Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Speech processor class for Whisper | |
""" | |
from ...processing_utils import ProcessorMixin | |
class WhisperProcessor(ProcessorMixin): | |
r""" | |
Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single | |
processor. | |
[`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See | |
the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information. | |
Args: | |
feature_extractor (`WhisperFeatureExtractor`): | |
An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input. | |
tokenizer (`WhisperTokenizer`): | |
An instance of [`WhisperTokenizer`]. The tokenizer is a required input. | |
""" | |
feature_extractor_class = "WhisperFeatureExtractor" | |
tokenizer_class = "WhisperTokenizer" | |
def __init__(self, feature_extractor, tokenizer): | |
super().__init__(feature_extractor, tokenizer) | |
self.current_processor = self.feature_extractor | |
self._in_target_context_manager = False | |
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): | |
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) | |
def __call__(self, *args, **kwargs): | |
""" | |
Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text` | |
argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more | |
information. | |
""" | |
# For backward compatibility | |
if self._in_target_context_manager: | |
return self.current_processor(*args, **kwargs) | |
audio = kwargs.pop("audio", None) | |
sampling_rate = kwargs.pop("sampling_rate", None) | |
text = kwargs.pop("text", None) | |
if len(args) > 0: | |
audio = args[0] | |
args = args[1:] | |
if audio is None and text is None: | |
raise ValueError("You need to specify either an `audio` or `text` input to process.") | |
if audio is not None: | |
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) | |
if text is not None: | |
encodings = self.tokenizer(text, **kwargs) | |
if text is None: | |
return inputs | |
elif audio is None: | |
return encodings | |
else: | |
inputs["labels"] = encodings["input_ids"] | |
return inputs | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def get_prompt_ids(self, text: str, return_tensors="np"): | |
return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors) | |