File size: 30,674 Bytes
ffc786b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Whisper."""

import json
import os
import re
import warnings
from functools import lru_cache
from typing import List, Optional, Tuple

import numpy as np
from tokenizers import AddedToken, pre_tokenizers, processors

from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .english_normalizer import BasicTextNormalizer, EnglishTextNormalizer
from .tokenization_whisper import LANGUAGES, TASK_IDS, TO_LANGUAGE_CODE, WhisperTokenizer, _decode_asr


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "vocab.json",
    "tokenizer_file": "tokenizer.json",
    "merges_file": "merges.txt",
    "normalizer_file": "normalizer.json",
}


class WhisperTokenizerFast(PreTrainedTokenizerFast):
    """
    Construct a "fast" Whisper tokenizer (backed by HuggingFace's *tokenizers* library).

    This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
    refer to this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`, *optional*):
            Path to the vocabulary file.
        merges_file (`str`, *optional*):
            Path to the merges file.
        normalizer_file (`str`, *optional*):
            Path to the normalizer_file file.
        tokenizer_file (`str`, *optional*):
            Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
            contains everything needed to load the tokenizer.
        unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead.
        bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
            The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as
            `"<|startoftranscript|>"` when generating.
        eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
            The end of sequence token.
        add_prefix_space (`bool`, *optional*, defaults to `False`):
            Whether or not to add an initial space to the input. This allows to treat the leading word just as any
            other word. (Whisper tokenizer detect beginning of words by the preceding space).
        language (`str`, *optional*):
            The language of the transcription text. The corresponding language id token is appended to the start of the
            sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token
            `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only.
        task (`str`, *optional*):
            Task identifier to append at the start of sequence (if any). This should be used for mulitlingual
            fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation.
        predict_timestamps (`bool`, *optional*, defaults to `False`):
            Whether to omit the `<|notimestamps|>` token at the start of the sequence.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    model_input_names = ["input_ids", "attention_mask"]
    slow_tokenizer_class = WhisperTokenizer

    def __init__(
        self,
        vocab_file=None,
        merges_file=None,
        normalizer_file=None,
        tokenizer_file=None,
        unk_token="<|endoftext|>",
        bos_token="<|endoftext|>",
        eos_token="<|endoftext|>",
        add_prefix_space=False,
        language=None,
        task=None,
        predict_timestamps=False,
        **kwargs,
    ):
        bos_token = (
            AddedToken(bos_token, lstrip=False, rstrip=False, normalized=False, special=True)
            if isinstance(bos_token, str)
            else bos_token
        )
        eos_token = (
            AddedToken(eos_token, lstrip=False, rstrip=False, normalized=False, special=True)
            if isinstance(eos_token, str)
            else eos_token
        )
        unk_token = (
            AddedToken(unk_token, lstrip=False, rstrip=False, normalized=False, special=True)
            if isinstance(unk_token, str)
            else unk_token
        )

        super().__init__(
            vocab_file,
            merges_file,
            tokenizer_file=tokenizer_file,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            add_prefix_space=add_prefix_space,
            **kwargs,
        )

        self.add_bos_token = kwargs.pop("add_bos_token", False)

        pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
        if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
            pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
            pre_tok_state["add_prefix_space"] = add_prefix_space
            self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)

        if normalizer_file is not None:
            with open(normalizer_file, encoding="utf-8") as vocab_handle:
                self.english_spelling_normalizer = json.load(vocab_handle)
        else:
            self.english_spelling_normalizer = None

        self.add_prefix_space = add_prefix_space
        self.timestamp_pat = re.compile(r"<\|(\d+\.\d+)\|>")

        self.language = language
        self.task = task
        self.predict_timestamps = predict_timestamps

    # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus
    def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
        is_split_into_words = kwargs.get("is_split_into_words", False)
        assert self.add_prefix_space or not is_split_into_words, (
            f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
            "to use it with pretokenized inputs."
        )

        return super()._batch_encode_plus(*args, **kwargs)

    # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus
    def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
        is_split_into_words = kwargs.get("is_split_into_words", False)

        assert self.add_prefix_space or not is_split_into_words, (
            f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
            "to use it with pretokenized inputs."
        )

        return super()._encode_plus(*args, **kwargs)

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps
    def _decode_with_timestamps(
        self, token_ids, skip_special_tokens=False, time_precision=0.02, segment_size=1500
    ) -> str:
        """
        Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes
        given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
        """
        timestamp_begin = self.all_special_ids[-1] + 1
        outputs = [[]]

        cur_max_timestamp = 0.0
        prev_segments_len = 0.0
        penultimate_timestamp = 0.0

        for i, token in enumerate(token_ids):
            if token >= timestamp_begin:
                timestamp = float((token - timestamp_begin) * time_precision)

                if timestamp < cur_max_timestamp:
                    # next segment has started
                    last_was_single_ending = i >= 2 and not (
                        token_ids[i - 1] >= timestamp_begin and token_ids[i - 2] >= timestamp_begin
                    )
                    if last_was_single_ending:
                        prev_segments_len += time_precision * segment_size
                    else:
                        cur_max_timestamp = penultimate_timestamp
                        prev_segments_len += penultimate_timestamp
                        outputs = outputs[:-2]

                penultimate_timestamp = cur_max_timestamp
                cur_max_timestamp = timestamp

                outputs.append(f"<|{(timestamp + prev_segments_len):.2f}|>")
                outputs.append([])
            else:
                outputs[-1].append(token)
        outputs = [
            s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs
        ]
        return "".join(outputs)

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._compute_offsets
    def _compute_offsets(self, token_ids, time_precision=0.02, segment_size=1500):
        """
        Compute offsets for a given tokenized input

        Args:
            token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
                List of tokenized input ids. Can be obtained using the `__call__` method.
            time_precision (`float`, *optional*, defaults to 0.02):
                The time ratio to convert from token to time.
            segment_size (`int`, *optional*, defaults to 1500):
                The number of features in the input mel spectrogram.
        """
        offsets = []
        # ensure torch tensor of token ids is placed on cpu
        if "torch" in str(type(token_ids)) and (hasattr(token_ids, "cpu") and callable(token_ids.cpu)):
            token_ids = token_ids.cpu()
        token_ids = np.array(token_ids)
        if token_ids.shape[0] > 1 and len(token_ids.shape) > 1:
            raise ValueError("Can only process a single input at a time")
        timestamp_begin = self.all_special_ids[-1] + 1
        timestamp_tokens = token_ids >= timestamp_begin

        consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1
        if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1:
            # either there are no timestamps or there are no consecutive ones
            return []
        elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive:
            # we add the final timestamp if it is not already in the list
            consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1)

        last_slice = np.where(timestamp_tokens)[0][0]
        cur_max_timestamp = 0
        prev_segments_len = 0
        for current_slice in consecutive:
            sliced_tokens = token_ids[last_slice:current_slice]
            if len(sliced_tokens) > 1:
                start_timestamp_position = sliced_tokens[0].item() - timestamp_begin
                end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin

                if start_timestamp_position < cur_max_timestamp:
                    # next segment has started
                    is_single_ending = last_slice >= 2 and not (
                        token_ids[last_slice - 2] >= timestamp_begin and token_ids[last_slice - 1] >= timestamp_begin
                    )
                    if is_single_ending:
                        prev_segments_len += segment_size
                    else:
                        prev_segments_len += cur_max_timestamp

                cur_max_timestamp = end_timestamp_position

                # strip timestamp tokens from the text output
                sliced_tokens = self._preprocess_token_ids(sliced_tokens)
                text = self._decode(sliced_tokens)
                text = self._filter_timestamp_ids(text)
                offsets.append(
                    {
                        "text": text,
                        "timestamp": (
                            start_timestamp_position * time_precision + prev_segments_len * time_precision,
                            end_timestamp_position * time_precision + prev_segments_len * time_precision,
                        ),
                    }
                )
            last_slice = current_slice

        return offsets

    @lru_cache
    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.timestamp_ids
    def timestamp_ids(self, time_precision=0.02):
        """
        Compute the timestamp token ids for a given precision and save to least-recently used (LRU) cache.

        Args:
            time_precision (`float`, *optional*, defaults to 0.02):
                The time ratio to convert from token to time.
        """
        return self.convert_tokens_to_ids([("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)])

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._preprocess_token_ids
    def _preprocess_token_ids(self, token_ids, skip_special_tokens: bool = False):
        """
        Pre-process the token ids for decoding by removing the prompt tokens ids and timestamp token ids.

        Args:
            token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
                List of tokenized input ids. Typically, obtained using the `__call__` method of the tokenizer.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens from the token ids. If `True`, the prompt token ids will be
                removed.
        """
        if skip_special_tokens:
            prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>")
            decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>")
            token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id)

        return token_ids

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._filter_timestamp_ids
    def _filter_timestamp_ids(self, token_ids):
        return re.sub(self.timestamp_pat, "", token_ids)

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.decode
    def decode(
        self,
        token_ids,
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: bool = None,
        output_offsets: bool = False,
        time_precision: float = 0.02,
        decode_with_timestamps: bool = False,
        normalize: bool = False,
        basic_normalize: bool = False,
        remove_diacritics: bool = False,
        **kwargs,
    ) -> str:
        """
        Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
        tokens and clean up tokenization spaces.

        Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.

        Args:
            token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
                List of tokenized input ids. Can be obtained using the `__call__` method.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens in the decoding. Will remove the previous tokens (pre-prompt)
                if present.
            clean_up_tokenization_spaces (`bool`, *optional*):
                Whether or not to clean up the tokenization spaces. If `None`, will default to
                `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
            output_offsets (`bool`, *optional*, defaults to `False`):
                Whether or not to output the offsets of the tokens. This should only be set if the model predicted
                timestamps. If there are previous tokens (pre-prompt) to decode, they will only appear in the decoded
                text if they contain timestamp tokens.
            time_precision (`float`, *optional*, defaults to 0.02):
                The time ratio to convert from token to time.
            decode_with_timestamps (`bool`, *optional*, defaults to `False`):
                Whether or not to decode with timestamps included in the raw text.
            normalize (`bool`, *optional*, defaults to `False`):
                Whether or not to apply the English text normalizer to the decoded text. Only applicable when the
                target text is in English. Otherwise, the basic text normalizer should be applied.
            basic_normalize (`bool`, *optional*, defaults to `False`):
                Whether or not to apply the Basic text normalizer to the decoded text. Applicable to multilingual
                target text.
            remove_diacritics (`bool`, *optional*, defaults to `False`):
                Whether or not to remove diacritics when applying the Basic text normalizer. Removing diacritics may
                destroy information in the decoded text, hence it should be used with caution.
            kwargs (additional keyword arguments, *optional*):
                Will be passed to the underlying model specific decode method.
        Returns:
            `str`: The decoded sentence.
        """
        filtered_ids = self._preprocess_token_ids(
            token_ids,
            skip_special_tokens=skip_special_tokens,
        )

        text = super().decode(
            filtered_ids,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            normalize=normalize,
            basic_normalize=basic_normalize,
            remove_diacritics=remove_diacritics,
            **kwargs,
        )
        if decode_with_timestamps:
            # legacy method to decode timestamps when not included in the tokenizer vocabulary
            text = self._decode_with_timestamps(
                filtered_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens
            )
        else:
            text = self._filter_timestamp_ids(text)

        # retrieve offsets
        if output_offsets:
            offsets = self._compute_offsets(token_ids, time_precision=time_precision)
            return {"text": text, "offsets": offsets}
        return text

    def _decode(
        self, *args, normalize: bool = False, basic_normalize: bool = False, remove_diacritics: bool = False, **kwargs
    ) -> str:
        text = super()._decode(*args, **kwargs)

        if normalize:
            clean_text = self._normalize(text)
            return clean_text
        elif basic_normalize:
            clean_text = self._basic_normalize(text, remove_diacritics=remove_diacritics)
            return clean_text
        else:
            return text

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._normalize
    def _normalize(self, text):
        warnings.warn(
            "The private method `_normalize` is deprecated and will be removed in v5 of Transformers."
            "You can normalize an input string using the Whisper English normalizer using the `normalize` method."
        )
        return self.normalize(text)

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._basic_normalize
    def _basic_normalize(self, text, remove_diacritics=False):
        warnings.warn(
            "The private method `_basic_normalize` is deprecated and will be removed in v5 of Transformers."
            "You can normalize an input string using the Whisper basic normalizer using the `basic_normalize` method."
        )
        return self.basic_normalize(text, remove_diacritics=remove_diacritics)

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.normalize
    def normalize(self, text):
        """
        Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on
        english text.
        """
        normalizer = EnglishTextNormalizer(self.english_spelling_normalizer)
        return normalizer(text)

    @staticmethod
    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.basic_normalize
    def basic_normalize(text, remove_diacritics=False):
        """
        Normalize a given string using the `BasicTextNormalizer` class, which preforms commons transformation on
        multilingual text.
        """
        normalizer = BasicTextNormalizer(remove_diacritics=remove_diacritics)
        return normalizer(text)

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        files = self._tokenizer.model.save(save_directory, name=filename_prefix)

        normalizer_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"]
        )

        if self.english_spelling_normalizer is not None:
            with open(normalizer_file, "w", encoding="utf-8") as f:
                f.write(
                    json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n"
                )

        return tuple(files) + (normalizer_file,)

    def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None):
        """
        Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to
        update the prefix tokens as required when fine-tuning. Example:

        ```python
        >>> # instantiate the tokenizer and set the prefix token to Spanish
        >>> tokenizer = WhisperTokenizerFast.from_pretrained("openai/whisper-tiny", language="spanish")
        >>> # now switch the prefix token from Spanish to French
        >>> tokenizer.set_prefix_tokens(language="french")
        ```

        Args:
            language (`str`, *optional*, defaults to `None`):
                The language of the transcription text.
            task (`str`, *optional*, defaults to `None`):
                Task identifier to append at the start of sequence (if any).
            predict_timestamps (`bool`, *optional*, defaults to `None`):
                Whether to omit the `<|notimestamps|>` token at the start of the sequence.
        """
        self.language = language if language is not None else self.language
        self.task = task if task is not None else self.task
        self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps

        prefix_token_ids = self.prefix_tokens
        prefixes = self.convert_ids_to_tokens(prefix_token_ids)
        eos = self.eos_token
        eos_token_id = self.eos_token_id
        prefix_template = " ".join([f"{token}:0" for token in prefixes])
        self.backend_tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{prefix_template} $A:0 {eos}:0",
            pair=f"{prefix_template} $A:0 $B:1 {eos}:1",
            special_tokens=[
                (eos, eos_token_id),
                *zip(prefixes, prefix_token_ids),
            ],
        )

    @property
    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.prefix_tokens
    def prefix_tokens(self) -> List[int]:
        bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>")
        translate_token_id = self.convert_tokens_to_ids("<|translate|>")
        transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>")
        notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>")
        langs = tuple(LANGUAGES.keys())

        if self.language is not None:
            self.language = self.language.lower()
            if self.language in TO_LANGUAGE_CODE:
                language_id = TO_LANGUAGE_CODE[self.language]
            elif self.language in TO_LANGUAGE_CODE.values():
                language_id = self.language
            else:
                is_language_code = len(self.language) == 2
                raise ValueError(
                    f"Unsupported language: {self.language}. Language should be one of:"
                    f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
                )

        if self.task is not None:
            if self.task not in TASK_IDS:
                raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}")

        bos_sequence = [bos_token_id]
        if self.language is not None:
            bos_sequence.append(bos_token_id + 1 + langs.index(language_id))
        if self.task is not None:
            bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id)
        if not self.predict_timestamps:
            bos_sequence.append(notimestamps_token_id)
        return bos_sequence

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.build_inputs_with_special_tokens
    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
        """Build model inputs from a sequence by appending eos_token_id."""
        if token_ids_1 is None:
            return self.prefix_tokens + token_ids_0 + [self.eos_token_id]
        # We don't expect to process pairs, but leave the pair logic for API consistency
        return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id]

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_special_tokens_mask
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        prefix_ones = [1] * len(self.prefix_tokens)
        suffix_ones = [1]
        if token_ids_1 is None:
            return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
        return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_decoder_prompt_ids
    def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
        self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps)
        # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|>
        # we don't want to force the bos token at position 1, as this is the starting token
        # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|>
        # to get the forced tokens
        forced_tokens = self.prefix_tokens[1:]
        forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)]
        return forced_decoder_ids

    def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision):
        return _decode_asr(
            self,
            model_outputs,
            return_timestamps=return_timestamps,
            return_language=return_language,
            time_precision=time_precision,
        )

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_prompt_ids
    def get_prompt_ids(self, text: str, return_tensors="np"):
        """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`]."""
        batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False)

        # Check for special tokens
        prompt_text_ids = batch_encoding["input_ids"][1:]
        special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None)
        if special_token_id is not None:
            token = self.convert_ids_to_tokens(special_token_id)
            raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.")

        batch_encoding.convert_to_tensors(tensor_type=return_tensors)
        return batch_encoding["input_ids"]

    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._strip_prompt
    def _strip_prompt(self, token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int):
        if not isinstance(token_ids, list):
            token_ids = self._convert_to_list(token_ids)

        # handle case of empty token_ids for decoding with timestamps.
        # at this point token_ids is a list, so it is safe to use if not check.
        if not token_ids:
            return token_ids

        has_prompt = token_ids[0] == prompt_token_id
        if has_prompt:
            if decoder_start_token_id in token_ids:
                return token_ids[token_ids.index(decoder_start_token_id) :]
            else:
                return []

        return token_ids

    @staticmethod
    # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._convert_to_list
    def _convert_to_list(token_ids):
        # convert type to ndarray if necessary
        if hasattr(token_ids, "numpy"):
            if "torch" in str(type(token_ids)):
                token_ids = token_ids.cpu().numpy()
            elif "tensorflow" in str(type(token_ids)):
                token_ids = token_ids.numpy()
        elif "jaxlib" in str(type(token_ids)):
            token_ids = token_ids.tolist()
        # now the token ids are either a numpy array, or a list of lists
        if isinstance(token_ids, np.ndarray):
            token_ids = token_ids.tolist()
        return token_ids