residual + hidden_states
+
+        residual = hidden_states
+        hidden_states = self.final_layer_norm(hidden_states)
+        hidden_states = self.activation_fn(self.fc1(hidden_states))
+        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+        hidden_states = self.fc2(hidden_states)
+        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+        hidden_states = residual + hidden_states
+
+        if hidden_states.dtype == torch.float16 and (
+            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
+        ):
+            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+        outputs = (hidden_states,)
+
+        if output_attentions:
+            outputs += (attn_weights,)
+
+        return outputs
+
+
+class WhisperDecoderLayer(nn.Module):
+    def __init__(self, config: WhisperConfig, layer_idx: int = None):
+        super().__init__()
+        self.embed_dim = config.d_model
+
+        self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
+            embed_dim=self.embed_dim,
+            num_heads=config.decoder_attention_heads,
+            dropout=config.attention_dropout,
+            is_decoder=True,
+            is_causal=True,
+            layer_idx=layer_idx,
+            config=config,
+        )
+        self.dropout = config.dropout
+        self.activation_fn = ACT2FN[config.activation_function]
+        self.activation_dropout = config.activation_dropout
+
+        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+        self.encoder_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
+            self.embed_dim,
+            config.decoder_attention_heads,
+            dropout=config.attention_dropout,
+            is_decoder=True,
+            layer_idx=layer_idx,
+            config=config,
+        )
+        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+        self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+    def forward(
+        self,
+        hidden_states: torch.Tensor,
+        attention_mask: Optional[torch.Tensor] = None,
+        encoder_hidden_states: Optional[torch.Tensor] = None,
+        encoder_attention_mask: Optional[torch.Tensor] = None,
+        layer_head_mask: Optional[torch.Tensor] = None,
+        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
+        past_key_value: Optional[EncoderDecoderCache] = None,
+        output_attentions: Optional[bool] = False,
+        use_cache: Optional[bool] = True,
+        cache_position: Optional[torch.LongTensor] = None,
+    ) -> torch.Tensor:
+        """
+        Args:
+            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+            attention_mask (`torch.FloatTensor`): attention mask of size
+                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+            encoder_hidden_states (`torch.FloatTensor`):
+                cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+                `(encoder_attention_heads,)`.
+            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
+                size `(decoder_attention_heads,)`.
+            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
+            output_attentions (`bool`, *optional*):
+                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+                returned tensors for more detail.
+        """
+        residual = hidden_states
+        hidden_states = self.self_attn_layer_norm(hidden_states)
+
+        # Self Attention
+        hidden_states, self_attn_weights, present_key_value = self.self_attn(
+            hidden_states=hidden_states,
+            past_key_value=past_key_value,
+            attention_mask=attention_mask,
+            layer_head_mask=layer_head_mask,
+            output_attentions=output_attentions,
+            cache_position=cache_position,
+        )
+        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+        hidden_states = residual + hidden_states
+
+        # Cross-Attention Block
+        cross_attn_weights = None
+        if encoder_hidden_states is not None:
+            residual = hidden_states
+            hidden_states = self.encoder_attn_layer_norm(hidden_states)
+            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+                hidden_states=hidden_states,
+                key_value_states=encoder_hidden_states,
+                attention_mask=encoder_attention_mask,
+                layer_head_mask=cross_attn_layer_head_mask,
+                past_key_value=past_key_value,
+                output_attentions=output_attentions,
+            )
+            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+            hidden_states = residual + hidden_states
+
+            # add cross-attn to positions 1 of present_key_value tuple
+            present_key_value = (present_key_value, cross_attn_present_key_value)
+
+        # Fully Connected
+        residual = hidden_states
+        hidden_states = self.final_layer_norm(hidden_states)
+        hidden_states = self.activation_fn(self.fc1(hidden_states))
+        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+        hidden_states = self.fc2(hidden_states)
+        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+        hidden_states = residual + hidden_states
+
+        outputs = (hidden_states,)
+
+        if output_attentions:
+            outputs += (self_attn_weights, cross_attn_weights)
+
+        if use_cache:
+            outputs += (present_key_value,)
+
+        return outputs
+
+
+class WhisperPreTrainedModel(PreTrainedModel):
+    config_class = WhisperConfig
+    base_model_prefix = "model"
+    main_input_name = "input_features"
+    supports_gradient_checkpointing = True
+    _no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"]
+    _supports_flash_attn_2 = True
+    _supports_sdpa = True
+    _supports_cache_class = True
+    _supports_static_cache = True
+
+    def _init_weights(self, module):
+        std = self.config.init_std
+        if isinstance(module, (nn.Linear, nn.Conv1d)):
+            module.weight.data.normal_(mean=0.0, std=std)
+            if module.bias is not None:
+                module.bias.data.zero_()
+        elif isinstance(module, nn.Embedding):
+            module.weight.data.normal_(mean=0.0, std=std)
+            if module.padding_idx is not None:
+                module.weight.data[module.padding_idx].zero_()
+        elif isinstance(module, WhisperEncoder):
+            with torch.no_grad():
+                embed_positions = module.embed_positions.weight
+                embed_positions.copy_(sinusoids(*embed_positions.shape))
+
+    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
+        """
+        Computes the output length of the convolutional layers
+        """
+        input_lengths = (input_lengths - 1) // 2 + 1
+
+        return input_lengths
+
+
+WHISPER_START_DOCSTRING = r"""
+    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+    etc.)
+
+    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+    and behavior.
+
+    Parameters:
+        config ([`WhisperConfig`]):
+            Model configuration class with all the parameters of the model. Initializing with a config file does not
+            load the weights associated with the model, only the configuration. Check out the
+            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+WHISPER_INPUTS_DOCSTRING = r"""
+    Args:
+        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
+            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
+            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
+            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
+            [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
+            tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
+        attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+            Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in
+            `[0, 1]`:
+
+            - 1 for tokens that are **not masked**,
+            - 0 for tokens that are **masked**.
+
+            [What are attention masks?](../glossary#attention-mask)
+        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+            Indices of decoder input sequence tokens in the vocabulary.
+
+            Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+            [`PreTrainedTokenizer.__call__`] for details.
+
+            [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+            Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If
+            `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+            `past_key_values`).
+        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+            be used by default.
+
+            If you want to change padding behavior, you should read
+            [`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART
+            paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
+        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+            - 1 indicates the head is **not masked**,
+            - 0 indicates the head is **masked**.
+
+        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+            - 1 indicates the head is **not masked**,
+            - 0 indicates the head is **masked**.
+
+        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+            Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+            - 1 indicates the head is **not masked**,
+            - 0 indicates the head is **masked**.
+
+        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+        past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
+            Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are
+            four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and
+            in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or
+            when `config.use_cache=True`
+
+            Two formats are allowed:
+            - An [`~cache_utils.EncoderDecoderCache`] instance;
+            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+            input (see `past_key_values`). This is useful if you want more control over how to convert
+            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+        use_cache (`bool`, *optional*):
+            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+            `past_key_values`).
+        output_attentions (`bool`, *optional*):
+            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+            tensors for more detail.
+        output_hidden_states (`bool`, *optional*):
+            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+            more detail.
+        return_dict (`bool`, *optional*):
+            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+            Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache
+            in the correct position and to infer the complete sequence length.
+"""
+
+WHISPER_ENCODER_INPUTS_DOCSTRING = r"""
+    Args:
+        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
+            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
+            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
+            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
+            [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
+            tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
+        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+            - 1 indicates the head is **not masked**,
+            - 0 indicates the head is **masked**.
+        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+            hidden-states at the output of the last layer of the encoder.
+        output_attentions (`bool`, *optional*):
+            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+            tensors for more detail.
+        output_hidden_states (`bool`, *optional*):
+            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+            more detail.
+        return_dict (`bool`, *optional*):
+            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class WhisperEncoder(WhisperPreTrainedModel):
+    """
+    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+    [`WhisperEncoderLayer`].
+
+    Args:
+        config: WhisperConfig
+    """
+
+    def __init__(self, config: WhisperConfig):
+        super().__init__(config)
+        self.dropout = config.dropout
+        self.layerdrop = config.encoder_layerdrop
+
+        embed_dim = config.d_model
+        self.num_mel_bins = config.num_mel_bins
+        self.padding_idx = config.pad_token_id
+        self.max_source_positions = config.max_source_positions
+        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
+
+        self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
+        self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)
+
+        self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
+        self.embed_positions.requires_grad_(False)
+
+        self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)])
+        self.layer_norm = nn.LayerNorm(config.d_model)
+
+        self.gradient_checkpointing = False
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def _freeze_parameters(self):
+        for param in self.parameters():
+            param.requires_grad = False
+        self._requires_grad = False
+
+    def get_input_embeddings(self) -> nn.Module:
+        return self.conv1
+
+    def set_input_embeddings(self, value: nn.Module):
+        self.conv1 = value
+
+    def forward(
+        self,
+        input_features,
+        attention_mask=None,
+        head_mask=None,
+        output_attentions=None,
+        output_hidden_states=None,
+        return_dict=None,
+    ):
+        r"""
+        Args:
+            input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
+                Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
+                obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
+                `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
+                `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
+                and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
+            attention_mask (`torch.Tensor`)`, *optional*):
+                Whisper does not support masking of the `input_features`, this argument is preserved for compatibility,
+                but it is not used. By default the silence in the input log mel spectrogram are ignored.
+            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+                - 1 indicates the head is **not masked**,
+                - 0 indicates the head is **masked**.
+            output_attentions (`bool`, *optional*):
+                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+                returned tensors for more detail.
+            output_hidden_states (`bool`, *optional*):
+                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+                for more detail.
+            return_dict (`bool`, *optional*):
+                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+        """
+
+        expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0]
+        if input_features.shape[-1] != expected_seq_length:
+            raise ValueError(
+                f"Whisper expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
+            )
+
+        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+        output_hidden_states = (
+            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+        )
+        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+        inputs_embeds = nn.functional.gelu(self.conv1(input_features))
+        inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
+
+        inputs_embeds = inputs_embeds.permute(0, 2, 1)
+        embed_pos = self.embed_positions.weight
+
+        hidden_states = inputs_embeds + embed_pos
+        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+        encoder_states = () if output_hidden_states else None
+        all_attentions = () if output_attentions else None
+
+        # check if head_mask has a correct number of layers specified if desired
+        if head_mask is not None:
+            assert head_mask.size()[0] == (
+                len(self.layers)
+            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
+
+        for idx, encoder_layer in enumerate(self.layers):
+            if output_hidden_states:
+                encoder_states = encoder_states + (hidden_states,)
+            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+            to_drop = False
+            if self.training:
+                dropout_probability = torch.rand([])
+                if dropout_probability < self.layerdrop:  # skip the layer
+                    to_drop = True
+
+            if to_drop:
+                layer_outputs = (None, None)
+            else:
+                if self.gradient_checkpointing and self.training:
+                    layer_outputs = self._gradient_checkpointing_func(
+                        encoder_layer.__call__,
+                        hidden_states,
+                        None,
+                        (head_mask[idx] if head_mask is not None else None),
+                        output_attentions,
+                    )
+                else:
+                    layer_outputs = encoder_layer(
+                        hidden_states,
+                        None,
+                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+                        output_attentions=output_attentions,
+                    )
+
+                hidden_states = layer_outputs[0]
+
+            if output_attentions:
+                all_attentions = all_attentions + (layer_outputs[1],)
+
+        hidden_states = self.layer_norm(hidden_states)
+        if output_hidden_states:
+            encoder_states = encoder_states + (hidden_states,)
+
+        if not return_dict:
+            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+        return BaseModelOutput(
+            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+        )
+
+
+class WhisperDecoder(WhisperPreTrainedModel):
+    """
+    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`]
+
+    Args:
+        config: WhisperConfig
+    """
+
+    main_input_name = "input_ids"
+
+    def __init__(self, config: WhisperConfig):
+        super().__init__(config)
+        self.dropout = config.dropout
+        self.layerdrop = config.decoder_layerdrop
+        self.padding_idx = config.pad_token_id
+        self.max_target_positions = config.max_target_positions
+        self.max_source_positions = config.max_source_positions
+        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
+
+        self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
+        self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model)
+
+        self.layers = nn.ModuleList(
+            [WhisperDecoderLayer(config, layer_idx) for layer_idx in range(config.decoder_layers)]
+        )
+        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
+        self._use_sdpa = config._attn_implementation == "sdpa"
+
+        self.layer_norm = nn.LayerNorm(config.d_model)
+
+        self.gradient_checkpointing = False
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def get_input_embeddings(self):
+        return self.embed_tokens
+
+    def set_input_embeddings(self, value):
+        self.embed_tokens = value
+
+    def forward(
+        self,
+        input_ids=None,
+        attention_mask=None,
+        encoder_hidden_states=None,
+        head_mask=None,
+        cross_attn_head_mask=None,
+        past_key_values=None,
+        inputs_embeds=None,
+        position_ids=None,
+        use_cache=None,
+        output_attentions=None,
+        output_hidden_states=None,
+        return_dict=None,
+        cache_position=None,
+    ):
+        r"""
+        Args:
+            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+                provide it.
+
+                Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+                [`PreTrainedTokenizer.__call__`] for details.
+
+                [What are input IDs?](../glossary#input-ids)
+            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+                - 1 for tokens that are **not masked**,
+                - 0 for tokens that are **masked**.
+
+                [What are attention masks?](../glossary#attention-mask)
+            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+                of the decoder.
+            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+                - 1 indicates the head is **not masked**,
+                - 0 indicates the head is **masked**.
+
+            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+                Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
+                on hidden heads. Mask values selected in `[0, 1]`:
+
+                - 1 indicates the head is **not masked**,
+                - 0 indicates the head is **masked**.
+
+            past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
+                Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are
+                four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and
+                in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or
+                when `config.use_cache=True`
+
+                Two formats are allowed:
+                - An [`~cache_utils.EncoderDecoderCache`] instance;
+                - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+                `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+            inputs_embeds (`torch.FloatTensor` of
+                shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
+                `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
+                control over how to convert `input_ids` indices into associated vectors than the model's internal
+                embedding lookup matrix.
+            output_attentions (`bool`, *optional*):
+                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+                returned tensors for more detail.
+            output_hidden_states (`bool`, *optional*):
+                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+                for more detail.
+            return_dict (`bool`, *optional*):
+                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+                Indices depicting the position of the input sequence tokens in the sequence. It is used to update the
+                cache in the correct position and to infer the complete sequence length.
+        """
+        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+        output_hidden_states = (
+            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+        )
+        use_cache = use_cache if use_cache is not None else self.config.use_cache
+        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+        # retrieve input_ids and inputs_embeds
+        if input_ids is not None and inputs_embeds is not None:
+            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+        elif input_ids is not None:
+            input_shape = input_ids.size()
+            input_ids = input_ids.view(-1, input_shape[-1])
+        elif inputs_embeds is not None:
+            input_shape = inputs_embeds.size()[:-1]
+        else:
+            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+        if inputs_embeds is None:
+            inputs_embeds = self.embed_tokens(input_ids)
+
+        return_legacy_cache = False
+        return_self_attention_cache = False
+        if use_cache or past_key_values is not None:
+            if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
+                return_self_attention_cache = True
+                past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
+            elif not isinstance(past_key_values, EncoderDecoderCache):
+                return_legacy_cache = True
+                logger.warning_once(
+                    "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.43.0. "
+                    "You should pass an instance of `EncoderDecoderCache` instead, e.g. "
+                    "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
+                )
+                past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
+
+        past_key_values_length = 0
+        if cache_position is not None:
+            past_key_values_length = cache_position[0]
+        elif past_key_values is not None:
+            past_key_values_length = past_key_values.get_seq_length()
+
+        if cache_position is None:
+            cache_position = torch.arange(
+                past_key_values_length, past_key_values_length + input_shape[1], device=inputs_embeds.device
+            )
+
+        if position_ids is None:
+            position_ids = cache_position.unsqueeze(0)
+
+        # embed positions
+        if input_ids is not None:
+            positions = self.embed_positions(
+                input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids
+            )
+        else:
+            positions = self.embed_positions(
+                inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids
+            )
+
+        hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
+        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+        causal_mask = self._update_causal_mask(
+            attention_mask,
+            inputs_embeds,
+            cache_position,
+            past_key_values.self_attention_cache if past_key_values is not None else None,
+            output_attentions,
+        )
+
+        if self.gradient_checkpointing and self.training:
+            if use_cache:
+                logger.warning_once(
+                    "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..."
+                )
+                use_cache = False
+        # decoder layers
+        all_hidden_states = () if output_hidden_states else None
+        all_self_attns = () if output_attentions else None
+        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
+        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
+            if attn_mask is not None:
+                assert attn_mask.size()[0] == (len(self.layers)), (
+                    f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+                    f" {head_mask.size()[0]}."
+                )
+        for idx, decoder_layer in enumerate(self.layers):
+            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+            if output_hidden_states:
+                all_hidden_states += (hidden_states,)
+            if self.training:
+                dropout_probability = torch.rand([])
+                if dropout_probability < self.layerdrop:
+                    continue
+
+            if self.gradient_checkpointing and self.training:
+                layer_outputs = self._gradient_checkpointing_func(
+                    decoder_layer.__call__,
+                    hidden_states,
+                    causal_mask,
+                    encoder_hidden_states,
+                    None,  # encoder attention mask
+                    head_mask[idx] if head_mask is not None else None,
+                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+                    None,  # past_key_value
+                    output_attentions,
+                    use_cache,
+                    cache_position,
+                )
+            else:
+                layer_outputs = decoder_layer(
+                    hidden_states,
+                    attention_mask=causal_mask,
+                    encoder_hidden_states=encoder_hidden_states,
+                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+                    cross_attn_layer_head_mask=(
+                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
+                    ),
+                    past_key_value=past_key_values if use_cache else None,
+                    output_attentions=output_attentions,
+                    use_cache=use_cache,
+                    cache_position=cache_position,
+                )
+            hidden_states = layer_outputs[0]
+
+            if output_attentions:
+                all_self_attns += (layer_outputs[1],)
+
+                if encoder_hidden_states is not None:
+                    all_cross_attentions += (layer_outputs[2],)
+
+        hidden_states = self.layer_norm(hidden_states)
+        # add hidden states from the last decoder layer
+        if output_hidden_states:
+            all_hidden_states += (hidden_states,)
+
+        next_cache = past_key_values if use_cache else None
+        if return_self_attention_cache:
+            next_cache = past_key_values.self_attention_cache
+        if return_legacy_cache:
+            next_cache = past_key_values.to_legacy_cache()
+        if not return_dict:
+            return tuple(
+                v
+                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+                if v is not None
+            )
+        return BaseModelOutputWithPastAndCrossAttentions(
+            last_hidden_state=hidden_states,
+            past_key_values=next_cache,
+            hidden_states=all_hidden_states,
+            attentions=all_self_attns,
+            cross_attentions=all_cross_attentions,
+        )
+
+    # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
+    def _update_causal_mask(
+        self,
+        attention_mask: torch.Tensor,
+        input_tensor: torch.Tensor,
+        cache_position: torch.Tensor,
+        past_key_values: Cache,
+        output_attentions: bool,
+    ):
+        if self.config._attn_implementation == "flash_attention_2":
+            if attention_mask is not None and 0.0 in attention_mask:
+                return attention_mask
+            return None
+
+        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
+        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
+        # to infer the attention mask.
+        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
+        using_static_cache = isinstance(past_key_values, StaticCache)
+
+        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
+        if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
+            if AttentionMaskConverter._ignore_causal_mask_sdpa(
+                attention_mask,
+                inputs_embeds=input_tensor,
+                past_key_values_length=past_seen_tokens,
+                is_training=self.training,
+            ):
+                return None
+
+        dtype, device = input_tensor.dtype, input_tensor.device
+        sequence_length = input_tensor.shape[1]
+        if using_static_cache:
+            target_length = past_key_values.get_max_cache_shape()
+        else:
+            target_length = (
+                attention_mask.shape[-1]
+                if isinstance(attention_mask, torch.Tensor)
+                else past_seen_tokens + sequence_length + 1
+            )
+
+        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
+        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
+            attention_mask,
+            sequence_length=sequence_length,
+            target_length=target_length,
+            dtype=dtype,
+            device=device,
+            cache_position=cache_position,
+            batch_size=input_tensor.shape[0],
+        )
+
+        if (
+            self.config._attn_implementation == "sdpa"
+            and attention_mask is not None
+            and attention_mask.device.type == "cuda"
+            and not output_attentions
+        ):
+            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
+            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
+            # Details: https://github.com/pytorch/pytorch/issues/110213
+            min_dtype = torch.finfo(dtype).min
+            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
+
+        return causal_mask
+
+    @staticmethod
+    # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
+    def _prepare_4d_causal_attention_mask_with_cache_position(
+        attention_mask: torch.Tensor,
+        sequence_length: int,
+        target_length: int,
+        dtype: torch.dtype,
+        device: torch.device,
+        cache_position: torch.Tensor,
+        batch_size: int,
+        **kwargs,
+    ):
+        """
+        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
+        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
+
+        Args:
+            attention_mask (`torch.Tensor`):
+                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
+                `(batch_size, 1, query_length, key_value_length)`.
+            sequence_length (`int`):
+                The sequence length being processed.
+            target_length (`int`):
+                The target length: when generating with static cache, the mask should be as long as the static cache,
+                to account for the 0 padding, the part of the cache that is not filled yet.
+            dtype (`torch.dtype`):
+                The dtype to use for the 4D attention mask.
+            device (`torch.device`):
+                The device to plcae the 4D attention mask on.
+            cache_position (`torch.Tensor`):
+                Indices depicting the position of the input sequence tokens in the sequence.
+            batch_size (`torch.Tensor`):
+                Batch size.
+        """
+        if attention_mask is not None and attention_mask.dim() == 4:
+            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
+            causal_mask = attention_mask
+        else:
+            min_dtype = torch.finfo(dtype).min
+            causal_mask = torch.full(
+                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
+            )
+            if sequence_length != 1:
+                causal_mask = torch.triu(causal_mask, diagonal=1)
+            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
+            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
+            if attention_mask is not None:
+                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
+                mask_length = attention_mask.shape[-1]
+                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
+                padding_mask = padding_mask == 0
+                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
+                    padding_mask, min_dtype
+                )
+
+        return causal_mask
+
+
+@add_start_docstrings(
+    "The bare Whisper Model outputting raw hidden-states without any specific head on top.",
+    WHISPER_START_DOCSTRING,
+)
+class WhisperModel(WhisperPreTrainedModel):
+    def __init__(self, config: WhisperConfig):
+        super().__init__(config)
+
+        self.encoder = WhisperEncoder(config)
+        self.decoder = WhisperDecoder(config)
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def get_input_embeddings(self):
+        return self.decoder.embed_tokens
+
+    def set_input_embeddings(self, value):
+        self.decoder.embed_tokens = value
+
+    def get_encoder(self):
+        return self.encoder
+
+    def get_decoder(self):
+        return self.decoder
+
+    def freeze_encoder(self):
+        """
+        Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
+        not be updated during training.
+        """
+        self.encoder._freeze_parameters()
+
+    def _mask_input_features(
+        self,
+        input_features: torch.FloatTensor,
+        attention_mask: Optional[torch.LongTensor] = None,
+    ):
+        """
+        Masks extracted features along time axis and/or along feature axis according to
+        [SpecAugment](https://arxiv.org/abs/1904.08779).
+        """
+
+        # `config.apply_spec_augment` can set masking to False
+        if not getattr(self.config, "apply_spec_augment", True):
+            return input_features
+
+        # generate indices & apply SpecAugment along time axis
+        batch_size, hidden_size, sequence_length = input_features.size()
+
+        if self.config.mask_time_prob > 0 and self.training:
+            # generate indices & apply SpecAugment along time axis
+            mask_time_indices = _compute_mask_indices(
+                (batch_size, sequence_length),
+                mask_prob=self.config.mask_time_prob,
+                mask_length=self.config.mask_time_length,
+                attention_mask=attention_mask,
+                min_masks=self.config.mask_time_min_masks,
+            )
+            mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool)
+            mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1)
+            input_features[mask_time_indices] = 0
+
+        if self.config.mask_feature_prob > 0 and self.training:
+            # generate indices & apply SpecAugment along feature axis
+            mask_feature_indices = _compute_mask_indices(
+                (batch_size, hidden_size),
+                mask_prob=self.config.mask_feature_prob,
+                mask_length=self.config.mask_feature_length,
+                min_masks=self.config.mask_feature_min_masks,
+            )
+            mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool)
+            input_features[mask_feature_indices] = 0
+
+        return input_features
+
+    @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
+    @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
+    def forward(
+        self,
+        input_features: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.LongTensor] = None,
+        decoder_input_ids: Optional[torch.LongTensor] = None,
+        decoder_attention_mask: Optional[torch.LongTensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        decoder_head_mask: Optional[torch.Tensor] = None,
+        cross_attn_head_mask: Optional[torch.Tensor] = None,
+        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
+        decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
+        decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
+        use_cache: Optional[bool] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+        cache_position: Optional[torch.LongTensor] = None,
+    ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
+        r"""
+        Returns:
+
+        Example:
+         ```python
+         >>> import torch
+         >>> from transformers import AutoFeatureExtractor, WhisperModel
+         >>> from datasets import load_dataset
+
+         >>> model = WhisperModel.from_pretrained("openai/whisper-base")
+         >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
+         >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
+         >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
+         >>> input_features = inputs.input_features
+         >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
+         >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
+         >>> list(last_hidden_state.shape)
+         [1, 2, 512]
+         ```"""
+        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+        output_hidden_states = (
+            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+        )
+        use_cache = use_cache if use_cache is not None else self.config.use_cache
+        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+        if encoder_outputs is None:
+            input_features = self._mask_input_features(input_features, attention_mask=attention_mask)
+
+            encoder_outputs = self.encoder(
+                input_features,
+                head_mask=head_mask,
+                output_attentions=output_attentions,
+                output_hidden_states=output_hidden_states,
+                return_dict=return_dict,
+            )
+        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+            encoder_outputs = BaseModelOutput(
+                last_hidden_state=encoder_outputs[0],
+                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+            )
+
+        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+        decoder_outputs = self.decoder(
+            input_ids=decoder_input_ids,
+            attention_mask=decoder_attention_mask,
+            encoder_hidden_states=encoder_outputs[0],
+            head_mask=decoder_head_mask,
+            cross_attn_head_mask=cross_attn_head_mask,
+            past_key_values=past_key_values,
+            inputs_embeds=decoder_inputs_embeds,
+            position_ids=decoder_position_ids,
+            use_cache=use_cache,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+            cache_position=cache_position,
+        )
+
+        if not return_dict:
+            return decoder_outputs + encoder_outputs
+
+        return Seq2SeqModelOutput(
+            last_hidden_state=decoder_outputs.last_hidden_state,
+            past_key_values=decoder_outputs.past_key_values,
+            decoder_hidden_states=decoder_outputs.hidden_states,
+            decoder_attentions=decoder_outputs.attentions,
+            cross_attentions=decoder_outputs.cross_attentions,
+            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+            encoder_hidden_states=encoder_outputs.hidden_states,
+            encoder_attentions=encoder_outputs.attentions,
+        )
+
+
+@add_start_docstrings(
+    "The Whisper Model with a language modeling head. Can be used for automatic speech recognition.",
+    WHISPER_START_DOCSTRING,
+)
+class WhisperForConditionalGeneration(WhisperGenerationMixin, WhisperPreTrainedModel):
+    base_model_prefix = "model"
+    _tied_weights_keys = ["proj_out.weight"]
+
+    def __init__(self, config: WhisperConfig):
+        super().__init__(config)
+        self.model = WhisperModel(config)
+        self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False)
+        self.max_target_positions = config.max_target_positions
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def get_encoder(self):
+        return self.model.get_encoder()
+
+    def get_decoder(self):
+        return self.model.get_decoder()
+
+    def get_output_embeddings(self):
+        return self.proj_out
+
+    def set_output_embeddings(self, new_embeddings):
+        self.proj_out = new_embeddings
+
+    def get_input_embeddings(self) -> nn.Module:
+        return self.model.get_input_embeddings()
+
+    def freeze_encoder(self):
+        """
+        Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
+        not be updated during training.
+        """
+        self.model.encoder._freeze_parameters()
+
+    @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING)
+    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+    def forward(
+        self,
+        input_features: Optional[torch.FloatTensor] = None,
+        attention_mask: Optional[torch.LongTensor] = None,
+        decoder_input_ids: Optional[torch.LongTensor] = None,
+        decoder_attention_mask: Optional[torch.LongTensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        decoder_head_mask: Optional[torch.Tensor] = None,
+        cross_attn_head_mask: Optional[torch.Tensor] = None,
+        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
+        decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
+        decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
+        labels: Optional[torch.LongTensor] = None,
+        use_cache: Optional[bool] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+        cache_position: Optional[torch.LongTensor] = None,
+    ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
+        r"""
+        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+            Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
+            or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
+            only computed for the tokens with labels in `[0, ..., config.vocab_size]`. `sequence_length` should be smaller than or equal to `config.max_target_positions`.
+
+        Returns:
+
+        Example:
+
+        ```python
+        >>> import torch
+        >>> from transformers import AutoProcessor, WhisperForConditionalGeneration
+        >>> from datasets import load_dataset
+
+        >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
+        >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
+
+        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
+
+        >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
+        >>> input_features = inputs.input_features
+
+        >>> generated_ids = model.generate(inputs=input_features)
+
+        >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
+        >>> transcription
+        ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
+        ```"""
+        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+        if labels is not None:
+            if labels.shape[1] > self.max_target_positions:
+                raise ValueError(
+                    f"Labels' sequence length {labels.shape[1]} cannot exceed the maximum allowed length of {self.max_target_positions} tokens."
+                )
+            if decoder_input_ids is None and decoder_inputs_embeds is None:
+                decoder_input_ids = shift_tokens_right(
+                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
+                )
+
+        outputs = self.model(
+            input_features,
+            attention_mask=attention_mask,
+            decoder_input_ids=decoder_input_ids,
+            encoder_outputs=encoder_outputs,
+            decoder_attention_mask=decoder_attention_mask,
+            head_mask=head_mask,
+            decoder_head_mask=decoder_head_mask,
+            cross_attn_head_mask=cross_attn_head_mask,
+            past_key_values=past_key_values,
+            decoder_inputs_embeds=decoder_inputs_embeds,
+            decoder_position_ids=decoder_position_ids,
+            use_cache=use_cache,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+            cache_position=cache_position,
+        )
+        lm_logits = self.proj_out(outputs[0])
+
+        loss = None
+        if labels is not None:
+            loss_fct = CrossEntropyLoss()
+            # move labels to correct device to enable PP
+            labels = labels.to(lm_logits.device)
+            loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1))
+
+        if not return_dict:
+            output = (lm_logits,) + outputs[1:]
+            return ((loss,) + output) if loss is not None else output
+
+        return Seq2SeqLMOutput(
+            loss=loss,
+            logits=lm_logits,
+            past_key_values=outputs.past_key_values,
+            decoder_hidden_states=outputs.decoder_hidden_states,
+            decoder_attentions=outputs.decoder_attentions,
+            cross_attentions=outputs.cross_attentions,
+            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+            encoder_hidden_states=outputs.encoder_hidden_states,
+            encoder_attentions=outputs.encoder_attentions,
+        )
+
+    def prepare_inputs_for_generation(
+        self,
+        decoder_input_ids,
+        past_key_values=None,
+        use_cache=None,
+        encoder_outputs=None,
+        attention_mask=None,
+        decoder_attention_mask=None,
+        cache_position=None,
+        **kwargs,
+    ):
+        # Overwritten -- encoder-decoder whisper has custom logic, but it's close to the general function. Next time
+        # this function needs to be touched, let's try to sort out the commonalities between the two and remove the
+        # overwrite.
+
+        decoder_position_ids = None
+        if decoder_attention_mask is not None:
+            decoder_position_ids = (decoder_attention_mask.cumsum(-1) - 1).clamp(min=0)
+
+        past_length = 0
+        if past_key_values is not None:
+            if isinstance(past_key_values, EncoderDecoderCache):
+                past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
+            else:
+                past_length = past_key_values[0][0].shape[2]
+
+            # Some generation methods already pass only the last input ID
+            if decoder_input_ids.shape[1] > past_length:
+                remove_prefix_length = past_length
+            else:
+                # Default to old behavior: keep only final ID
+                remove_prefix_length = decoder_input_ids.shape[1] - 1
+
+            decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
+
+            if decoder_position_ids is not None:
+                decoder_position_ids = decoder_position_ids[:, remove_prefix_length:]
+                # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
+                decoder_position_ids = decoder_position_ids.clone(memory_format=torch.contiguous_format)
+
+        if cache_position is None:
+            cache_position = torch.arange(
+                past_length, past_length + decoder_input_ids.shape[1], device=decoder_input_ids.device
+            )
+        elif use_cache:
+            cache_position = cache_position[-decoder_input_ids.shape[1] :]
+
+        # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
+        # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
+        decoder_input_ids = decoder_input_ids.contiguous()
+
+        if (
+            isinstance(past_key_values, EncoderDecoderCache)
+            and (
+                isinstance(past_key_values.self_attention_cache, StaticCache)
+                or isinstance(past_key_values.cross_attention_cache, StaticCache)
+            )
+            and decoder_attention_mask is not None
+            and decoder_attention_mask.ndim == 2
+        ):
+            batch_size, sequence_length = decoder_input_ids.shape
+
+            decoder_attention_mask = self.get_decoder()._prepare_4d_causal_attention_mask_with_cache_position(
+                decoder_attention_mask,
+                sequence_length=sequence_length,
+                target_length=past_key_values.self_attention_cache.get_max_cache_shape(),
+                dtype=self.proj_out.weight.dtype,
+                device=decoder_input_ids.device,
+                cache_position=cache_position,
+                batch_size=batch_size,
+            )
+
+        return {
+            "encoder_outputs": encoder_outputs,
+            "past_key_values": past_key_values,
+            "decoder_input_ids": decoder_input_ids,
+            "use_cache": use_cache,
+            "decoder_attention_mask": decoder_attention_mask,
+            "decoder_position_ids": decoder_position_ids,
+            "cache_position": cache_position,
+        }
+
+
+class WhisperDecoderWrapper(WhisperPreTrainedModel):
+    """
+    This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
+    used in combination with the [`EncoderDecoderModel`] framework.
+    """
+
+    def __init__(self, config):
+        super().__init__(config)
+        config.is_encoder_decoder = False
+        self.decoder = WhisperDecoder(config)
+
+    def get_input_embeddings(self):
+        return self.decoder.embed_tokens
+
+    def set_input_embeddings(self, value):
+        self.decoder.embed_tokens = value
+
+    def forward(self, *args, **kwargs):
+        return self.decoder(*args, **kwargs)
+
+
+@add_start_docstrings(
+    """
+    Whisper decoder with a language modeling head on top (linear layer with weights tied to the input embeddings).
+    """,
+    WHISPER_START_DOCSTRING,
+)
+class WhisperForCausalLM(WhisperPreTrainedModel, GenerationMixin):
+    _tied_weights_keys = ["proj_out.weight"]
+    main_input_name = "input_ids"
+
+    def __init__(self, config):
+        super().__init__(config)
+        config.is_encoder_decoder = False
+        self.model = WhisperDecoderWrapper(config)
+
+        self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def get_output_embeddings(self):
+        return self.proj_out
+
+    def set_output_embeddings(self, new_embeddings):
+        self.proj_out = new_embeddings
+
+    def get_input_embeddings(self) -> nn.Module:
+        return self.model.get_input_embeddings()
+
+    def set_input_embeddings(self, value):
+        self.model.set_input_embeddings(value)
+
+    def set_decoder(self, decoder):
+        self.model.decoder = decoder
+
+    def get_decoder(self):
+        return self.model.decoder
+
+    @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+    def forward(
+        self,
+        input_ids: torch.LongTensor = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        cross_attn_head_mask: Optional[torch.Tensor] = None,
+        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        inputs_embeds: Optional[torch.FloatTensor] = None,
+        labels: Optional[torch.LongTensor] = None,
+        use_cache: Optional[bool] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+        cache_position: Optional[torch.LongTensor] = None,
+    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
+        r"""
+        Args:
+            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+                provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+                [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
+            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+                - 1 for tokens that are **not masked**,
+                - 0 for tokens that are **masked**.
+                [What are attention masks?](../glossary#attention-mask)
+            encoder_outputs  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+                if the model is configured as a decoder.
+            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+                - 1 indicates the head is **not masked**,
+                - 0 indicates the head is **masked**.
+            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+                Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+                - 1 indicates the head is **not masked**,
+                - 0 indicates the head is **masked**.
+            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
+                tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains
+                pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+                blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If
+                `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+                don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+                `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+                than the model's internal embedding lookup matrix.
+            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+            use_cache (`bool`, *optional*):
+                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+                (see `past_key_values`).
+                - 1 for tokens that are **not masked**,
+                - 0 for tokens that are **masked**.
+            output_attentions (`bool`, *optional*):
+                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+                returned tensors for more detail.
+            output_hidden_states (`bool`, *optional*):
+                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+                for more detail.
+            return_dict (`bool`, *optional*):
+                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
+                Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache
+                in the correct position and to infer the complete sequence length.
+
+        Returns:
+
+        Example:
+
+        ```python
+        >>> from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor
+        >>> import torch
+        >>> from datasets import load_dataset
+
+        >>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
+        >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
+
+        >>> assistant_model = WhisperForCausalLM.from_pretrained("distil-whisper/distil-large-v2")
+
+        >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
+        >>> sample = ds[0]["audio"]
+        >>> input_features = processor(
+        ...     sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
+        ... ).input_features
+
+        >>> predicted_ids = model.generate(input_features, assistant_model=assistant_model)
+
+        >>> # decode token ids to text
+        >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
+        >>> transcription
+        ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'
+        ```"""
+        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+        output_hidden_states = (
+            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+        )
+        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+        # If the user passed a tuple or `BaseModelOutput` for encoder_outputs, we extract only the hidden states
+        if isinstance(encoder_outputs, (BaseModelOutput, tuple, list)):
+            encoder_outputs = encoder_outputs[0]
+
+        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+        outputs = self.model.decoder(
+            input_ids=input_ids,
+            attention_mask=attention_mask,
+            encoder_hidden_states=encoder_outputs,
+            head_mask=head_mask,
+            cross_attn_head_mask=cross_attn_head_mask,
+            past_key_values=past_key_values,
+            inputs_embeds=inputs_embeds,
+            use_cache=use_cache,
+            output_attentions=output_attentions,
+            output_hidden_states=output_hidden_states,
+            return_dict=return_dict,
+            cache_position=cache_position,
+        )
+
+        logits = self.proj_out(outputs[0])
+
+        loss = None
+        if labels is not None:
+            labels = labels.to(logits.device)
+            loss_fct = CrossEntropyLoss()
+            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+        if not return_dict:
+            output = (logits,) + outputs[1:]
+            return (loss,) + output if loss is not None else output
+
+        return CausalLMOutputWithCrossAttentions(
+            loss=loss,
+            logits=logits,
+            past_key_values=outputs.past_key_values,
+            hidden_states=outputs.hidden_states,
+            attentions=outputs.attentions,
+            cross_attentions=outputs.cross_attentions,
+        )
+
+    @staticmethod
+    def _reorder_cache(past_key_values, beam_idx):
+        reordered_past = ()
+        for layer_past in past_key_values:
+            reordered_past += (
+                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+            )
+        return reordered_past
+
+
+@add_start_docstrings(
+    """
+    Whisper Encoder Model with a sequence classification head on top (a linear layer over the pooled output) for tasks
+    like SUPERB Keyword Spotting.
+    """,
+    WHISPER_ENCODER_INPUTS_DOCSTRING,
+)
+class WhisperForAudioClassification(WhisperPreTrainedModel):
+    def __init__(self, config):
+        super().__init__(config)
+
+        self.encoder = WhisperEncoder(config)
+        num_layers = config.num_hidden_layers + 1  # transformer layers + input embeddings
+        if config.use_weighted_layer_sum:
+            self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+        self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
+        self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
+
+        # Initialize weights and apply final processing
+        self.post_init()
+
+    def freeze_encoder(self):
+        """
+        Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will
+        not be updated during training. Only the projection layers and classification head will be updated.
+        """
+        self.encoder._freeze_parameters()
+
+    def get_input_embeddings(self) -> nn.Module:
+        return self.encoder.get_input_embeddings()
+
+    def set_input_embeddings(self, value: nn.Module):
+        self.encoder.set_input_embeddings(value)
+
+    @add_start_docstrings_to_model_forward(WHISPER_ENCODER_INPUTS_DOCSTRING)
+    @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+    def forward(
+        self,
+        input_features: Optional[torch.LongTensor] = None,
+        head_mask: Optional[torch.Tensor] = None,
+        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+        labels: Optional[torch.LongTensor] = None,
+        output_attentions: Optional[bool] = None,
+        output_hidden_states: Optional[bool] = None,
+        return_dict: Optional[bool] = None,
+    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
+        r"""
+        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+        Returns:
+
+        Example:
+
+        ```python
+        >>> import torch
+        >>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification
+        >>> from datasets import load_dataset
+
+        >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
+        >>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id")
+
+        >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True)
+        >>> sample = next(iter(ds))
+
+        >>> inputs = feature_extractor(
+        ...     sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt"
+        ... )
+        >>> input_features = inputs.input_features
+
+        >>> with torch.no_grad():
+        ...     logits = model(input_features).logits
+
+        >>> predicted_class_ids = torch.argmax(logits).item()
+        >>> predicted_label = model.config.id2label[predicted_class_ids]
+        >>> predicted_label
+        'Afrikaans'
+        ```"""
+
+        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+        output_hidden_states = (
+            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+        )
+        if self.config.use_weighted_layer_sum:
+            output_hidden_states = True
+        elif output_hidden_states is None:
+            output_hidden_states = self.config.output_hidden_states
+
+        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+        if encoder_outputs is None:
+            encoder_outputs = self.encoder(
+                input_features,
+                head_mask=head_mask,
+                output_attentions=output_attentions,
+                output_hidden_states=output_hidden_states,
+                return_dict=return_dict,
+            )
+
+        if self.config.use_weighted_layer_sum:
+            hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION]
+            hidden_states = torch.stack(hidden_states, dim=1)
+            norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+            hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+        else:
+            hidden_states = encoder_outputs[0]
+
+        hidden_states = self.projector(hidden_states)
+        pooled_output = hidden_states.mean(dim=1)
+
+        logits = self.classifier(pooled_output)
+
+        loss = None
+
+        if labels is not None:
+            loss_fct = CrossEntropyLoss()
+            # move labels to correct device to enable PP
+            labels = labels.to(logits.device)
+            loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
+
+        if not return_dict:
+            output = (logits,) + encoder_outputs[1:]
+            return ((loss,) + output) if loss is not None else output
+
+        return SequenceClassifierOutput(
+            loss=loss,
+            logits=logits,
+            hidden_states=encoder_outputs.hidden_states,
+            attentions=encoder_outputs.attentions,
+        )