Spaces:
Running
Running
File size: 191,216 Bytes
a5b7970 11e4790 a5b7970 11e4790 c567be4 9e3b21a 6530075 11cdb15 384679f c64380a 1630bbe 11cdb15 b7fa139 d363c44 a00cecb b7fa139 3c4e755 a00cecb eb776f5 a00cecb 3c4e755 330365b eb776f5 e9909ed 7ed5900 a69bace 02dd3ba a00cecb 0a7d39a b96d724 28353ce a00cecb f564e37 a00cecb 968db8f 0a7d39a 7ed5900 26ec4c9 f7acb92 0a7d39a 5324cd6 0a7d39a eb776f5 0a7d39a f7acb92 0a7d39a fa3af80 0a7d39a 124810b 0a7d39a 5324cd6 0a7d39a eb776f5 0a7d39a f7acb92 0a7d39a 8a1faac fa3af80 0a7d39a e9909ed 6afedbf e1d77be eb776f5 11e4790 b96d724 28353ce b96d724 f7acb92 eb776f5 11cdb15 0a7d39a f564e37 fa3af80 f7acb92 c9bb5b3 f7acb92 11cdb15 1491bd4 a931b41 330365b a931b41 7ed5900 66d6a91 7ed5900 a931b41 1ae05ec 143b0eb 1ae05ec 143b0eb 1ae05ec 38a8c25 d770843 20cf22c d770843 38a8c25 a48473e a931b41 b300db2 a028c47 f99c291 0569047 11cdb15 8414f72 c567be4 8414f72 c567be4 f4b741f ef94623 e8ac9fc ef94623 30e87ad 81954df 30e87ad 81954df 30e87ad 915c63d c567be4 0569047 f91a6d2 e950bce a11ae70 e950bce a11ae70 e950bce cf25313 12407e1 5e224d7 d363c44 7eb060e d363c44 5ec7e82 07aa2aa 5ec7e82 8232191 a00cecb 0a7d39a a00cecb 0a7d39a a00cecb 1630bbe a00cecb 0a7d39a 1630bbe 7eb060e 7a116ca 7eb060e 6cdebb1 7eb060e 1630bbe e27706d 2c1b15d e27706d 1491bd4 5324cd6 07aa2aa 5ec7e82 9bc27e6 5ec7e82 5324cd6 2bac9cd 2e1a0a6 07aa2aa 5324cd6 5ec7e82 1e6cfb0 2bac9cd 07aa2aa 5ec7e82 5324cd6 44c77f0 5324cd6 44c77f0 5324cd6 1e6cfb0 5324cd6 1491bd4 0af8b29 11cdb15 f99c291 5324cd6 9b999c7 5324cd6 9b999c7 938aee2 9b92004 a11ae70 ef2b19a 938aee2 e950bce a41dfa9 1e6cfb0 915c4c3 a11ae70 3c4e755 b6d28cd a11ae70 ef2b19a 6a6dfe0 f99c291 1643087 0af8b29 69f0d33 0af8b29 aac435a c1d56d4 0af8b29 c64f183 a7204e6 c64f183 d56466d af9f8f3 0af8b29 3ffa0fc dddad30 0af8b29 aac435a 2bac9cd f0058f7 9594b3b 52d5702 cdaf4d8 69f0d33 9b92004 aac435a cdaf4d8 a7204e6 c64f183 cdaf4d8 aac435a f0058f7 cdaf4d8 6d0cfe0 ec27b5b 6d0cfe0 ec27b5b 6d0cfe0 a41dfa9 b5201dc a41dfa9 af9f8f3 b5201dc a41dfa9 354502a a41dfa9 c567be4 3c4e755 ba2af2c 3c4e755 ba2af2c a5c3e6a ba2af2c 3c4e755 ba2af2c 3c4e755 c05c5f9 d22eec5 d346e8c d22eec5 d346e8c 3c4e755 0569047 308f945 c567be4 0569047 f4feb7d b96d724 f4feb7d 71df495 b96d724 71df495 b96d724 eb776f5 0af8b29 f4feb7d 0af8b29 f4feb7d 0af8b29 f4feb7d eb776f5 f4feb7d b96d724 28353ce b96d724 71df495 0af8b29 f4feb7d 28353ce b96d724 28353ce b96d724 eb776f5 b96d724 eb776f5 f4feb7d 0af8b29 2bac9cd 772ff1c 2bac9cd 0a7d39a 2bac9cd 0af8b29 2bac9cd 68393b8 2bac9cd 68393b8 2bac9cd 0af8b29 b96d724 f4feb7d 71df495 f4feb7d b96d724 f4feb7d b96d724 71df495 b96d724 71df495 f4feb7d 2bac9cd c64380a 0af8b29 ee689dc 0a7d39a ee689dc 0a7d39a ee689dc 0af8b29 ee689dc 68393b8 ee689dc 68393b8 ee689dc 3ffa0fc ee689dc 0af8b29 ee689dc 3ffa0fc 0af8b29 f4feb7d 71df495 f4feb7d 3ffa0fc f4feb7d 3ffa0fc dddad30 afee61a dddad30 afee61a dddad30 0af8b29 b872b89 772ff1c b872b89 0a7d39a b872b89 9f0e11f 0af8b29 ee689dc b872b89 68393b8 b872b89 9774a8c b872b89 9f0e11f 0af8b29 b872b89 a766c13 b872b89 a766c13 0af8b29 f4feb7d 6777045 9f0e11f f4feb7d cb4e006 f4feb7d 6cdebb1 f4feb7d 3a57f39 f4feb7d 71df495 f4feb7d 71df495 f4feb7d 915c63d f4feb7d ef94623 0af8b29 1643087 0a7d39a 1643087 0a7d39a 1643087 0af8b29 1643087 68393b8 1643087 68393b8 1643087 f28acdd 1643087 0af8b29 1643087 2b5e430 f4b5a4c 0af8b29 f4feb7d f606555 34b0bf8 707ccc2 34b0bf8 707ccc2 f606555 f4feb7d 0af8b29 71df495 0af8b29 f606555 0af8b29 f606555 0af8b29 f606555 0af8b29 b1a24f7 9cfc16e 0af8b29 9cfc16e 68393b8 9cfc16e 68393b8 9cfc16e f4feb7d 0af8b29 b1a24f7 9089b62 b1a24f7 0af8b29 f4feb7d 357dba3 71df495 f4feb7d 357dba3 f4feb7d b1a24f7 f4feb7d b1a24f7 11cdb15 2b5e430 f5c871b f207269 f5c871b 0af8b29 c64f183 0af8b29 c64f183 68393b8 c64f183 68393b8 c64f183 f3fe8c6 0af8b29 f3fe8c6 fc16e41 f3fe8c6 68393b8 f3fe8c6 eb776f5 c64f183 0af8b29 c64f183 0af8b29 f4feb7d 71df495 b96d724 71df495 b96d724 f4feb7d b96d724 f4feb7d 3a57f39 71df495 f4feb7d eb776f5 f4feb7d c64f183 0af8b29 f4feb7d 71df495 f4feb7d dcbbabb f4feb7d dcbbabb eb776f5 71df495 eb776f5 71df495 eb776f5 71df495 eb776f5 71df495 eb776f5 c64f183 b51e367 c64f183 b51e367 c64f183 b51e367 c64f183 b51e367 c64f183 b51e367 c64f183 b51e367 84f245c b51e367 c64f183 b51e367 c64f183 f4feb7d 4f4efb3 c64f183 b51e367 c64f183 098ecc7 b51e367 098ecc7 c64f183 f4feb7d c64f183 b51e367 f4feb7d c64f183 c7c49b4 6742bf0 68393b8 6742bf0 6d56ba4 aac435a 6d56ba4 aac435a f4feb7d aac435a 6742bf0 2360d14 6742bf0 c7c49b4 9b92004 c7c49b4 68393b8 9b92004 c7c49b4 6d56ba4 aac435a c7c49b4 68393b8 aac435a 6d56ba4 c7c49b4 68393b8 aac435a c7c49b4 68393b8 9b92004 6d0cfe0 f4feb7d 6d0cfe0 9b92004 68393b8 9b92004 e3630bd 68393b8 e3630bd b1a24f7 68393b8 b1a24f7 b326bfd c7c49b4 9b92004 c7c49b4 0af8b29 c7c49b4 9b92004 6d56ba4 0af8b29 9b92004 6d56ba4 9f0e11f 0af8b29 9b92004 c7c49b4 9b92004 6d0cfe0 ec27b5b 0af8b29 b1a24f7 9b92004 b1a24f7 e3630bd 0af8b29 b1a24f7 3e2f38e 0af8b29 b1a24f7 c7c49b4 76215d7 68393b8 76215d7 45b66f9 76215d7 a15a2f3 76215d7 68393b8 76215d7 68393b8 76215d7 a15a2f3 76215d7 68393b8 76215d7 c095b27 a00cecb f0058f7 68393b8 f0058f7 eb776f5 f606555 68393b8 f606555 68393b8 f606555 4023ad4 f606555 4023ad4 f606555 68393b8 f606555 eb776f5 f606555 40d2f0f f606555 eb776f5 f606555 a00cecb ab39161 f606555 0569047 eb776f5 0569047 a00cecb ab39161 eb776f5 ab39161 0569047 5e16a92 b9430aa c64380a 0569047 28353ce b154ec3 b5efa21 28353ce ac3e380 b5efa21 b154ec3 b5efa21 28353ce b5efa21 b154ec3 bdea8a8 b5efa21 28353ce 323212d b5efa21 c9bb5b3 cb87406 c9bb5b3 2f94953 a36c9d8 eb776f5 2f94953 38c9c0c e82ac96 38c9c0c e82ac96 2f94953 38c9c0c de4d585 c9bb5b3 2f94953 c9bb5b3 eb776f5 c9bb5b3 2b9c270 eb776f5 2f94953 c9bb5b3 2f94953 c9bb5b3 2b9c270 2f94953 c9bb5b3 28353ce c9bb5b3 28353ce c9bb5b3 2f94953 eb776f5 2f94953 930c56c eb776f5 930c56c eb776f5 930c56c 9aee98a 2f94953 86e761a 2f94953 968db8f b5efa21 34b0bf8 28353ce b5efa21 28353ce b5efa21 968db8f e8c1be7 4754d23 968db8f 930c56c b5efa21 4da8ded 4754d23 2f94953 4da8ded eb776f5 38c9c0c 2f94953 a15a2f3 2f94953 38c9c0c eb776f5 38c9c0c 6b24245 a579af6 6b24245 eb776f5 6b24245 a15a2f3 6b24245 2f94953 ec27698 0d05167 1a8d8ed dd78554 1a8d8ed dd78554 fa78f46 b40faf1 0d4173e 3ed8987 fa78f46 dd78554 a15a2f3 dd78554 1a8d8ed a93f361 c5051e3 28353ce 0c0734c a36c9d8 201222d 0c0734c a80b33d 0c0734c c9bb5b3 0c0734c c9bb5b3 0c0734c c9bb5b3 28353ce c9bb5b3 28353ce c9bb5b3 0c0734c c9bb5b3 eb776f5 0c0734c 3016707 7d5d897 3016707 a579af6 e2b5ef9 a579af6 3016707 a579af6 3016707 a579af6 930c56c a579af6 2f94953 3016707 a579af6 3016707 a579af6 2ac9392 a579af6 2ac9392 7d5d897 eb776f5 0c0734c a00cecb 140655f 8a12255 7e3c5ed c32db54 5067c73 140655f 3016707 a579af6 3016707 5324cd6 a00cecb 140655f a00cecb dbcfc71 f4feb7d 7e3c5ed c32db54 5067c73 a579af6 2225708 5324cd6 a00cecb 5067c73 8a12255 5324cd6 bedad3b 9089b62 0c0734c a7791d7 62dac11 a38ffdf 9089b62 308f945 62dac11 308f945 0c0734c 15e1a1f ec62ce4 2225708 4960b2f a5b7970 d4e0071 a5b7970 3016707 a5b7970 124810b a5b7970 76215d7 a5b7970 124810b a5b7970 76215d7 a5b7970 76215d7 a5b7970 aac435a a5b7970 a7204e6 a5b7970 e3630bd a5b7970 b1a24f7 a5b7970 54486da c095b27 a5b7970 c095b27 a5b7970 124810b a5b7970 124810b a5b7970 01462ec a5b7970 c959b92 a5b7970 a00cecb a5b7970 124810b a5b7970 124810b a5b7970 124810b a5b7970 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 |
import urllib.parse
import gradio as gr
from starlette.middleware.base import BaseHTTPMiddleware
from starlette.responses import Response
from starlette.types import ASGIApp
from fastapi import status, FastAPI
class BlockFileRedirectMiddleware(BaseHTTPMiddleware):
def __init__(self, app: ASGIApp):
super().__init__(app)
async def dispatch(self, request, call_next):
# URL decode the path first
path = urllib.parse.unquote(request.url.path)
# Check all possible file endpoint patterns
if any(
pattern in path
for pattern in [
"/gradio_api/file=",
"/gradio/api/file=",
"/api/file=",
"/file=",
]
):
# Extract everything after file=
file_part = path.split("file=", 1)[1]
# Block if it's a URL (starts with http:// or https://)
if file_part.lower().startswith(("http://", "https://")):
return Response(
status_code=status.HTTP_403_FORBIDDEN,
content="Direct URL redirects are not allowed",
)
return await call_next(request)
import pandas as pd
import requests
from docx import Document
import os
from openai import OpenAI
from groq import Groq
import uuid
from gtts import gTTS
import math
from pydub import AudioSegment
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api._errors import NoTranscriptFound
import yt_dlp
from moviepy.editor import VideoFileClip
from pytube import YouTube
import os
import io
import time
import json
from datetime import datetime, timezone, timedelta
from urllib.parse import urlparse, parse_qs
from google.cloud import storage
from google.cloud import bigquery
from google.oauth2 import service_account
from googleapiclient.discovery import build
from googleapiclient.http import MediaFileUpload
from googleapiclient.http import MediaIoBaseDownload
from googleapiclient.http import MediaIoBaseUpload
from educational_material import EducationalMaterial
from storage_service import GoogleCloudStorage
from google.oauth2.service_account import Credentials
import vertexai
from vertexai.generative_models import GenerativeModel, Part
# import boto3
from chatbot import Chatbot
is_env_local = os.getenv("IS_ENV_LOCAL", "false") == "true"
print(f"is_env_local: {is_env_local}")
print("===gr__version__===")
print(gr.__version__)
# KEY CONFIG
if is_env_local:
with open("local_config.json") as f:
config = json.load(f)
IS_ENV_PROD = "False"
PASSWORD = config["PASSWORD"]
GCS_KEY = json.dumps(config["GOOGLE_APPLICATION_CREDENTIALS_JSON"])
DRIVE_KEY = json.dumps(config["GOOGLE_APPLICATION_CREDENTIALS_JSON"])
GBQ_KEY = json.dumps(config["GOOGLE_APPLICATION_CREDENTIALS_JSON"])
OPEN_AI_KEY = config["OPEN_AI_KEY"]
OPEN_AI_ASSISTANT_ID_GPT4_BOT1 = config["OPEN_AI_ASSISTANT_ID_GPT4_BOT1"]
OPEN_AI_ASSISTANT_ID_GPT3_BOT1 = config["OPEN_AI_ASSISTANT_ID_GPT3_BOT1"]
GROQ_API_KEY = config["GROQ_API_KEY"]
JUTOR_CHAT_KEY = config["JUTOR_CHAT_KEY"]
AWS_ACCESS_KEY = config["AWS_ACCESS_KEY"]
AWS_SECRET_KEY = config["AWS_SECRET_KEY"]
AWS_REGION_NAME = config["AWS_REGION_NAME"]
OUTPUT_PATH = config["OUTPUT_PATH"]
else:
IS_ENV_PROD = os.getenv("IS_ENV_PROD", "False")
PASSWORD = os.getenv("PASSWORD")
GCS_KEY = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
DRIVE_KEY = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
GBQ_KEY = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
OPEN_AI_KEY = os.getenv("OPEN_AI_KEY")
OPEN_AI_ASSISTANT_ID_GPT4_BOT1 = os.getenv("OPEN_AI_ASSISTANT_ID_GPT4_BOT1")
OPEN_AI_ASSISTANT_ID_GPT3_BOT1 = os.getenv("OPEN_AI_ASSISTANT_ID_GPT3_BOT1")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
JUTOR_CHAT_KEY = os.getenv("JUTOR_CHAT_KEY")
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY")
AWS_REGION_NAME = 'us-west-2'
OUTPUT_PATH = 'videos'
TRANSCRIPTS = []
CURRENT_INDEX = 0
CHAT_LIMIT = 5
# Google aiplatform
google_service_account_info_dict = json.loads(GBQ_KEY)
GOOGPE_SCOPES = ["https://www.googleapis.com/auth/cloud-platform"]
google_creds = Credentials.from_service_account_info(
google_service_account_info_dict, scopes=GOOGPE_SCOPES
)
vertexai.init(
project="junyiacademy",
service_account=google_service_account_info_dict,
credentials=google_creds,
)
# CLIENTS CONFIG
GBQ_CLIENT = bigquery.Client.from_service_account_info(json.loads(GBQ_KEY))
GROQ_CLIENT = Groq(api_key=GROQ_API_KEY)
GCS_SERVICE = GoogleCloudStorage(GCS_KEY)
GCS_CLIENT = GCS_SERVICE.client
# BEDROCK_CLIENT = boto3.client(
# service_name="bedrock-runtime",
# aws_access_key_id=AWS_ACCESS_KEY,
# aws_secret_access_key=AWS_SECRET_KEY,
# region_name=AWS_REGION_NAME,
# )
# check open ai access
def check_open_ai_access(open_ai_api_key):
# set key in OpenAI client and run to check status, if it is work, return True
client = OpenAI(api_key=open_ai_api_key)
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "This is a test."},
],
)
if response.choices[0].message.content:
return True
else:
return False
except Exception as e:
print(f"Error: {str(e)}")
return False
open_ai_api_key_assistant_id_list = [
{
"account":"bot1",
"open_ai_api_key": OPEN_AI_KEY,
"assistant_gpt4_id": OPEN_AI_ASSISTANT_ID_GPT4_BOT1,
"assistant_gpt3_id": OPEN_AI_ASSISTANT_ID_GPT3_BOT1,
},
]
for open_ai_api_key_assistant_id in open_ai_api_key_assistant_id_list:
account = open_ai_api_key_assistant_id["account"]
open_ai_api_key = open_ai_api_key_assistant_id["open_ai_api_key"]
if check_open_ai_access(open_ai_api_key):
OPEN_AI_CLIENT = OpenAI(api_key=open_ai_api_key)
OPEN_AI_ASSISTANT_ID_GPT4 = open_ai_api_key_assistant_id["assistant_gpt4_id"]
OPEN_AI_ASSISTANT_ID_GPT3 = open_ai_api_key_assistant_id["assistant_gpt3_id"]
print(f"OpenAI access is OK, account: {account}")
break
# 驗證 password
def verify_password(password):
if password == PASSWORD:
return True
else:
raise gr.Error("密碼錯誤")
# # ====drive====初始化
def init_drive_service():
credentials_json_string = DRIVE_KEY
credentials_dict = json.loads(credentials_json_string)
SCOPES = ['https://www.googleapis.com/auth/drive']
credentials = service_account.Credentials.from_service_account_info(
credentials_dict, scopes=SCOPES)
service = build('drive', 'v3', credentials=credentials)
return service
def create_folder_if_not_exists(service, folder_name, parent_id):
print("检查是否存在特定名称的文件夹,如果不存在则创建")
query = f"mimeType='application/vnd.google-apps.folder' and name='{folder_name}' and '{parent_id}' in parents and trashed=false"
response = service.files().list(q=query, spaces='drive', fields="files(id, name)").execute()
folders = response.get('files', [])
if not folders:
# 文件夹不存在,创建新文件夹
file_metadata = {
'name': folder_name,
'mimeType': 'application/vnd.google-apps.folder',
'parents': [parent_id]
}
folder = service.files().create(body=file_metadata, fields='id').execute()
return folder.get('id')
else:
# 文件夹已存在
return folders[0]['id']
# 检查Google Drive上是否存在文件
def check_file_exists(service, folder_name, file_name):
query = f"name = '{file_name}' and '{folder_name}' in parents and trashed = false"
response = service.files().list(q=query).execute()
files = response.get('files', [])
return len(files) > 0, files[0]['id'] if files else None
def upload_content_directly(service, file_name, folder_id, content):
"""
直接将内容上传到Google Drive中的新文件。
"""
if not file_name:
raise ValueError("文件名不能为空")
if not folder_id:
raise ValueError("文件夹ID不能为空")
if content is None: # 允许空字符串上传,但不允许None
raise ValueError("内容不能为空")
file_metadata = {'name': file_name, 'parents': [folder_id]}
# 使用io.BytesIO为文本内容创建一个内存中的文件对象
try:
with io.BytesIO(content.encode('utf-8')) as fh:
media = MediaIoBaseUpload(fh, mimetype='text/plain', resumable=True)
print("==content==")
print(content)
print("==content==")
print("==media==")
print(media)
print("==media==")
# 执行上传
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
return file.get('id')
except Exception as e:
print(f"上传文件时发生错误: {e}")
raise # 重新抛出异常,调用者可以根据需要处理或忽略
def upload_file_directly(service, file_name, folder_id, file_path):
# 上傳 .json to Google Drive
file_metadata = {'name': file_name, 'parents': [folder_id]}
media = MediaFileUpload(file_path, mimetype='application/json')
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
# return file.get('id') # 返回文件ID
return True
def upload_img_directly(service, file_name, folder_id, file_path):
file_metadata = {'name': file_name, 'parents': [folder_id]}
media = MediaFileUpload(file_path, mimetype='image/jpeg')
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
return file.get('id') # 返回文件ID
def download_file_as_string(service, file_id):
"""
从Google Drive下载文件并将其作为字符串返回。
"""
request = service.files().get_media(fileId=file_id)
fh = io.BytesIO()
downloader = MediaIoBaseDownload(fh, request)
done = False
while done is False:
status, done = downloader.next_chunk()
fh.seek(0)
content = fh.read().decode('utf-8')
return content
def set_public_permission(service, file_id):
service.permissions().create(
fileId=file_id,
body={"type": "anyone", "role": "reader"},
fields='id',
).execute()
def update_file_on_drive(service, file_id, file_content):
"""
更新Google Drive上的文件内容。
参数:
- service: Google Drive API服务实例。
- file_id: 要更新的文件的ID。
- file_content: 新的文件内容,字符串格式。
"""
# 将新的文件内容转换为字节流
fh = io.BytesIO(file_content.encode('utf-8'))
media = MediaIoBaseUpload(fh, mimetype='application/json', resumable=True)
# 更新文件
updated_file = service.files().update(
fileId=file_id,
media_body=media
).execute()
print(f"文件已更新,文件ID: {updated_file['id']}")
# ---- Text file ----
def process_file(password, file):
verify_password(password)
# 读取文件
if file.name.endswith('.csv'):
df = pd.read_csv(file)
text = df_to_text(df)
elif file.name.endswith('.xlsx'):
df = pd.read_excel(file)
text = df_to_text(df)
elif file.name.endswith('.docx'):
text = docx_to_text(file)
else:
raise ValueError("Unsupported file type")
df_string = df.to_string()
# 宜蘭:移除@XX@符号 to |
df_string = df_string.replace("@XX@", "|")
# 根据上传的文件内容生成问题
questions = generate_questions(df_string)
summary = generate_summarise(df_string)
# 返回按钮文本和 DataFrame 字符串
return questions[0] if len(questions) > 0 else "", \
questions[1] if len(questions) > 1 else "", \
questions[2] if len(questions) > 2 else "", \
summary, \
df_string
def df_to_text(df):
# 将 DataFrame 转换为纯文本
return df.to_string()
def docx_to_text(file):
# 将 Word 文档转换为纯文本
doc = Document(file)
return "\n".join([para.text for para in doc.paragraphs])
# ---- YouTube link ----
def parse_time(time_str):
"""將時間字符串 'HH:MM:SS' 或 'MM:SS' 轉換為 timedelta 物件。"""
parts = list(map(int, time_str.split(':')))
if len(parts) == 3:
hours, minutes, seconds = parts
elif len(parts) == 2:
hours = 0 # 沒有小時部分時,將小時設為0
minutes, seconds = parts
else:
raise ValueError("時間格式不正確,應為 'HH:MM:SS' 或 'MM:SS'")
return timedelta(hours=hours, minutes=minutes, seconds=seconds)
def format_seconds_to_time(seconds):
"""将秒数格式化为 时:分:秒 的形式"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
return f"{hours:02}:{minutes:02}:{seconds:02}"
def extract_youtube_id(url):
parsed_url = urlparse(url)
if "youtube.com" in parsed_url.netloc:
# 对于标准链接,视频ID在查询参数'v'中
query_params = parse_qs(parsed_url.query)
return query_params.get("v")[0] if "v" in query_params else None
elif "youtu.be" in parsed_url.netloc:
# 对于短链接,视频ID是路径的一部分
return parsed_url.path.lstrip('/')
else:
return None
def get_transcript_by_yt_api(video_id):
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
languages = []
for t in transcript_list:
languages.append(t.language_code)
for language in languages:
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=[language])
print("===transcript===")
print(transcript)
print("===transcript===")
return transcript # 成功獲取字幕,直接返回結果
except NoTranscriptFound:
continue # 當前語言的字幕沒有找到,繼續嘗試下一個語言
return None # 所有嘗試都失敗,返回None
def generate_transcription_by_gemini(video_id):
"""使用 Google Gemini 生成影片逐字稿"""
print("====generate_transcription_by_gemini====")
# 準備 YouTube 影片 URL
video_url = f"https://www.youtube.com/watch?v={video_id}"
# 初始化 Gemini Pro Vision 模型
model = vertexai.generative_models.GenerativeModel("gemini-2.0-flash-exp")
# 建立影片部分
video_part = Part.from_uri(
uri=video_url,
mime_type="video/*"
)
# 設定提示詞
prompt = "給我包含時間軸的逐字稿,只需要給我有講話的時間軸跟內容,其他時間軸不需要"
# 生成逐字稿
original_transcription = ""
try:
response = model.generate_content(
contents=[video_part, prompt],
generation_config=vertexai.generative_models.GenerationConfig(
temperature=1.0,
top_p=0.95,
max_output_tokens=8192,
candidate_count=1
),
stream=False
)
original_transcription = response.candidates[0].content.parts[0].text
print("===original_transcription===")
print(original_transcription)
print("===original_transcription===")
# 轉換成 JSON 格式
transcript_json = convert_transcription_to_json(original_transcription)
if transcript_json:
return transcript_json
else:
raise Exception("無法轉換逐字稿格式")
except Exception as e:
print(f"生成逐字稿時發生錯誤:{str(e)}")
return None
def convert_transcription_to_json(original_transcription):
"""
將原始逐字稿轉換成指定的 JSON 格式
Args:
original_transcription (str): 原始逐字稿文本
Returns:
list: 包含逐字稿段落的列表,每個段落包含 text, start, end, duration
"""
# 使用 Vertex AI 來處理轉換
model = vertexai.generative_models.GenerativeModel("gemini-2.0-flash-exp")
prompt = f"""
請將以下逐字稿轉換成 JSON 格式:
{original_transcription}
轉換規則:
1. 每個段落需包含 text, start, end, duration
2. 時間格式需轉換為秒數(例如 1:02 轉為 62 秒)
3. duration 為 end - start 的差值
4. 回傳格式為 JSON array
範例輸出格式:
[
{{
"text": "在一片無人的森林裡",
"start": 1,
"end": 2,
"duration": 1
}},
{{
"text": "你撿到一張羊皮紙",
"start": 2,
"end": 4,
"duration": 2
}}
]
請直接返回 JSON 格式,不要加入任何說明文字。
"""
try:
response = model.generate_content(prompt)
json_str = response.text
print("===json_str===")
print(json_str)
print("===json_str===")
# 移除可能的 markdown 標記
json_str = json_str.replace("```json", "").replace("```", "").strip()
# 解析 JSON
transcript_json = json.loads(json_str)
# 驗證格式
for entry in transcript_json:
if not all(k in entry for k in ["text", "start", "end", "duration"]):
raise ValueError("JSON 格式錯誤:缺少必要欄位")
return transcript_json
except Exception as e:
print(f"轉換逐字稿時發生錯誤:{str(e)}")
return None
def generate_transcription_by_whisper(video_id):
youtube_url = f'https://www.youtube.com/watch?v={video_id}'
codec_name = "mp3"
outtmpl = f"{OUTPUT_PATH}/{video_id}.%(ext)s"
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': codec_name,
'preferredquality': '192'
}],
'outtmpl': outtmpl,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
audio_path = f"{OUTPUT_PATH}/{video_id}.{codec_name}"
full_audio = AudioSegment.from_mp3(audio_path)
max_part_duration = 10 * 60 * 1000 # 10 minutes
full_duration = len(full_audio) # in milliseconds
parts = math.ceil(full_duration / max_part_duration)
print(f"parts: {parts}")
transcription = []
for i in range(parts):
print(f"== i: {i}==")
start_time = i * max_part_duration
end_time = min((i + 1) * max_part_duration, full_duration)
print(f"time: {start_time/1000} - {end_time/1000}")
chunk = full_audio[start_time:end_time]
chunk_path = f"{OUTPUT_PATH}/{video_id}_part_{i}.{codec_name}"
chunk.export(chunk_path, format=codec_name)
try:
with open(chunk_path, "rb") as chunk_file:
response = OPEN_AI_CLIENT.audio.transcriptions.create(
model="whisper-1",
file=chunk_file,
response_format="verbose_json",
timestamp_granularities=["segment"],
prompt="Transcribe the following audio file. if content is chinese, please using 'language: zh-TW' ",
)
# Adjusting the timestamps for the chunk based on its position in the full audio
adjusted_segments = [{
'text': segment.text, # 使用 .text 屬性而不是 ['text']
'start': math.ceil(segment.start + start_time / 1000.0), # Converting milliseconds to seconds
'end': math.ceil(segment.end + start_time / 1000.0),
'duration': math.ceil(segment.end - segment.start)
} for segment in response.segments]
transcription.extend(adjusted_segments)
except Exception as e:
print(f"Error processing chunk {i}: {str(e)}")
# Remove temporary chunk files after processing
os.remove(chunk_path)
return transcription
def get_video_duration(video_id):
yt = YouTube(f'https://www.youtube.com/watch?v={video_id}')
try:
video_duration = yt.length
except:
video_duration = None
print(f"video_duration: {video_duration}")
return video_duration
def process_transcript_and_screenshots_on_gcs(video_id):
print("====process_transcript_and_screenshots_on_gcs====")
transcript, exists = get_transcript_from_gcs(video_id)
if not exists:
print("==== video transcript is not exists ====")
try:
transcript = generate_transcription_by_gemini(video_id)
except Exception as e:
print(f"generate_transcription_by_gemini Error generating transcription: {str(e)}")
# transcript = generate_transcription_by_whisper(video_id)
upload_transcript_to_gcs(video_id, transcript)
# 處理截圖
print("====處理截圖====")
is_new_transcript = False
has_tried_download_video = False
for entry in transcript:
if 'img_file_id' not in entry:
# 檢查 OUTPUT_PATH 是否存在 video_id.mp4
video_path = f'{OUTPUT_PATH}/{video_id}.mp4'
# 沒有影片以及沒有下載過
if not os.path.exists(video_path) and not has_tried_download_video:
try:
download_youtube_video(video_id)
except Exception as e:
has_tried_download_video = True
print(f"下载视频失败: {str(e)}")
if os.path.exists(video_path):
try:
screenshot_path = screenshot_youtube_video(video_id, entry['start'])
screenshot_blob_name = f"{video_id}/{video_id}_{entry['start']}.jpg"
img_file_id = GCS_SERVICE.upload_image_and_get_public_url('video_ai_assistant', screenshot_blob_name, screenshot_path)
entry['img_file_id'] = img_file_id
print(f"截图已上传到GCS: {img_file_id}")
is_new_transcript = True
except Exception as e:
print(f"Error processing screenshot: {str(e)}")
else:
entry['img_file_id'] = ""
print(f"截圖空白")
is_new_transcript = True
if is_new_transcript:
print("===更新逐字稿文件===")
upload_transcript_to_gcs(video_id, transcript)
return transcript
def get_transcript(video_id):
print("====get_transcript====")
transcript, exists = get_transcript_from_gcs(video_id)
if not exists:
raise gr.Error("逐字稿文件不存在於GCS中。")
if any('img_file_id' not in entry for entry in transcript):
raise gr.Error("Some entries in the transcript do not have an associated img_file_id.")
print("Transcript is verified with all necessary images.")
return transcript
def get_transcript_from_gcs(video_id):
print("Checking for transcript in GCS...")
bucket_name = 'video_ai_assistant'
transcript_file_name = f'{video_id}_transcript.json'
transcript_blob_name = f"{video_id}/{transcript_file_name}"
# Check if the transcript exists in GCS
is_transcript_exists = GCS_SERVICE.check_file_exists(bucket_name, transcript_blob_name)
if is_transcript_exists:
# Download the transcript if it exists
transcript_text = GCS_SERVICE.download_as_string(bucket_name, transcript_blob_name)
return json.loads(transcript_text), True
else:
print("No transcript found for video ID:", video_id)
return None, False
def upload_transcript_to_gcs(video_id, transcript):
print("Uploading updated transcript to GCS...")
bucket_name = 'video_ai_assistant'
transcript_file_name = f'{video_id}_transcript.json'
transcript_blob_name = f"{video_id}/{transcript_file_name}"
transcript_text = json.dumps(transcript, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, transcript_blob_name, transcript_text)
print("Transcript uploaded successfully.")
def process_youtube_link(password, link, LLM_model=None):
verify_password(password)
video_id = extract_youtube_id(link)
try:
if IS_ENV_PROD == "True":
transcript = get_transcript(video_id)
else:
transcript = process_transcript_and_screenshots_on_gcs(video_id)
except Exception as e:
error_msg = f" {video_id} 逐字稿錯誤: {str(e)}"
print("===process_youtube_link error===")
print(error_msg)
raise gr.Error(error_msg)
original_transcript = json.dumps(transcript, ensure_ascii=False, indent=2)
formatted_transcript = []
formatted_simple_transcript =[]
for entry in transcript:
start_time = format_seconds_to_time(entry['start'])
end_time = format_seconds_to_time(entry['start'] + entry['duration'])
embed_url = get_embedded_youtube_link(video_id, entry['start'])
img_file_id = entry['img_file_id']
screenshot_path = img_file_id
line = {
"start_time": start_time,
"end_time": end_time,
"text": entry['text'],
"embed_url": embed_url,
"screenshot_path": screenshot_path
}
formatted_transcript.append(line)
# formatted_simple_transcript 只要 start_time, end_time, text
simple_line = {
"start_time": start_time,
"end_time": end_time,
"text": entry['text']
}
formatted_simple_transcript.append(simple_line)
# 基于逐字稿生成其他所需的输出
source = "gcs"
questions_answers = get_questions_answers(video_id, formatted_simple_transcript, source, LLM_model)
questions_answers_json = json.dumps(questions_answers, ensure_ascii=False, indent=2)
summary_json = get_video_id_summary(video_id, formatted_simple_transcript, source, LLM_model)
summary_text = summary_json["summary"]
summary = summary_json["summary"]
key_moments_json = get_key_moments(video_id, formatted_simple_transcript, formatted_transcript, source, LLM_model)
key_moments = key_moments_json["key_moments"]
key_moments_text = json.dumps(key_moments, ensure_ascii=False, indent=2)
key_moments_html = get_key_moments_html(key_moments)
html_content = format_transcript_to_html(formatted_transcript)
simple_html_content = format_simple_transcript_to_html(formatted_simple_transcript)
mind_map_json = get_mind_map(video_id, formatted_simple_transcript, source, LLM_model)
mind_map = mind_map_json["mind_map"]
mind_map_html = get_mind_map_html(mind_map)
reading_passage_json = get_reading_passage(video_id, formatted_simple_transcript, source, LLM_model)
reading_passage_text = reading_passage_json["reading_passage"]
reading_passage = reading_passage_json["reading_passage"]
meta_data = get_meta_data(video_id)
subject = meta_data["subject"]
grade = meta_data["grade"]
# 确保返回与 UI 组件预期匹配的输出
return video_id, \
questions_answers_json, \
original_transcript, \
summary_text, \
summary, \
key_moments_text, \
key_moments_html, \
mind_map, \
mind_map_html, \
html_content, \
simple_html_content, \
reading_passage_text, \
reading_passage, \
subject, \
grade
def create_formatted_simple_transcript(transcript):
formatted_simple_transcript = []
for entry in transcript:
start_time = format_seconds_to_time(entry['start'])
end_time = format_seconds_to_time(entry['start'] + entry['duration'])
line = {
"start_time": start_time,
"end_time": end_time,
"text": entry['text']
}
formatted_simple_transcript.append(line)
return formatted_simple_transcript
def create_formatted_transcript(video_id, transcript):
formatted_transcript = []
for entry in transcript:
start_time = format_seconds_to_time(entry['start'])
end_time = format_seconds_to_time(entry['start'] + entry['duration'])
embed_url = get_embedded_youtube_link(video_id, entry['start'])
img_file_id = entry['img_file_id']
screenshot_path = img_file_id
line = {
"start_time": start_time,
"end_time": end_time,
"text": entry['text'],
"embed_url": embed_url,
"screenshot_path": screenshot_path
}
formatted_transcript.append(line)
return formatted_transcript
def format_transcript_to_html(formatted_transcript):
html_content = ""
for entry in formatted_transcript:
html_content += f"<h3>{entry['start_time']} - {entry['end_time']}</h3>"
html_content += f"<p>{entry['text']}</p>"
html_content += f"<img src='{entry['screenshot_path']}' width='500px' />"
return html_content
def format_simple_transcript_to_html(formatted_transcript):
html_content = ""
for entry in formatted_transcript:
html_content += f"<h3>{entry['start_time']} - {entry['end_time']}</h3>"
html_content += f"<p>{entry['text']}</p>"
return html_content
def get_embedded_youtube_link(video_id, start_time):
int_start_time = int(start_time)
embed_url = f"https://www.youtube.com/embed/{video_id}?start={int_start_time}&autoplay=1"
return embed_url
def download_youtube_video(youtube_id, output_path=OUTPUT_PATH):
# Construct the full YouTube URL
youtube_url = f'https://www.youtube.com/watch?v={youtube_id}'
# Create the output directory if it doesn't exist
if not os.path.exists(output_path):
os.makedirs(output_path)
# Download the video
try:
yt = YouTube(youtube_url)
video_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
video_stream.download(output_path=output_path, filename=youtube_id+".mp4")
print(f"[Pytube] Video downloaded successfully: {output_path}/{youtube_id}.mp4")
except Exception as e:
ydl_opts = {
'format': "bestvideo[height<=720][ext=mp4]",
'outtmpl': os.path.join(output_path, f'{youtube_id}.mp4'), # Output filename template
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
print(f"[yt_dlp] Video downloaded successfully: {output_path}/{youtube_id}.mp4")
def screenshot_youtube_video(youtube_id, snapshot_sec):
video_path = f'{OUTPUT_PATH}/{youtube_id}.mp4'
file_name = f"{youtube_id}_{snapshot_sec}.jpg"
with VideoFileClip(video_path) as video:
screenshot_path = f'{OUTPUT_PATH}/{file_name}'
video.save_frame(screenshot_path, snapshot_sec)
return screenshot_path
# ---- Web ----
# def process_web_link(link):
# # 抓取和解析网页内容
# response = requests.get(link)
# soup = BeautifulSoup(response.content, 'html.parser')
# return soup.get_text()
# ---- LLM Generator ----
def split_data(df_string, word_base=100000):
"""Split the JSON string based on a character length base and then chunk the parsed JSON array."""
if isinstance(df_string, str):
data_str_cnt = len(df_string)
data = json.loads(df_string)
else:
data_str_cnt = len(str(df_string))
data = df_string
# Calculate the number of parts based on the length of the string
n_parts = data_str_cnt // word_base + (1 if data_str_cnt % word_base != 0 else 0)
print(f"Number of Parts: {n_parts}")
# Calculate the number of elements each part should have
part_size = len(data) // n_parts if n_parts > 0 else len(data)
segments = []
for i in range(n_parts):
start_idx = i * part_size
end_idx = min((i + 1) * part_size, len(data))
# Serialize the segment back to a JSON string
segment = json.dumps(data[start_idx:end_idx]).encode('utf-8').decode('unicode_escape')
segments.append(segment)
return segments
def generate_content_by_open_ai(sys_content, user_content, response_format=None, model_name=None):
print("generate_content_by_open_ai")
if model_name == "gpt-4-turbo":
model = "gpt-4-turbo"
else:
model = "gpt-4o"
print(f"LLM model: {model}")
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
request_payload = {
"model": model,
"messages": messages,
"max_tokens": 4000,
}
if response_format is not None:
request_payload["response_format"] = response_format
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
content = response.choices[0].message.content.strip()
return content
# def generate_content_by_bedrock(sys_content, user_content):
# print("LLM using REDROCK")
# messages = [
# {"role": "user", "content": user_content +"(如果是 JSON 格式,value 的引號,請用單引號,或是用反斜線+雙引號,避免 JSON Decoder error )"}
# ]
# model_id = "anthropic.claude-3-sonnet-20240229-v1:0"
# print(f"model_id: {model_id}")
# # model_id = "anthropic.claude-3-haiku-20240307-v1:0"
# kwargs = {
# "modelId": model_id,
# "contentType": "application/json",
# "accept": "application/json",
# "body": json.dumps({
# "anthropic_version": "bedrock-2023-05-31",
# "max_tokens": 4000,
# "system": sys_content,
# "messages": messages
# })
# }
# response = BEDROCK_CLIENT.invoke_model(**kwargs)
# response_body = json.loads(response.get('body').read())
# content = response_body.get('content')[0].get('text')
# return content
def generate_content_by_gemini(sys_content, user_content, response_format=None, model_name=None):
print("generate_content_by_gemini")
print(f"LLM using: {model_name}")
gemini_model = GenerativeModel(model_name=model_name)
model_response = gemini_model.generate_content(
f"{sys_content}, {user_content}"
)
content = model_response.candidates[0].content.parts[0].text
return content
def generate_content_by_LLM(sys_content, user_content, response_format=None, LLM_model=None, model_name=None):
# 使用 OpenAI 生成基于上传数据的问题
if LLM_model in ["gemini-1.5-pro","gemini-1.5-flash"]:
print(f"LLM: {LLM_model}")
model_name = LLM_model
content = generate_content_by_gemini(sys_content, user_content, response_format, model_name=model_name)
# elif LLM_model == "anthropic-claude-3-sonnet":
# print(f"LLM: {LLM_model}")
# content = generate_content_by_bedrock(sys_content, user_content)
else:
print(f"LLM: {LLM_model}")
print(f"model_name: {model_name}")
content = generate_content_by_open_ai(sys_content, user_content, response_format, model_name=model_name)
print("=====content=====")
print(content)
print("=====content=====")
return content
def get_reading_passage(video_id, df_string, source, LLM_model=None):
if source == "gcs":
print("===get_reading_passage on gcs===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_reading_passage_latex.json'
blob_name = f"{video_id}/{file_name}"
# 检查 reading_passage 是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_file_exists:
reading_passage = generate_reading_passage(df_string, LLM_model)
reading_passage_json = {"reading_passage": str(reading_passage)}
reading_passage_text = json.dumps(reading_passage_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, reading_passage_text)
print("reading_passage已上传到GCS")
else:
# reading_passage已存在,下载内容
print("reading_passage已存在于GCS中")
reading_passage_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
reading_passage_json = json.loads(reading_passage_text)
elif source == "drive":
print("===get_reading_passage on drive===")
service = init_drive_service()
parent_folder_id = '1GgI4YVs0KckwStVQkLa1NZ8IpaEMurkL'
folder_id = create_folder_if_not_exists(service, video_id, parent_folder_id)
file_name = f'{video_id}_reading_passage.json'
# 检查 reading_passage 是否存在
exists, file_id = check_file_exists(service, folder_id, file_name)
if not exists:
reading_passage = generate_reading_passage(df_string)
reading_passage_json = {"reading_passage": str(reading_passage)}
reading_passage_text = json.dumps(reading_passage_json, ensure_ascii=False, indent=2)
upload_content_directly(service, file_name, folder_id, reading_passage_text)
print("reading_passage已上傳到Google Drive")
else:
# reading_passage已存在,下载内容
print("reading_passage已存在于Google Drive中")
reading_passage_text = download_file_as_string(service, file_id)
return reading_passage_json
def generate_reading_passage(df_string, LLM_model=None):
print("===generate_reading_passage 0===")
print(df_string)
segments = split_data(df_string, word_base=100000)
all_content = []
model_name = "gpt-4-turbo"
# model_name = "gpt-4o"
for segment in segments:
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
# 文本 {segment}
# rules:
- 根據文本,抓取重點
- 去除人類講課時口語的問答句,重新拆解成文章,建立適合閱讀語句通順的 Reading Passage
- 只需要專注提供 Reading Passage,字數在 500 字以內
- 敘述中,請把數學或是專業術語,用 Latex 包覆($...$)
- 加減乘除、根號、次方等等的運算式口語也換成 LATEX 數學符號
# restrictions:
- 請一定要使用繁體中文 zh-TW,這很重要
- 產生的結果不要前後文解釋,也不要敘述這篇文章怎麼產生的
- 請直接給出文章,不用介紹怎麼處理的或是文章字數等等
- 字數在 500 字以內
"""
print("======user_content 0 ===")
print(user_content)
content = generate_content_by_LLM(sys_content, user_content, response_format=None, LLM_model=LLM_model, model_name=model_name)
all_content.append(content + "\n")
# 將所有生成的閱讀理解段落合併成一個完整的文章
final_content = "\n".join(all_content)
return final_content
def text_to_speech(video_id, text):
tts = gTTS(text, lang='en')
filename = f'{video_id}_reading_passage.mp3'
tts.save(filename)
return filename
def get_mind_map(video_id, df_string, source, LLM_model=None):
if source == "gcs":
print("===get_mind_map on gcs===")
gcs_client = GCS_CLIENT
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_mind_map.json'
blob_name = f"{video_id}/{file_name}"
# 检查檔案是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_file_exists:
mind_map = generate_mind_map(df_string, LLM_model)
mind_map_json = {"mind_map": str(mind_map)}
mind_map_text = json.dumps(mind_map_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, mind_map_text)
print("mind_map已上傳到GCS")
else:
# mindmap已存在,下载内容
print("mind_map已存在于GCS中")
mind_map_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
mind_map_json = json.loads(mind_map_text)
elif source == "drive":
print("===get_mind_map on drive===")
service = init_drive_service()
parent_folder_id = '1GgI4YVs0KckwStVQkLa1NZ8IpaEMurkL'
folder_id = create_folder_if_not_exists(service, video_id, parent_folder_id)
file_name = f'{video_id}_mind_map.json'
# 检查檔案是否存在
exists, file_id = check_file_exists(service, folder_id, file_name)
if not exists:
mind_map = generate_mind_map(df_string, LLM_model)
mind_map_json = {"mind_map": str(mind_map)}
mind_map_text = json.dumps(mind_map_json, ensure_ascii=False, indent=2)
upload_content_directly(service, file_name, folder_id, mind_map_text)
print("mind_map已上傳到Google Drive")
else:
# mindmap已存在,下载内容
print("mind_map已存在于Google Drive中")
mind_map_text = download_file_as_string(service, file_id)
mind_map_json = json.loads(mind_map_text)
return mind_map_json
def generate_mind_map(df_string, LLM_model=None):
print("===generate_mind_map===")
segments = split_data(df_string, word_base=100000)
all_content = []
for segment in segments:
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
請根據 {segment} 文本建立 markdown 心智圖
注意:不需要前後文敘述,直接給出 markdown 文本即可
這對我很重要
"""
content = generate_content_by_LLM(sys_content, user_content, response_format=None, LLM_model=LLM_model, model_name=None)
all_content.append(content + "\n")
# 將所有生成的閱讀理解段落合併成一個完整的文章
final_content = "\n".join(all_content)
return final_content
def get_mind_map_html(mind_map):
mind_map_markdown = mind_map.replace("```markdown", "").replace("```", "")
mind_map_html = f"""
<div class="markmap">
<script type="text/template">
{mind_map_markdown}
</script>
</div>
"""
return mind_map_html
def get_video_id_summary(video_id, df_string, source, LLM_model=None):
if source == "gcs":
print("===get_video_id_summary on gcs===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_summary_markdown.json'
summary_file_blob_name = f"{video_id}/{file_name}"
# 检查 summary_file 是否存在
is_summary_file_exists = GCS_SERVICE.check_file_exists(bucket_name, summary_file_blob_name)
if not is_summary_file_exists:
meta_data = get_meta_data(video_id)
summary = generate_summarise(df_string, meta_data, LLM_model)
summary_json = {"summary": str(summary)}
summary_text = json.dumps(summary_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, summary_file_blob_name, summary_text)
print("summary已上传到GCS")
else:
# summary已存在,下载内容
print("summary已存在于GCS中")
summary_text = GCS_SERVICE.download_as_string(bucket_name, summary_file_blob_name)
summary_json = json.loads(summary_text)
elif source == "drive":
print("===get_video_id_summary===")
service = init_drive_service()
parent_folder_id = '1GgI4YVs0KckwStVQkLa1NZ8IpaEMurkL'
folder_id = create_folder_if_not_exists(service, video_id, parent_folder_id)
file_name = f'{video_id}_summary.json'
# 检查逐字稿是否存在
exists, file_id = check_file_exists(service, folder_id, file_name)
if not exists:
meta_data = get_meta_data(video_id)
summary = generate_summarise(df_string, meta_data, LLM_model)
summary_json = {"summary": str(summary)}
summary_text = json.dumps(summary_json, ensure_ascii=False, indent=2)
try:
upload_content_directly(service, file_name, folder_id, summary_text)
print("summary已上傳到Google Drive")
except Exception as e:
error_msg = f" {video_id} 摘要錯誤: {str(e)}"
print("===get_video_id_summary error===")
print(error_msg)
print("===get_video_id_summary error===")
else:
# 逐字稿已存在,下载逐字稿内容
print("summary已存在Google Drive中")
summary_text = download_file_as_string(service, file_id)
summary_json = json.loads(summary_text)
return summary_json
def generate_summarise(df_string, metadata=None, LLM_model=None):
print("===generate_summarise===")
# 使用 OpenAI 生成基于上传数据的问题
if metadata:
title = metadata.get("title", "")
subject = metadata.get("subject", "")
grade = metadata.get("grade", "")
else:
title = ""
subject = ""
grade = ""
segments = split_data(df_string, word_base=100000)
all_content = []
for segment in segments:
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷賛料的種類,使用 zh-TW"
user_content = f"""
課程名稱:{title}
科目:{subject}
年級:{grade}
請根據內文: {segment}
格式為 Markdown
如果有課程名稱,請圍繞「課程名稱」為學習重點,進行重點整理,不要整理跟情境故事相關的問題
整體摘要在一百字以內
重點概念列出 bullet points,至少三個,最多五個
以及可能的結論與結尾延伸小問題提供學生作反思
敘述中,請把數學或是專業術語,用 Latex 包覆($...$)
加減乘除、根號、次方等等的運算式口語也換成 LATEX 數學符號
整體格式為:
## 🌟 主題:{{title}} (如果沒有 title 就省略)
## 📚 整體摘要
- (一個 bullet point....)
## 🔖 重點概念
- xxx
- xxx
- xxx
## 💡 為什麼我們要學這個?
- (一個 bullet point....)
## ❓ 延伸小問題
- (一個 bullet point....請圍繞「課程名稱」為學習重點,進行重點整理,不要整理跟情境故事相關的問題)
"""
content = generate_content_by_LLM(sys_content, user_content, response_format=None, LLM_model=LLM_model, model_name=None)
all_content.append(content + "\n")
if len(all_content) > 1:
all_content_cnt = len(all_content)
all_content_str = json.dumps(all_content)
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀賛料文本,自行判斷賛料的種類,使用 zh-TW"
user_content = f"""
課程名稱:{title}
科目:{subject}
年級:{grade}
請根據內文: {all_content_str}
共有 {all_content_cnt} 段,請縱整成一篇摘要
格式為 Markdown
如果有課程名稱,請圍繞「課程名稱」為學習重點,進行重點整理,不要整理跟情境故事相關的問題
整體摘要在 {all_content_cnt} 百字以內
重點概念列出 bullet points,至少三個,最多十個
以及可能的結論與結尾延伸小問題提供學生作反思
敘述中,請把數學或是專業術語,用 Latex 包覆($...$)
加減乘除、根號、次方等等的運算式口語也換成 LATEX 數學符號
整體格式為:
## 🌟 主題:{{title}} (如果沒有 title 就省略)
## 📚 整體摘要
- ( {all_content_cnt} 個 bullet point....)
## 🔖 重點概念
- xxx
- xxx
- xxx
## 💡 為什麼我們要學這個?
- ( {all_content_cnt} 個 bullet point....)
## ❓ 延伸小問題
- ( {all_content_cnt} 個 bullet point....請圍繞「課程名稱」為學習重點,進行重點整理,不要整理跟情境故事相關的問題)
"""
final_content = generate_content_by_LLM(sys_content, user_content, response_format=None, LLM_model=LLM_model, model_name=None)
else:
final_content = all_content[0]
return final_content
def get_questions(video_id, df_string, source="gcs", LLM_model=None):
if source == "gcs":
# 去 gcs 確認是有有 video_id_questions.json
print("===get_questions on gcs===")
gcs_client = GCS_CLIENT
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_questions.json'
blob_name = f"{video_id}/{file_name}"
# 检查檔案是否存在
is_questions_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_questions_exists:
questions = generate_questions(df_string, LLM_model)
questions_text = json.dumps(questions, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, questions_text)
print("questions已上傳到GCS")
else:
# 逐字稿已存在,下载逐字稿内容
print("questions已存在于GCS中")
questions_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
questions = json.loads(questions_text)
elif source == "drive":
# 去 g drive 確認是有有 video_id_questions.json
print("===get_questions===")
service = init_drive_service()
parent_folder_id = '1GgI4YVs0KckwStVQkLa1NZ8IpaEMurkL'
folder_id = create_folder_if_not_exists(service, video_id, parent_folder_id)
file_name = f'{video_id}_questions.json'
# 检查檔案是否存在
exists, file_id = check_file_exists(service, folder_id, file_name)
if not exists:
questions = generate_questions(df_string, LLM_model)
questions_text = json.dumps(questions, ensure_ascii=False, indent=2)
upload_content_directly(service, file_name, folder_id, questions_text)
print("questions已上傳到Google Drive")
else:
# 逐字稿已存在,下载逐字稿内容
print("questions已存在于Google Drive中")
questions_text = download_file_as_string(service, file_id)
questions = json.loads(questions_text)
q1 = questions[0] if len(questions) > 0 else ""
q2 = questions[1] if len(questions) > 1 else ""
q3 = questions[2] if len(questions) > 2 else ""
print("=====get_questions=====")
print(f"q1: {q1}")
print(f"q2: {q2}")
print(f"q3: {q3}")
print("=====get_questions=====")
return q1, q2, q3
def generate_questions(df_string, LLM_model=None):
print("===generate_questions===")
# 使用 OpenAI 生成基于上传数据的问题
if isinstance(df_string, str):
df_string_json = json.loads(df_string)
else:
df_string_json = df_string
content_text = ""
for entry in df_string_json:
content_text += entry["text"] + ","
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,並用既有資料為本質猜測用戶可能會問的問題,使用 zh-TW"
user_content = f"""
請根據 {content_text} 生成三個問題,並用 JSON 格式返回
一定要使用 zh-TW,這非常重要!
EXAMPLE:
{{
questions:
[q1的敘述text, q2的敘述text, q3的敘述text]
}}
"""
response_format = { "type": "json_object" }
questions = generate_content_by_LLM(sys_content, user_content, response_format, LLM_model, model_name=None)
questions_list = json.loads(questions)["questions"]
print("=====json_response=====")
print(questions_list)
print("=====json_response=====")
return questions_list
def get_questions_answers(video_id, df_string, source="gcs", LLM_model=None):
if source == "gcs":
try:
print("===get_questions_answers on gcs===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_questions_answers.json'
blob_name = f"{video_id}/{file_name}"
# 检查檔案是否存在
is_questions_answers_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_questions_answers_exists:
questions_answers = generate_questions_answers(df_string, LLM_model)
questions_answers_text = json.dumps(questions_answers, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, questions_answers_text)
print("questions_answers已上傳到GCS")
else:
# questions_answers已存在,下载内容
print("questions_answers已存在于GCS中")
questions_answers_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
questions_answers = json.loads(questions_answers_text)
except Exception as e:
print(f"Error getting questions_answers: {str(e)}")
questions_list = get_questions(video_id, df_string, source, LLM_model)
questions_answers = [{"question": q, "answer": ""} for q in questions_list]
return questions_answers
def generate_questions_answers(df_string, LLM_model=None):
print("===generate_questions_answers===")
segments = split_data(df_string, word_base=100000)
all_content = []
for segment in segments:
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
請根據 {segment} 生成三個問題跟答案,主要與學科有關,不要問跟情節故事相關的問題
答案要在最後標示出處【參考:00:01:05】,請根據時間軸 start_time 來標示
請確保問題跟答案都是繁體中文 zh-TW
答案不用是標準答案,而是帶有啟發性的蘇格拉底式問答,讓學生思考本來的問題,以及該去參考的時間點
並用 JSON 格式返回 list ,請一定要給三個問題跟答案,且要裝在一個 list 裡面
k-v pair 的 key 是 question, value 是 answer
EXAMPLE:
{{
"questions_answers":
[
{{question: q1的敘述text, answer: q1的答案text【參考:00:01:05】}},
{{question: q2的敘述text, answer: q2的答案text【參考:00:32:05】}},
{{question: q3的敘述text, answer: q3的答案text【參考:01:03:35】}}
]
}}
"""
response_format = { "type": "json_object" }
content = generate_content_by_LLM(sys_content, user_content, response_format, LLM_model, model_name=None)
content_json = json.loads(content)["questions_answers"]
all_content += content_json
print("=====all_content=====")
print(all_content)
print("=====all_content=====")
return all_content
def change_questions(password, df_string):
verify_password(password)
questions = generate_questions(df_string)
q1 = questions[0] if len(questions) > 0 else ""
q2 = questions[1] if len(questions) > 1 else ""
q3 = questions[2] if len(questions) > 2 else ""
print("=====get_questions=====")
print(f"q1: {q1}")
print(f"q2: {q2}")
print(f"q3: {q3}")
print("=====get_questions=====")
return q1, q2, q3
def get_key_moments(video_id, formatted_simple_transcript, formatted_transcript, source, LLM_model=None):
if source == "gcs":
print("===get_key_moments on gcs===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_key_moments.json'
blob_name = f"{video_id}/{file_name}"
# 检查檔案是否存在
is_key_moments_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_key_moments_exists:
key_moments = generate_key_moments(formatted_simple_transcript, formatted_transcript, LLM_model)
key_moments_json = {"key_moments": key_moments}
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, key_moments_text)
print("key_moments已上傳到GCS")
else:
# key_moments已存在,下载内容
print("key_moments已存在于GCS中")
key_moments_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
key_moments_json = json.loads(key_moments_text)
# 檢查 key_moments 是否有 keywords
print("===檢查 key_moments 是否有 keywords===")
has_keywords_added = False
for key_moment in key_moments_json["key_moments"]:
if "keywords" not in key_moment:
transcript = key_moment["transcript"]
key_moment["keywords"] = generate_key_moments_keywords(transcript, LLM_model)
print("===keywords===")
print(key_moment["keywords"])
print("===keywords===")
has_keywords_added = True
if has_keywords_added:
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, key_moments_text)
key_moments_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
key_moments_json = json.loads(key_moments_text)
# 檢查 key_moments 是否有 suggested_images
print("===檢查 key_moments 是否有 suggested_images===")
has_suggested_images_added = False
for key_moment in key_moments_json["key_moments"]:
if "suggested_images" not in key_moment:
key_moment["suggested_images"] = generate_key_moments_suggested_images(key_moment)
has_suggested_images_added = True
if has_suggested_images_added:
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, key_moments_text)
key_moments_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
key_moments_json = json.loads(key_moments_text)
elif source == "drive":
print("===get_key_moments on drive===")
service = init_drive_service()
parent_folder_id = '1GgI4YVs0KckwStVQkLa1NZ8IpaEMurkL'
folder_id = create_folder_if_not_exists(service, video_id, parent_folder_id)
file_name = f'{video_id}_key_moments.json'
# 检查檔案是否存在
exists, file_id = check_file_exists(service, folder_id, file_name)
if not exists:
key_moments = generate_key_moments(formatted_simple_transcript, formatted_transcript, LLM_model)
key_moments_json = {"key_moments": key_moments}
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False, indent=2)
upload_content_directly(service, file_name, folder_id, key_moments_text)
print("key_moments已上傳到Google Drive")
else:
# key_moments已存在,下载内容
print("key_moments已存在于Google Drive中")
key_moments_text = download_file_as_string(service, file_id)
key_moments_json = json.loads(key_moments_text)
return key_moments_json
def generate_key_moments(formatted_simple_transcript, formatted_transcript, LLM_model=None):
print("===generate_key_moments===")
segments = split_data(formatted_simple_transcript, word_base=100000)
all_content = []
for segment in segments:
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
# 文本:{segment}
# Rule
1. 請根據文本,提取出 5~8 段重點摘要,並給出對應的時間軸,每一段重點的時間軸範圍大於1分鐘,但小於 1/3 總逐字稿長度
2. 內容當中,如果有列舉方法、模式或是工具,就用 bulletpoint 或是 編號方式 列出,並在列舉部分的頭尾用[]匡列(example: FAANG 是以下五間公司: [1. A公司 2.B公司 3.C公司 4.D公司 5.E公司 ],...)
3. 注意不要遺漏任何一段時間軸的內容 從零秒開始,以這種方式分析整個文本,從零秒開始分析,直到結束。這很重要
4. 結尾的時間如果有總結性的話,也要擷取
5. 如果頭尾的情節不是重點,特別是打招呼或是介紹自己是誰、或是finally say goodbye 就是不重要的情節,就不用擷取
6. 關鍵字從transcript extract to keyword,保留專家名字、專業術語、年份、數字、期刊名稱、地名、數學公式
7. 最後再檢查一遍,text, keywords please use or transfer to zh-TW, it's very important
# restrictions
1. 請一定要用 zh-TW,這非常重要!
2. 如果是疑似主播、主持人的圖片場景,且沒有任何有用的資訊,請不要選取
3. 如果頭尾的情節不是重點,特別是打招呼或是介紹自己是誰、或是finally say goodbye 就是不重要的情節,就不用擷取
4. 時間軸請取到秒數,不要只取到分鐘數,這很重要
Example: retrun JSON
{{key_moments:[{{
"start": "00:00",
"end": "01:35",
"text": "逐字稿的重點摘要",
"keywords": ["關鍵字", "關鍵字"]
}}]
}}
"""
response_format = { "type": "json_object" }
content = generate_content_by_LLM(sys_content, user_content, response_format, LLM_model, model_name=None)
key_moments = json.loads(content)["key_moments"]
# "transcript": get text from formatted_simple_transcript
for moment in key_moments:
start_time = parse_time(moment['start'])
end_time = parse_time(moment['end'])
# 使用轉換後的 timedelta 物件進行時間
moment['transcript'] = ",".join([entry['text'] for entry in formatted_simple_transcript
if start_time <= parse_time(entry['start_time']) <= end_time])
print("=====key_moments=====")
print(key_moments)
print("=====key_moments=====")
image_links = {entry['start_time']: entry['screenshot_path'] for entry in formatted_transcript}
for moment in key_moments:
start_time = parse_time(moment['start'])
end_time = parse_time(moment['end'])
# 使用轉換後的 timedelta 物件進行時間比較
moment_images = [image_links[time] for time in image_links
if start_time <= parse_time(time) <= end_time]
moment['images'] = moment_images
# 檢查是否有 suggested_images
if "suggested_images" not in moment:
moment["suggested_images"] = generate_key_moments_suggested_images(moment, LLM_model)
print("===moment_suggested_images===")
print(moment["suggested_images"])
print("===moment_suggested_images===")
all_content += key_moments
return all_content
def generate_key_moments_keywords(transcript, LLM_model=None):
print("===generate_key_moments_keywords===")
segments = split_data(transcript, word_base=100000)
all_content = []
for segment in segments:
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
transcript extract to keyword
保留專家名字、專業術語、年份、數字、期刊名稱、地名、數學公式、數學表示式、物理化學符號,
不用給上下文,直接給出關鍵字,使用 zh-TW,用逗號分隔, example: 關鍵字1, 關鍵字2
transcript:{segment}
"""
content = generate_content_by_LLM(sys_content, user_content, response_format=None, LLM_model=LLM_model, model_name=None)
keywords = content.strip().split(",")
all_content += keywords
return all_content
def generate_key_moments_suggested_images(key_moment, LLM_model=None):
# Prepare the text and keywords
text = key_moment["text"]
keywords = ', '.join(key_moment["keywords"])
images = key_moment["images"]
images_list_prompt = ""
for i, image_url in enumerate(images):
images_list_prompt += f"\n圖片 {i+1}: {image_url}"
# Prepare the user prompt with text and keywords
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
- 文本: {text}
- 關鍵字: {keywords}
# Rule:
1. 保留有圖表或是數據的圖片
2. 根據文本和關鍵字,選擇出最合適的圖片。
3. 總是保留最後一張,除非他是一張空白圖片,或是一張沒有任何內容的圖片
# Restrictions:
1. 如果是疑似主播、主持人的圖片場景,且沒有任何有用的資訊,請不要選取,這很重要
2. 不要有相似或是概念重複的圖片
3. 移除整張圖片是黑色、藍色或是白色的圖片
4. 移除沒有任何內容的圖片
5. 不需要理會字幕的差益,只需要看圖片的內容
請根據這些信息,圖片列表如下:
{images_list_prompt}
回傳 JSON LIST 就好,不用回傳任何敘述脈絡,也不要 ```json 包覆
EXAMPLE:
{{
"suggested_images": ["圖片1的 image_url", "圖片2 的 image_url", "圖片3的 image_url"]
}}
"""
response_format = { "type": "json_object" }
response = generate_content_by_LLM(sys_content, user_content, response_format, LLM_model, model_name=None)
print("===generate_key_moments_suggested_images===")
print(response)
print("===generate_key_moments_suggested_images===")
suggested_images = json.loads(response)["suggested_images"]
return suggested_images
def get_key_moments_html(key_moments):
css = """
<style>
#gallery-main {
display: flex;
align-items: center;
margin-bottom: 20px;
}
#gallery {
position: relative;
width: 50%;
flex: 1;
}
#text-content {
flex: 2;
margin-left: 20px;
}
#gallery #gallery-container{
position: relative;
width: 100%;
height: 0px;
padding-bottom: 56.7%; /* 16/9 ratio */
background-color: blue;
}
#gallery #gallery-container #gallery-content{
position: absolute;
top: 0px;
right: 0px;
bottom: 0px;
left: 0px;
height: 100%;
display: flex;
scroll-snap-type: x mandatory;
overflow-x: scroll;
scroll-behavior: smooth;
}
#gallery #gallery-container #gallery-content .gallery__item{
width: 100%;
height: 100%;
flex-shrink: 0;
scroll-snap-align: start;
scroll-snap-stop: always;
position: relative;
}
#gallery #gallery-container #gallery-content .gallery__item img{
display: block;
width: 100%;
height: 100%;
object-fit: contain;
background-color: white;
}
.click-zone{
position: absolute;
width: 20%;
height: 100%;
z-index: 3;
}
.click-zone.click-zone-prev{
left: 0px;
}
.click-zone.click-zone-next{
right: 0px;
}
#gallery:not(:hover) .arrow{
opacity: 0.8;
}
.arrow{
text-align: center;
z-index: 3;
position: absolute;
display: block;
width: 25px;
height: 25px;
line-height: 25px;
background-color: black;
border-radius: 50%;
text-decoration: none;
color: white !important;
opacity: 0.8;
transition: opacity 200ms ease;
}
.arrow:hover{
opacity: 1;
}
.arrow span{
position: relative;
top: 2px;
}
.arrow.arrow-prev{
top: 50%;
left: 5px;
}
.arrow.arrow-next{
top: 50%;
right: 5px;
}
.arrow.arrow-disabled{
opacity:0.8;
}
#text-content {
padding: 0px 36px;
}
#text-content p {
margin-top: 10px;
}
body{
font-family: sans-serif;
margin: 0px;
padding: 0px;
}
main{
padding: 0px;
margin: 0px;
max-width: 900px;
margin: auto;
}
.hidden{
border: 0;
clip: rect(0 0 0 0);
height: 1px;
margin: -1px;
overflow: hidden;
padding: 0;
position: absolute;
width: 1px;
}
.keyword-label {
display: inline-block;
padding: 5px 10px;
margin: 2px;
border: 2px solid black;
border-radius: 5px;
font-size: 0.9em;
}
details {
border-radius: 5px;
padding: 10px;
border: 2px solid black;
}
summary {
font-weight: bold;
cursor: pointer;
outline: none;
}
summary::-webkit-details-marker {
display: none;
}
@media (max-width: 768px) {
#gallery-main {
flex-direction: column; /* 在小屏幕上堆叠元素 */
}
#gallery {
width: 100%; /* 让画廊占满整个容器宽度 */
}
#text-content {
margin-left: 0; /* 移除左边距,让文本内容占满宽度 */
margin-top: 20px; /* 为文本内容添加顶部间距 */
}
#gallery #gallery-container {
height: 350px; /* 或者你可以设置一个固定的高度,而不是用 padding-bottom */
padding-bottom: 0; /* 移除底部填充 */
}
}
</style>
"""
key_moments_html = css
for i, moment in enumerate(key_moments):
# if "suggested_images" in moment:
# images = moment['suggested_images']
# else:
# images = moment['images']
# image_elements = ""
# for j, image in enumerate(images):
# current_id = f"img_{i}_{j}"
# prev_id = f"img_{i}_{j-1}" if j-1 >= 0 else f"img_{i}_{len(images)-1}"
# next_id = f"img_{i}_{j+1}" if j+1 < len(images) else f"img_{i}_0"
# image_elements += f"""
# <div id="{current_id}" class="gallery__item">
# <a href="#{prev_id}" class="click-zone click-zone-prev">
# <div class="arrow arrow-disabled arrow-prev"> ◀︎ </div>
# </a>
# <a href="#{next_id}" class="click-zone click-zone-next">
# <div class="arrow arrow-next"> ▶︎ </div>
# </a>
# <img src="{image}">
# </div>
# """
# gallery_content = f"""
# <div id="gallery-content">
# {image_elements}
# </div>
# """
keywords_html = ' '.join([f'<span class="keyword-label">{keyword}</span>' for keyword in moment['keywords']])
key_moments_html += f"""
<div class="gallery-container" id="gallery-main">
<div id="text-content">
<h3>{moment['start']} - {moment['end']}</h3>
<p><strong>摘要: {moment['text']} </strong></p>
<details>
<summary>逐字稿</summary>
<p><strong>內容: </strong> {moment['transcript']} </p>
</details>
<p><strong>關鍵字:</strong> {keywords_html}</p>
</div>
</div>
"""
return key_moments_html
# ---- LLM CRUD ----
def get_LLM_content(video_id, kind):
print(f"===get_{kind}===")
gcs_client = GCS_CLIENT
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_{kind}.json'
blob_name = f"{video_id}/{file_name}"
# 检查 file 是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if is_file_exists:
content = GCS_SERVICE.download_as_string(bucket_name, blob_name)
content_json = json.loads(content)
if kind == "reading_passage_latex":
content_text = content_json["reading_passage"]
elif kind == "summary_markdown":
content_text = content_json["summary"]
elif kind == "key_moments":
content_text = content_json["key_moments"]
content_text = json.dumps(content_text, ensure_ascii=False, indent=2)
else:
content_text = json.dumps(content_json, ensure_ascii=False, indent=2)
else:
content_text = ""
return content_text
def enable_edit_mode():
return gr.update(interactive=True)
def delete_LLM_content(video_id, kind):
print(f"===delete_{kind}===")
gcs_client = GCS_CLIENT
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_{kind}.json'
blob_name = f"{video_id}/{file_name}"
# 检查 file 是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if is_file_exists:
GCS_SERVICE.delete_blob(bucket_name, blob_name)
print(f"{file_name}已从GCS中删除")
return gr.update(value="", interactive=False)
def update_LLM_content(video_id, new_content, kind):
print(f"===upfdate kind on gcs===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_{kind}.json'
blob_name = f"{video_id}/{file_name}"
if kind == "reading_passage_latex":
print("=========reading_passage=======")
print(new_content)
reading_passage_json = {"reading_passage": str(new_content)}
reading_passage_text = json.dumps(reading_passage_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, reading_passage_text)
updated_content = new_content
elif kind == "summary_markdown":
summary_json = {"summary": str(new_content)}
summary_text = json.dumps(summary_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, summary_text)
updated_content = new_content
elif kind == "mind_map":
mind_map_json = {"mind_map": str(new_content)}
mind_map_text = json.dumps(mind_map_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, mind_map_text)
updated_content = mind_map_text
elif kind == "key_moments":
# from update_LLM_btn -> new_content is a string
# create_LLM_content -> new_content is a list
if isinstance(new_content, str):
key_moments_list = json.loads(new_content)
else:
key_moments_list = new_content
key_moments_json = {"key_moments": key_moments_list}
key_moments_json_text = json.dumps(key_moments_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, key_moments_json_text)
key_moments_text = json.dumps(key_moments_list, ensure_ascii=False, indent=2)
updated_content = key_moments_text
elif kind == "transcript":
if isinstance(new_content, str):
transcript_json = json.loads(new_content)
else:
transcript_json = new_content
transcript_text = json.dumps(transcript_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, transcript_text)
updated_content = transcript_text
elif kind == "questions":
# from update_LLM_btn -> new_content is a string
# create_LLM_content -> new_content is a list
if isinstance(new_content, str):
questions_json = json.loads(new_content)
else:
questions_json = new_content
questions_text = json.dumps(questions_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, questions_text)
updated_content = questions_text
elif kind == "questions_answers":
# from update_LLM_btn -> new_content is a string
# create_LLM_content -> new_content is a list
if isinstance(new_content, str):
questions_answers_json = json.loads(new_content)
else:
questions_answers_json = new_content
questions_answers_text = json.dumps(questions_answers_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, questions_answers_text)
updated_content = questions_answers_text
elif kind == "ai_content_list":
if isinstance(new_content, str):
ai_content_json = json.loads(new_content)
else:
ai_content_json = new_content
ai_content_text = json.dumps(ai_content_json, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, ai_content_text)
updated_content = ai_content_text
print(f"{kind} 已更新到GCS")
return gr.update(value=updated_content, interactive=False)
def create_LLM_content(video_id, df_string, kind, LLM_model=None):
print(f"===create_{kind}===")
print(f"video_id: {video_id}")
if kind == "reading_passage_latex":
content = generate_reading_passage(df_string, LLM_model)
update_LLM_content(video_id, content, kind)
elif kind == "summary_markdown":
meta_data = get_meta_data(video_id)
content = generate_summarise(df_string, meta_data, LLM_model)
update_LLM_content(video_id, content, kind)
elif kind == "mind_map":
content = generate_mind_map(df_string)
update_LLM_content(video_id, content, kind)
elif kind == "key_moments":
if isinstance(df_string, str):
transcript = json.loads(df_string)
else:
transcript = df_string
formatted_simple_transcript = create_formatted_simple_transcript(transcript)
formatted_transcript = create_formatted_transcript(video_id, transcript)
gen_content = generate_key_moments(formatted_simple_transcript, formatted_transcript, LLM_model)
update_LLM_content(video_id, gen_content, kind)
content = json.dumps(gen_content, ensure_ascii=False, indent=2)
elif kind == "transcript":
gen_content = process_transcript_and_screenshots_on_gcs(video_id)
update_LLM_content(video_id, gen_content, kind)
content = json.dumps(gen_content, ensure_ascii=False, indent=2)
elif kind == "questions":
gen_content = generate_questions(df_string, LLM_model)
update_LLM_content(video_id, gen_content, kind)
content = json.dumps(gen_content, ensure_ascii=False, indent=2)
elif kind == "questions_answers":
if isinstance(df_string, str):
transcript = json.loads(df_string)
else:
transcript = df_string
formatted_simple_transcript = create_formatted_simple_transcript(transcript)
gen_content = generate_questions_answers(formatted_simple_transcript, LLM_model)
update_LLM_content(video_id, gen_content, kind)
content = json.dumps(gen_content, ensure_ascii=False, indent=2)
return gr.update(value=content, interactive=False)
# ---- LLM refresh CRUD ----
def reading_passage_add_latex_version(video_id):
# 確認 GCS 是否有 reading_passage.json
print("===reading_passage_convert_to_latex===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_reading_passage.json'
blob_name = f"{video_id}/{file_name}"
print(f"blob_name: {blob_name}")
# 检查檔案是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_file_exists:
raise gr.Error("reading_passage 不存在!")
# 逐字稿已存在,下载逐字稿内容
print("reading_passage 已存在于GCS中,轉換 Latex 模式")
reading_passage_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
reading_passage_json = json.loads(reading_passage_text)
original_reading_passage = reading_passage_json["reading_passage"]
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
請根據 {original_reading_passage}
敘述中,請把數學或是專業術語,用 Latex 包覆($...$),盡量不要去改原本的文章
加減乘除、根號、次方、化學符號、物理符號等等的運算式口語也換成 LATEX 符號
請一定要使用繁體中文 zh-TW,並用台灣人的口語
產生的結果不要前後文解釋,也不要敘述這篇文章怎麼產生的
只需要專注提供 Reading Passage,字數在 200~500 字以內
"""
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
request_payload = {
"model": "gpt-4o",
"messages": messages,
"max_tokens": 4000,
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
new_reading_passage = response.choices[0].message.content.strip()
print("=====new_reading_passage=====")
print(new_reading_passage)
print("=====new_reading_passage=====")
reading_passage_json["reading_passage"] = new_reading_passage
reading_passage_text = json.dumps(reading_passage_json, ensure_ascii=False, indent=2)
# 另存為 reading_passage_latex.json
new_file_name = f'{video_id}_reading_passage_latex.json'
new_blob_name = f"{video_id}/{new_file_name}"
GCS_SERVICE.upload_json_string(bucket_name, new_blob_name, reading_passage_text)
return new_reading_passage
def summary_add_markdown_version(video_id):
# 確認 GCS 是否有 summary.json
print("===summary_convert_to_markdown===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_summary.json'
blob_name = f"{video_id}/{file_name}"
print(f"blob_name: {blob_name}")
# 检查檔案是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_file_exists:
raise gr.Error("summary 不存在!")
# 逐字稿已存在,下载逐字稿内容
print("summary 已存在于GCS中,轉換 Markdown 模式")
summary_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
summary_json = json.loads(summary_text)
original_summary = summary_json["summary"]
sys_content = "你是一個擅長資料分析跟影片教學的老師,user 為學生,請精讀資料文本,自行判斷資料的種類,使用 zh-TW"
user_content = f"""
請根據 {original_summary}
轉換格式為 Markdown
只保留:📚 整體摘要、🔖 重點概念、💡 為什麼我們要學這個、❓ 延伸小問題
其他的不要保留
整體摘要在一百字以內
重點概念轉成 bullet points
以及可能的結論與結尾延伸小問題提供學生作反思
敘述中,請把數學或是專業術語,用 Latex 包覆($...$)
加減乘除、根號、次方等等的運算式口語也換成 LATEX 數學符號
整體格式為:
## 📚 整體摘要
- (一個 bullet point....)
## 🔖 重點概念
- xxx
- xxx
- xxx
## 💡 為什麼我們要學這個?
- (一個 bullet point....)
## ❓ 延伸小問題
- (一個 bullet point....)
"""
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content}
]
request_payload = {
"model": "gpt-4o",
"messages": messages,
"max_tokens": 4000,
}
response = OPEN_AI_CLIENT.chat.completions.create(**request_payload)
new_summary = response.choices[0].message.content.strip()
print("=====new_summary=====")
print(new_summary)
print("=====new_summary=====")
summary_json["summary"] = new_summary
summary_text = json.dumps(summary_json, ensure_ascii=False, indent=2)
# 另存為 summary_markdown.json
new_file_name = f'{video_id}_summary_markdown.json'
new_blob_name = f"{video_id}/{new_file_name}"
GCS_SERVICE.upload_json_string(bucket_name, new_blob_name, summary_text)
return new_summary
# LLM 強制重刷
def refresh_video_LLM_all_content(video_ids):
# 輸入影片 id,以 , 逗號分隔 或是 \n 換行
video_id_list = video_ids.replace('\n', ',').split(',')
video_id_list = [vid.strip() for vid in video_id_list if vid.strip()]
success_video_ids = []
failed_video_ids = []
for video_id in video_id_list:
try:
print(f"===refresh_all_LLM_content===")
print(f"video_id: {video_id}")
# 刪除 GCS 中所有以 video_id 開頭的檔案
print(f"===delete_blobs_by_folder_name: {video_id}===")
bucket_name = 'video_ai_assistant'
GCS_SERVICE.delete_blobs_by_folder_name(bucket_name, video_id)
print(f"所有以 {video_id} 開頭的檔案已刪除")
# process_youtube_link
video_link = f"https://www.youtube.com/watch?v={video_id}"
process_youtube_link(PASSWORD, video_link)
success_video_ids.append(video_id)
except Exception as e:
print(f"===refresh_all_LLM_content error===")
print(f"video_id: {video_id}")
print(f"error: {str(e)}")
print(f"===refresh_all_LLM_content error===")
failed_video_ids.append(video_id)
result = {
"success_video_ids": success_video_ids,
"failed_video_ids": failed_video_ids
}
return result
# AI 生成教學素材
def get_meta_data(video_id, source="gcs"):
if source == "gcs":
print("===get_meta_data on gcs===")
gcs_client = GCS_CLIENT
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_meta_data.json'
blob_name = f"{video_id}/{file_name}"
# 检查檔案是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_file_exists:
meta_data_json = {
"subject": "",
"grade": "",
}
print("meta_data empty return")
else:
# meta_data已存在,下载内容
print("meta_data已存在于GCS中")
meta_data_text = GCS_SERVICE.download_as_string(bucket_name, blob_name)
meta_data_json = json.loads(meta_data_text)
# meta_data_json grade 數字轉換成文字
grade = meta_data_json["grade"]
case = {
1: "一年級",
2: "二年級",
3: "三年級",
4: "四年級",
5: "五年級",
6: "六年級",
7: "七年級",
8: "八年級",
9: "九年級",
10: "十年級",
11: "十一年級",
12: "十二年級",
}
grade_text = case.get(grade, "")
meta_data_json["grade"] = grade_text
return meta_data_json
def get_ai_content(password, user_data, video_id, df_string, topic, grade, level, specific_feature, content_type, source="gcs"):
verify_password(password)
if source == "gcs":
print("===get_ai_content on gcs===")
bucket_name = 'video_ai_assistant'
file_name = f'{video_id}_ai_content_list.json'
blob_name = f"{video_id}/{file_name}"
# 检查檔案是否存在
is_file_exists = GCS_SERVICE.check_file_exists(bucket_name, blob_name)
if not is_file_exists:
# 先建立一個 ai_content_list.json
ai_content_list = []
ai_content_text = json.dumps(ai_content_list, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, ai_content_text)
print("ai_content_list [] 已上傳到GCS")
# 此時 ai_content_list 已存在
ai_content_list_string = GCS_SERVICE.download_as_string(bucket_name, blob_name)
ai_content_list = json.loads(ai_content_list_string)
# by key 找到 ai_content (topic, grade, level, specific_feature, content_type)
target_kvs = {
"video_id": video_id,
"level": level,
"specific_feature": specific_feature,
"content_type": content_type
}
ai_content_json = [
item for item in ai_content_list
if all(item[k] == v for k, v in target_kvs.items())
]
if len(ai_content_json) == 0:
ai_content, prompt = generate_ai_content(password, df_string, topic, grade, level, specific_feature, content_type)
ai_content_json = {
"video_id": video_id,
"content": str(ai_content),
"prompt": prompt,
"level": level,
"specific_feature": specific_feature,
"content_type": content_type
}
ai_content_list.append(ai_content_json)
ai_content_text = json.dumps(ai_content_list, ensure_ascii=False, indent=2)
GCS_SERVICE.upload_json_string(bucket_name, blob_name, ai_content_text)
print("ai_content已上傳到GCS")
# insert_log_to_bigquery usage
data_endpoint = "chat_completions"
else:
ai_content_json = ai_content_json[-1]
ai_content = ai_content_json["content"]
prompt = ai_content_json["prompt"]
# insert_log_to_bigquery usage
data_endpoint = "gcs"
# send data to GBQ
user_id = user_data
route = "get_ai_content"
endpoint = data_endpoint
event_response = {"event_response": str(ai_content)}
event_response_json = json.dumps(event_response)
prompt = ai_content_json
prompt_json = json.dumps(prompt)
feature = content_type
insert_log_to_bigquery(user_id, route, endpoint, event_response_json, prompt_json, feature)
return ai_content, ai_content, prompt, prompt
def generate_ai_content(password, df_string, topic, grade, level, specific_feature, content_type):
verify_password(password)
material = EducationalMaterial(df_string, topic, grade, level, specific_feature, content_type)
prompt = material.generate_content_prompt()
try:
ai_content = material.get_ai_content(OPEN_AI_CLIENT, ai_type="openai")
except Exception as e:
error_msg = f" {video_id} OPEN AI 生成教學素材錯誤: {str(e)}"
print("===generate_ai_content error===")
print(error_msg)
print("===generate_ai_content error===")
ai_content = material.get_ai_content(BEDROCK_CLIENT, ai_type="bedrock")
return ai_content, prompt
def generate_ai_content_fine_tune_result(password, user_data, exam_result_prompt , df_string_output, exam_result, exam_result_fine_tune_prompt, content_type):
verify_password(password)
material = EducationalMaterial(df_string_output, "", "", "", "", "")
try:
fine_tuned_ai_content = material.get_fine_tuned_ai_content(OPEN_AI_CLIENT, "openai", exam_result_prompt, exam_result, exam_result_fine_tune_prompt)
except:
fine_tuned_ai_content = material.get_fine_tuned_ai_content(BEDROCK_CLIENT, "bedrock", exam_result_prompt, exam_result, exam_result_fine_tune_prompt)
# send data to GBQ
user_id = user_data
route = "generate_ai_content_fine_tune_result"
endpoint = "chat_completions"
event_response = {"event_response": str(fine_tuned_ai_content)}
event_response_json = json.dumps(event_response)
prompt = {
"exam_result_prompt": exam_result_prompt,
"exam_result_fine_tune_prompt": exam_result_fine_tune_prompt
}
prompt_json = json.dumps(prompt)
feature = content_type
insert_log_to_bigquery(user_id, route, endpoint, event_response_json, prompt_json, feature)
return fine_tuned_ai_content
def return_original_exam_result(exam_result_original):
return exam_result_original
def create_word(content):
unique_filename = str(uuid.uuid4())
word_file_path = f"/tmp/{unique_filename}.docx"
doc = Document()
doc.add_paragraph(content)
doc.save(word_file_path)
return word_file_path
def download_exam_result(content):
word_path = create_word(content)
return word_path
# ---- Chatbot ----
def get_instructions(content_subject, content_grade, transcript_text, key_moments, socratic_mode=True):
if socratic_mode:
method = "Socratic style, guide thinking, no direct answers. this is very important, please be seriously following."
else:
method = "direct answers, but encourage user to think more."
instructions = f"""
subject: {content_subject}
grade: {content_grade}
context: {key_moments}
transcript_text: {transcript_text}
Assistant Role: you are a {content_subject} assistant. you can call yourself as {content_subject} 學伴
User Role: {content_grade} th-grade student.
Method: {method}
Language: Traditional Chinese ZH-TW (it's very important), suitable for {content_grade} th-grade level.
Strategy:
- You are a professional tutor, and you will use the following teaching strategies based on the textbook content.
# General Strategies
Needs Analysis:
The tutor/assistant teacher should be able to conduct dynamic needs analysis based on the student's responses. Use questions to understand the student's needs and difficulties.
Example questions: "What do you want to learn today?" or "What difficulties are you encountering in this part of the content?"
Dynamic Goal Setting:
Set learning goals based on student feedback, which can be short-term or long-term. The tutor/assistant teacher can adjust the plan automatically according to the student's progress.
Example questions: "What is our goal for this week?" or "What tasks do you hope to complete today?"
Flexible Teaching Methods:
Provide different teaching methods and resources based on the student's age and learning style. The tutor/assistant teacher can adjust teaching strategies based on student feedback.
Example questions: "Do you prefer learning through videos or reading materials?" or "We can understand this problem through examples, what do you think?"
Patience and Encouragement:
Provide positive feedback and encouragement, especially when students encounter difficulties. The tutor/assistant teacher should be able to detect the student's emotions and provide appropriate support.
Example questions: "Don't worry, let's try again." or "You did well, keep it up!"
Regular Feedback and Evaluation:
Regularly evaluate the student's learning progress and provide feedback. The tutor/assistant teacher can use tests and practice questions to assess the student's understanding.
Example questions: "Let's check your progress." or "How do you feel about your learning progress during this period?"
Good Communication Skills:
Maintain good communication with students, responding to their questions and needs in a timely manner. The tutor/assistant teacher should be able to identify and solve students' problems.
Example questions: "Is there any problem that you need my help with?" or "Is this part clear to you?"
Maintaining Professionalism:
Continue learning and improving teaching skills, and maintain punctuality and responsibility. The tutor/assistant teacher should provide accurate and up-to-date information.
Example questions: "What is our learning goal for today?" or "Remember to study a little bit every day, and gradually accumulate knowledge."
Creating a Positive Learning Environment:
Create a positive, supportive, and motivating learning atmosphere. The tutor/assistant teacher should suggest students take breaks and relax at appropriate times.
Example questions: "Let's take a break and continue studying afterward." or "How do you feel about this learning environment? Do we need any adjustments?"
# Specific Applications
The tutor/assistant teacher can automatically adjust the depth and complexity of the questions based on these general strategies by grade. For example:
- Kindergarten and Elementary School Students: Use simple vocabulary and concrete examples, with more pictures and gamified content.
- Middle School Students: Use interactive and practical methods, such as quizzes and group discussions.
- High School Students: Use deep learning and critical thinking exercises, such as project research and discussions.
- Adult Learners: Emphasize practical applications and work-related content, such as case studies and workshops.
Response:
- if user say hi or hello or any greeting, just say hi back and introduce yourself. Then tell user to ask question in context.
- include math symbols (use LaTeX $ to cover before and after, ex: $x^2$)
- hint with video timestamp which format 【參考:00:00:00】.
- Sometimes encourage user with relaxing atmosphere.
- if user ask questions not include in context, just tell them to ask the question in context and give them example question.
Restrictions:
- Answer within video content, no external references
- don't repeat user's question, guide them to think more.
- don't use simple-chinese words, use ZH-TW words. such as below:
- intead of 視頻, use 影片.
- instead of 宇航員, use 太空人
- instead of 計算機, use 電腦
- instead of 鼠標, use 滑鼠
- instead of 城鐵, use 捷運
- instead of 屏幕, use 螢幕
- instead of 初中, use 國中
- instead of 領導, use 長官
- instead of 軟件, use 軟體
- instead of 硬件, use 硬體
- instead of 公安, use 警察
- instead of 渠道, use 通路
- instead of 信息, use 資訊
- instead of 网络, use 網路
- instead of 网站, use 網站
- instead of 电视, use 電視
- instead of 电影, use 電影
- instead of 电脑, use 電腦
- instead of 电话, use 電話
- instead of 文本, use 文件
- instead of 行业, use 產業
- instead of 企业, use 公司
- instead of 产品, use 產品
- instead of 服务, use 服務
"""
return instructions
def get_chat_moderation(user_content):
# response = client.moderations.create(input=text)
response = OPEN_AI_CLIENT.moderations.create(input=user_content)
response_dict = response.model_dump()
is_flagged = response_dict['results'][0]['flagged']
print("========get_chat_moderation==========")
print(f"is_flagged: {is_flagged}")
print(response_dict)
print("========get_chat_moderation==========")
return is_flagged, response_dict
def chat_with_any_ai(ai_type, password, video_id, user_data, transcript_state, key_moments, user_message, chat_history, content_subject, content_grade, questions_answers_json, socratic_mode=False, thread_id=None, ai_name=None):
print(f"ai_type: {ai_type}")
print(f"user_data: {user_data}")
print(f"===thread_id:{thread_id}===")
verify_password(password)
verify_message_length(user_message, max_length=1500)
is_questions_answers_exists, question_message, answer_message = check_questions_answers(user_message, questions_answers_json)
if is_questions_answers_exists:
chat_history = update_chat_history(question_message, answer_message, chat_history)
send_btn_update, send_feedback_btn_update = update_send_and_feedback_buttons(chat_history, CHAT_LIMIT)
time.sleep(3)
return "", chat_history, send_btn_update, send_feedback_btn_update, thread_id
verify_chat_limit(chat_history, CHAT_LIMIT)
is_flagged, response_dict = get_chat_moderation(user_message)
if ai_type == "chat_completions":
if is_flagged:
response_text = "您的留言已被標記為不當內容,請重新發送。"
else:
chatbot_config = get_chatbot_config(ai_name, transcript_state, key_moments, content_subject, content_grade, video_id, socratic_mode)
chatbot = Chatbot(chatbot_config)
response_text = chatbot.chat(user_message, chat_history)
# if thread_id is none, create random thread_id + timestamp
if thread_id is None or thread_id == "":
thread_id = "thread_" + str(uuid.uuid4()) + str(int(time.time()))
print(f"===thread_id:{thread_id}===")
metadata = {
"video_id": video_id,
"user_data": user_data,
"content_subject": content_subject,
"content_grade": content_grade,
"socratic_mode": str(socratic_mode),
"assistant_id": ai_name,
"is_streaming": "false",
"moderation_is_flagged": str(is_flagged),
# "moderation_response_dict": str(response_dict)
}
elif ai_type == "assistant":
client = OPEN_AI_CLIENT
assistant_id = OPEN_AI_ASSISTANT_ID_GPT4
metadata={
"video_id": video_id,
"user_data": user_data,
"content_subject": content_subject,
"content_grade": content_grade,
"socratic_mode": str(socratic_mode),
"assistant_id": assistant_id,
"is_streaming": "false",
"moderation_is_flagged": str(is_flagged),
# "moderation_response_dict": str(response_dict)
}
if is_flagged:
response_text = "您的留言已被標記為不當內容,請重新發送。"
else:
if isinstance(key_moments, str):
key_moments_json = json.loads(key_moments)
else:
key_moments_json = key_moments
# key_moments_json remove images
for moment in key_moments_json:
moment.pop('images', None)
moment.pop('end', None)
moment.pop('transcript', None)
moment.pop('suggested_images', None)
if isinstance(transcript_state, str):
transcript_state_json = json.loads(transcript_state)
else:
transcript_state_json = transcript_state
# remain only text
transcript_text = ""
for content in transcript_state_json:
transcript_text += content["text"] + ","
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False)
instructions = get_instructions(content_subject, content_grade, transcript_text, key_moments_text, socratic_mode)
print(f"=== instructions:{instructions} ===")
user_message_note = "/n 請嚴格遵循instructions,擔任一位蘇格拉底家教,絕對不要重複 user 的問句,請用引導的方式指引方向,請一定要用繁體中文回答 zh-TW,並用台灣人的禮貌口語表達,回答時不要特別說明這是台灣人的語氣,請在回答的最後標註【參考:(時):(分):(秒)】,(如果是反問學生,就只問一個問題,請幫助學生更好的理解資料,字數在100字以內,回答時如果講到數學專有名詞,請用數學符號代替文字(Latex 用 $ 字號 render, ex: $x^2$)"
user_content = user_message + user_message_note
response_text, thread_id = handle_conversation_by_open_ai_assistant(client, user_content, instructions, assistant_id, thread_id, metadata, fallback=True)
# 更新聊天历史
chat_history = update_chat_history(user_message, response_text, chat_history)
send_btn_update, send_feedback_btn_update = update_send_and_feedback_buttons(chat_history, CHAT_LIMIT)
user_id = user_data
route = "chat_with_any_ai"
endpoint = ai_type #chat_completions or assistant
event_response = {
"event_response": str(response_text),
}
event_response_json = json.dumps(event_response)
prompt = {
"thread_id": thread_id,
"metadata": metadata,
"user_message": user_message
}
prompt_json = json.dumps(prompt)
feature = "vaitor_chatbot"
insert_log_to_bigquery(user_id, route, endpoint, event_response_json, prompt_json, feature)
# 返回聊天历史和空字符串清空输入框
return "", chat_history, send_btn_update, send_feedback_btn_update, thread_id
def get_chatbot_config(ai_name, transcript_state, key_moments, content_subject, content_grade, video_id, socratic_mode=True):
if not ai_name in ["foxcat", "lili", "maimai"]:
ai_name = "foxcat"
ai_name_clients_model = {
"foxcat": {
"ai_name": "foxcat",
"ai_client": GROQ_CLIENT,
"ai_model_name": "groq_llama3",
},
# "lili": {
# "ai_name": "lili",
# "ai_client": BEDROCK_CLIENT,
# "ai_model_name": "claude3",
# },
"lili": {
"ai_name": "lili",
"ai_client": GROQ_CLIENT,
"ai_model_name": "groq_llama3",
},
"maimai": {
"ai_name": "maimai",
"ai_client": GROQ_CLIENT,
"ai_model_name": "groq_mixtral",
}
}
ai_client = ai_name_clients_model.get(ai_name, "foxcat")["ai_client"]
ai_model_name = ai_name_clients_model.get(ai_name, "foxcat")["ai_model_name"]
if isinstance(transcript_state, str):
simple_transcript = json.loads(transcript_state)
else:
simple_transcript = transcript_state
if isinstance(key_moments, str):
key_moments_json = json.loads(key_moments)
else:
key_moments_json = key_moments
# key_moments_json remove images
for moment in key_moments_json:
moment.pop('images', None)
moment.pop('end', None)
moment.pop('transcript', None)
moment.pop('suggested_images', None)
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False)
if isinstance(transcript_state, str):
transcript_state_json = json.loads(transcript_state)
else:
transcript_state_json = transcript_state
# remain only text
transcript_text = ""
for content in transcript_state_json:
transcript_text += content["text"] + ","
instructions = get_instructions(content_subject, content_grade, transcript_text, key_moments_text, socratic_mode)
chatbot_config = {
"video_id": video_id,
"transcript": simple_transcript,
"key_moments": key_moments,
"content_subject": content_subject,
"content_grade": content_grade,
"jutor_chat_key": JUTOR_CHAT_KEY,
"ai_model_name": ai_model_name,
"ai_client": ai_client,
"instructions": instructions
}
return chatbot_config
def feedback_with_ai(user_data, ai_type, chat_history, thread_id=None):
# prompt: 請依據以上的對話(chat_history),總結我的「提問力」,並給予我是否有「問對問題」的回饋和建議
system_content = """
你是一個擅長引導問答素養的老師,user 為學生的提問跟回答,請精讀對話過程,針對 user 給予回饋就好,根據以下 Rule:
- 請使用繁體中文 zh-TW 總結 user 的提問力,並給予是否有問對問題的回饋和建議
- 不採計【預設提問】的問題,如果 user 的提問都來自【預設提問】,表達用戶善於使用系統,請給予回饋並鼓勵 user 親自提問更具體的問題
- 如果用戶提問都相當簡短,甚至就是一個字或都是一個數字(像是 user: 1, user:2),請給予回饋並建議 user 提問更具體的問題
- 如果用戶提問內容只有符號或是亂碼,像是?,!, ..., 3bhwbqhfw2vve2 等,請給予回饋並建議 user 提問更具體的問題
- 如果用戶提問內容有色情、暴力、仇恨、不當言論等,請給予嚴厲的回饋並建議 user 提問更具體的問題
- 並用第二人稱「你」來代表 user
- 請禮貌,並給予鼓勵
"""
chat_history_conversation = ""
# 標註 user and assistant as string
# chat_history 第一組不採計
for chat in chat_history[1:]:
user_message = chat[0]
assistant_message = chat[1]
chat_history_conversation += f"User: {user_message}\nAssistant: {assistant_message}\n"
feedback_request_message = "請依據以上的對話,總結我的「提問力」,並給予我是否有「問對問題」的回饋和建議"
user_content = f"""conversation: {chat_history_conversation}
{feedback_request_message}
最後根據提問力表現,給予提問建議、提問表現,並用 emoji 來表示評分:
🟢:(表現很好的回饋,給予正向肯定)
🟡:(還可以加油的的回饋,給予明確的建議)
🔴:(非常不懂提問的回饋,給予鼓勵並給出明確示範)
example:
另一方面,你表達「我不想學了」這個情感,其實也是一種重要的反饋。這顯示你可能感到挫折或疲倦。在這種情況下,表達出你的感受是好的,但如果能具體說明是什麼讓你感到這樣,或是有什麼具體的學習障礙,會更有助於找到解決方案。
給予你的建議是,嘗試在提問時更明確一些,這樣不僅能幫助你獲得更好的學習支持,也能提高你的問題解決技巧。
......
提問建議:在提問時,試著具體並清晰地表達你的需求和疑惑,這樣能更有效地得到幫助。
提問表現:【🟡】加油,持續練習,你的提問力會越來越好!
"""
client = OPEN_AI_CLIENT
if ai_type == "chat_completions":
model_name = "gpt-4o"
response_text = handle_conversation_by_open_ai_chat_completions(client, model_name, user_content, system_content)
elif ai_type == "assistant":
assistant_id = OPEN_AI_ASSISTANT_ID_GPT4 #GPT 4 turbo
# assistant_id = OPEN_AI_ASSISTANT_ID_GPT3 #GPT 3.5 turbo
response_text, thread_id = handle_conversation_by_open_ai_assistant(client, user_content, system_content, assistant_id, thread_id, metadata=None, fallback=True)
chat_history = update_chat_history(feedback_request_message, response_text, chat_history)
feedback_btn_update = gr.update(value="已回饋", interactive=False, variant="secondary")
user_id = user_data
route = "feedback_with_ai"
endpoint = ai_type #chat_completions or assistant
event_response = {
"event_response": str(response_text),
}
event_response_json = json.dumps(event_response)
prompt = {
"thread_id": thread_id,
"metadata": None,
"user_message": user_content
}
prompt_json = json.dumps(prompt)
feature = "vaitor_chatbot"
insert_log_to_bigquery(user_id, route, endpoint, event_response_json, prompt_json, feature)
return chat_history, feedback_btn_update
def handle_conversation_by_open_ai_chat_completions(client, model_name, user_content, system_content):
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_content},
{"role": "user", "content": user_content}
],
max_tokens=4000,
)
response_text = response.choices[0].message.content.strip()
return response_text
def handle_conversation_by_open_ai_assistant(client, user_message, instructions, assistant_id, thread_id=None, metadata=None, fallback=False):
"""
Handles the creation and management of a conversation thread.
:param client: The OpenAI client object.
:param thread_id: The existing thread ID, if any.
:param user_message: The message from the user.
:param instructions: System instructions for the assistant.
:param assistant_id: ID of the assistant to use.
:param metadata: Additional metadata to add to the thread.
:param fallback: Whether to use a fallback method in case of failure.
:return: A string with the response text or an error message.
"""
try:
if not thread_id:
thread = client.beta.threads.create()
thread_id = thread.id
else:
thread = client.beta.threads.retrieve(thread_id)
if metadata:
client.beta.threads.update(thread_id=thread.id, metadata=metadata)
# Send the user message to the thread
client.beta.threads.messages.create(thread_id=thread.id, role="user", content=user_message)
# Run the assistant
run = client.beta.threads.runs.create(thread_id=thread.id, assistant_id=assistant_id, instructions=instructions)
# Wait for the response
run_status = poll_run_status(run.id, thread.id, timeout=30)
if run_status == "completed":
messages = client.beta.threads.messages.list(thread_id=thread.id)
response = messages
response_text = messages.data[0].content[0].text.value
else:
response_text = "學習精靈有點累,請稍後再試!"
except Exception as e:
if fallback:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": instructions},
{"role": "user", "content": user_message}
],
max_tokens=4000,
)
response_text = response.choices[0].message.content.strip()
else:
print(f"Error: {e}")
raise gr.Error(f"Error: {e}")
return response_text, thread_id
def verify_message_length(user_message, max_length=500):
# 驗證用戶消息的長度
if len(user_message) > max_length:
error_msg = "你的訊息太長了,請縮短訊息長度至五百字以內"
raise gr.Error(error_msg)
def check_questions_answers(user_message, questions_answers_json):
"""檢查問答是否存在,並處理相關邏輯"""
is_questions_answers_exists = False
answer = ""
# 解析問答數據
if isinstance(questions_answers_json, str):
qa_data = json.loads(questions_answers_json)
else:
qa_data = questions_answers_json
question_message = ""
answer_message = ""
for qa in qa_data:
if user_message == qa["question"] and qa["answer"]:
is_questions_answers_exists = True
question_message = f"【預設問題】{user_message}"
answer_message = qa["answer"]
print("=== in questions_answers_json==")
print(f"question: {qa['question']}")
print(f"answer: {answer_message}")
break # 匹配到答案後退出循環
return is_questions_answers_exists, question_message, answer_message
def verify_chat_limit(chat_history, chat_limit):
if chat_history is not None and len(chat_history) > chat_limit:
error_msg = "此次對話超過上限(對話一輪10次)"
raise gr.Error(error_msg)
def update_chat_history(user_message, response, chat_history):
# 更新聊天歷史的邏輯
new_chat_history = (user_message, response)
if chat_history is None:
chat_history = [new_chat_history]
else:
chat_history.append(new_chat_history)
return chat_history
def update_send_and_feedback_buttons(chat_history, chat_limit):
# 计算发送次数
send_count = len(chat_history) - 1
# 根据聊天历史长度更新发送按钮和反馈按钮
if len(chat_history) > chat_limit:
send_btn_value = f"對話上限 ({send_count}/{chat_limit})"
send_btn_update = gr.update(value=send_btn_value, interactive=False)
send_feedback_btn_update = gr.update(visible=True)
else:
send_btn_value = f"發送 ({send_count}/{chat_limit})"
send_btn_update = gr.update(value=send_btn_value, interactive=True)
send_feedback_btn_update = gr.update(visible=False)
return send_btn_update, send_feedback_btn_update
def process_open_ai_audio_to_chatbot(password, audio_url):
verify_password(password)
if audio_url:
with open(audio_url, "rb") as audio_file:
file_size = os.path.getsize(audio_url)
if file_size > 2000000:
raise gr.Error("檔案大小超過,請不要超過 60秒")
else:
transcription = OPEN_AI_CLIENT.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
# response 拆解 dict
print("=== transcription ===")
print(transcription)
print("=== transcription ===")
# 確認 response 是否有數學符號,prompt to LATEX $... $, ex: $x^2$
if transcription:
system_message = """你是專業的 LATEX 轉換師,擅長將數學符號、公式轉換成 LATEX 格式,並用 LATEX 符號 $...$ 包裹,ex: $x^2$
範例:
transcription: x的平方加 2x 加 1 等於 0
轉成 LATEX 格式:$x^2 + 2x + 1 = 0$
"""
user_message = f"""transcription: {transcription}
請將 transcription 內的數學、公式、運算式、化學式、物理 formula 內容轉換成 LATEX 格式
其他文字都保留原樣
也不要給出多餘的敘述
"""
request = OPEN_AI_CLIENT.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=4000,
)
response = request.choices[0].message.content.strip()
else:
response = ""
return response
def poll_run_status(run_id, thread_id, timeout=600, poll_interval=5):
"""
Polls the status of a Run and handles different statuses appropriately.
:param run_id: The ID of the Run to poll.
:param thread_id: The ID of the Thread associated with the Run.
:param timeout: Maximum time to wait for the Run to complete, in seconds.
:param poll_interval: Time to wait between each poll, in seconds.
"""
client = OPEN_AI_CLIENT
start_time = time.time()
while time.time() - start_time < timeout:
run = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id)
if run.status in ["completed", "cancelled", "failed"]:
print(f"Run completed with status: {run.status}")
break
elif run.status == "requires_action":
print("Run requires action. Performing required action...")
# Here, you would perform the required action, e.g., running functions
# and then submitting the outputs. This is simplified for this example.
# After performing the required action, you'd complete the action:
# OPEN_AI_CLIENT.beta.threads.runs.complete_required_action(...)
elif run.status == "expired":
print("Run expired. Exiting...")
break
else:
print(f"Run status is {run.status}. Waiting for updates...")
time.sleep(poll_interval)
else:
print("Timeout reached. Run did not complete in the expected time.")
# Once the Run is completed, handle the result accordingly
if run.status == "completed":
# Retrieve and handle messages or run steps as needed
messages = client.beta.threads.messages.list(thread_id=thread_id)
for message in messages.data:
if message.role == "assistant":
print(f"Assistant response: {message.content}")
elif run.status in ["cancelled", "failed"]:
# Handle cancellation or failure
print(f"Run ended with status: {run.status}")
elif run.status == "expired":
# Handle expired run
print("Run expired without completion.")
return run.status
def chat_with_opan_ai_assistant_streaming(user_message, chat_history, password, video_id, user_data, thread_id, transcript_state, key_moments, content_subject, content_grade, socratic_mode=True):
verify_password(password)
print("=====user_data=====")
print(f"user_data: {user_data}")
print("===chat_with_opan_ai_assistant_streaming===")
print(thread_id)
# 先計算 user_message 是否超過 500 個字
if len(user_message) > 1500:
error_msg = "你的訊息太長了,請縮短訊息長度至五百字以內"
raise gr.Error(error_msg)
# 如果 chat_history 超過 10 則訊息,直接 return "對話超過上限"
if chat_history is not None and len(chat_history) > CHAT_LIMIT:
error_msg = f"此次對話超過上限(對話一輪{CHAT_LIMIT}次)"
raise gr.Error(error_msg)
print("===chat_with_opan_ai_assistant_streaming===")
print(user_message)
is_flagged, response_dict = get_chat_moderation(user_message)
assistant_id = OPEN_AI_ASSISTANT_ID_GPT4 #GPT 4 turbo
# assistant_id = OPEN_AI_ASSISTANT_ID_GPT3 #GPT 3.5 turbo
client = OPEN_AI_CLIENT
metadata = {
"youtube_id": video_id,
"user_data": user_data,
"content_subject": content_subject,
"content_grade": content_grade,
"assistant_id": assistant_id,
"is_streaming": "true",
"moderation_is_flagged": str(is_flagged),
# "moderation_response_dict": str(response_dict)
}
if is_flagged:
partial_messages = "您的留言已被標記為不當內容,請重新發送。"
yield partial_messages
else:
try:
if isinstance(key_moments, str):
key_moments_json = json.loads(key_moments)
else:
key_moments_json = key_moments
# key_moments_json remove images
for moment in key_moments_json:
moment.pop('images', None)
moment.pop('end', None)
moment.pop('transcript', None)
moment.pop('suggested_images', None)
key_moments_text = json.dumps(key_moments_json, ensure_ascii=False)
if isinstance(transcript_state, str):
transcript_state_json = json.loads(transcript_state)
else:
transcript_state_json = transcript_state
# remain only text
transcript_text = ""
for content in transcript_state_json:
transcript_text += content["text"] + ","
instructions = get_instructions(content_subject, content_grade, transcript_text, key_moments_text, socratic_mode)
# 创建线程
if not thread_id:
thread = client.beta.threads.create()
thread_id = thread.id
print(f"new thread_id: {thread_id}")
else:
thread = client.beta.threads.retrieve(thread_id)
print(f"old thread_id: {thread_id}")
client.beta.threads.update(
thread_id=thread_id,
metadata=metadata
)
# 向线程添加用户的消息
client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content=user_message + "/n 請嚴格遵循instructions,擔任一位蘇格拉底家教,請一定要用繁體中文回答 zh-TW,並用台灣人的禮貌口語表達,回答時不要特別說明這是台灣人的語氣,不用提到「逐字稿」這個詞,用「內容」代替)),請在回答的最後標註【參考資料:(時):(分):(秒)】,(如果是反問學生,就只問一個問題,請幫助學生更好的理解資料,字數在100字以內)"
)
with client.beta.threads.runs.stream(
thread_id=thread.id,
assistant_id=assistant_id,
instructions=instructions,
) as stream:
partial_messages = ""
for event in stream:
if event.data and event.data.object == "thread.message.delta":
message = event.data.delta.content[0].text.value
partial_messages += message
yield partial_messages
except Exception as e:
print(f"Error: {e}")
raise gr.Error(f"Error: {e}")
user_id = user_data
route = "chat_with_opan_ai_assistant_streaming"
endpoint = "assistant_streaming"
event_response = {
"event_response": partial_messages
}
event_response_json = json.dumps(event_response)
prompt = {
"thread_id": thread_id,
"metadata": metadata,
"user_message": user_message
}
prompt_json = json.dumps(prompt)
feature = "vaitor_chatbot"
insert_log_to_bigquery(user_id, route, endpoint, event_response_json, prompt_json, feature)
def create_thread_id():
thread = OPEN_AI_CLIENT.beta.threads.create()
thread_id = thread.id
print(f"create new thread_id: {thread_id}")
return thread_id
def chatbot_select(chatbot_name):
chatbot_select_accordion_visible = gr.update(visible=False)
all_chatbot_select_btn_visible = gr.update(visible=True)
chatbot_open_ai_streaming_visible = gr.update(visible=False)
chatbot_ai_visible = gr.update(visible=False)
ai_name_update = gr.update(value="foxcat")
ai_chatbot_thread_id_update = gr.update(value="")
if chatbot_name == "chatbot_open_ai":
chatbot_ai_visible = gr.update(visible=True)
ai_chatbot_ai_type_update = gr.update(value="assistant")
elif chatbot_name == "chatbot_open_ai_streaming":
chatbot_open_ai_streaming_visible = gr.update(visible=True)
ai_chatbot_ai_type_update = gr.update(value="assistant_streaming")
else:
chatbot_ai_visible = gr.update(visible=True)
ai_chatbot_ai_type_update = gr.update(value="chat_completions")
ai_name_update = gr.update(value=chatbot_name)
return chatbot_select_accordion_visible, all_chatbot_select_btn_visible, \
chatbot_open_ai_streaming_visible, chatbot_ai_visible, \
ai_name_update, ai_chatbot_ai_type_update, ai_chatbot_thread_id_update
def update_avatar_images(avatar_images, chatbot_description_value):
value = [[
"請問你是誰?",
chatbot_description_value
]]
ai_chatbot_update = gr.update(avatar_images=avatar_images, value=value)
return ai_chatbot_update
def show_all_chatbot_accordion():
chatbot_select_accordion_visible = gr.update(visible=True)
all_chatbot_select_btn_visible = gr.update(visible=False)
return chatbot_select_accordion_visible, all_chatbot_select_btn_visible
def insert_log_to_bigquery(user_id, route, endpoint, event_response_json, prompt_json, feature):
table_id = "junyiacademy.streaming_log.log_video_ai_usage"
rows_to_insert = [
{
"user_id": user_id,
"route": route,
"endpoint": endpoint,
"event_response": event_response_json,
"event_timestamp": datetime.now(timezone.utc).isoformat(),
"prompt": prompt_json,
"feature": feature
}
]
errors = GBQ_CLIENT.insert_rows_json(table_id, rows_to_insert)
if errors:
print(f"Encountered errors while inserting rows: {errors}")
else:
print("Rows have been successfully inserted.")
# --- Init params ---
def init_params(text, request: gr.Request):
if request:
print("Request headers dictionary:", request.headers)
print("IP address:", request.client.host)
print("Query parameters:", dict(request.query_params))
# url = request.url
print("Request URL:", request.url)
youtube_link = ""
password_text = ""
block_ready_flag = "READY"
admin = gr.update(visible=True)
reading_passage_admin = gr.update(visible=True)
summary_admin = gr.update(visible=True)
see_detail = gr.update(visible=True)
worksheet_accordion = gr.update(visible=True)
lesson_plan_accordion = gr.update(visible=True)
exit_ticket_accordion = gr.update(visible=True)
chatbot_open_ai_streaming = gr.update(visible=False)
chatbot_ai = gr.update(visible=False)
ai_chatbot_params = gr.update(visible=True)
is_env_prod = gr.update(value=False)
# if youtube_link in query_params
if "youtube_id" in request.query_params:
youtube_id = request.query_params["youtube_id"]
youtube_link = f"https://www.youtube.com/watch?v={youtube_id}"
print(f"youtube_link: {youtube_link}")
# check if origin is from junyiacademy
origin = request.headers.get("origin", "")
if "junyiacademy.org" in origin or "junyiacademy.appspot.com" in origin:
password_text = PASSWORD
admin = gr.update(visible=False)
reading_passage_admin = gr.update(visible=False)
summary_admin = gr.update(visible=False)
see_detail = gr.update(visible=False)
worksheet_accordion = gr.update(visible=False)
lesson_plan_accordion = gr.update(visible=False)
exit_ticket_accordion = gr.update(visible=False)
ai_chatbot_params = gr.update(visible=False)
if IS_ENV_PROD == "True":
is_env_prod = gr.update(value=True)
return admin, reading_passage_admin, summary_admin, see_detail, \
worksheet_accordion, lesson_plan_accordion, exit_ticket_accordion, \
password_text, youtube_link, block_ready_flag, \
chatbot_open_ai_streaming, chatbot_ai, ai_chatbot_params, \
is_env_prod
def update_state(content_subject, content_grade, trascript, key_moments, questions_answers):
# inputs=[content_subject, content_grade, df_string_output],
# outputs=[content_subject_state, content_grade_state, trascript_state]
content_subject_state = content_subject
content_grade_state = content_grade
trascript_json = json.loads(trascript)
formatted_simple_transcript = create_formatted_simple_transcript(trascript_json)
trascript_state = formatted_simple_transcript
key_moments_state = key_moments
streaming_chat_thread_id_state = ""
questions_answers_json = json.loads(questions_answers)
question_1 = questions_answers_json[0]["question"]
question_2 = questions_answers_json[1]["question"]
question_3 = questions_answers_json[2]["question"]
ai_chatbot_question_1 = question_1
ai_chatbot_question_2 = question_2
ai_chatbot_question_3 = question_3
return content_subject_state, content_grade_state, trascript_state, key_moments_state, \
streaming_chat_thread_id_state, \
ai_chatbot_question_1, ai_chatbot_question_2, ai_chatbot_question_3
HEAD = """
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<script src="https://cdn.jsdelivr.net/npm/[email protected]"></script>
<script>
const mind_map_tab_button = document.querySelector("#mind_map_tab-button");
if (mind_map_tab_button) {
mind_map_tab_button.addEventListener('click', function() {
const mind_map_markdown = document.querySelector("#mind_map_markdown > label > textarea");
if (mind_map_markdown) {
// 当按钮被点击时,打印当前的textarea的值
console.log('Value changed to: ' + mind_map_markdown.value);
markmap.autoLoader.renderAll();
}
});
}
</script>
"""
JS = """
function createGradioAnimation() {
const mind_map_tab_button = document.querySelector("#mind_map_tab-button");
if (mind_map_tab_button) {
mind_map_tab_button.addEventListener('click', function() {
const mind_map_markdown = document.querySelector("#mind_map_markdown > label > textarea");
if (mind_map_markdown) {
// 当按钮被点击时,打印当前的textarea的值
console.log('Value changed to: ' + mind_map_markdown.value);
markmap.autoLoader.renderAll();
}
});
}
return 'Animation created';
}
"""
CSS = """
#mind_map_tab {
height: 500px;
}
.markmap {
position: relative;
}
.markmap > svg {
width: 100%;
height: 600px;
}
"""
streaming_chat_greeting = """
Hi,我是【飛特音速】,說話比較快,但有什麼問題都可以問我喔! \n
🚀 我沒有預設問題、也沒有語音輸入,適合快問快答的你 \n
🔠 鍵盤輸入你的問題,我會盡力回答你的問題喔!\n
💤 我還在成長,體力有限,每一次學習只能回答十個問題,請讓我休息一下再問問題喔!
"""
latex_delimiters = [{"left": "$", "right": "$", "display": False}]
streaming_ai_chatbot = gr.Chatbot(
show_share_button=False,
latex_delimiters=latex_delimiters,
show_copy_button=True,
)
def create_app():
app = FastAPI()
app.add_middleware(BlockFileRedirectMiddleware)
with gr.Blocks(theme=gr.themes.Base(primary_hue=gr.themes.colors.orange, secondary_hue=gr.themes.colors.amber, text_size = gr.themes.sizes.text_lg), head=HEAD, js=JS, css=CSS) as demo:
with gr.Row() as admin:
password = gr.Textbox(label="Password", type="password", elem_id="password_input", visible=True)
youtube_link = gr.Textbox(label="Enter YouTube Link", elem_id="youtube_link_input", visible=True)
video_id = gr.Textbox(label="video_id", visible=True)
# file_upload = gr.File(label="Upload your CSV or Word file", visible=False)
# web_link = gr.Textbox(label="Enter Web Page Link", visible=False)
user_data = gr.Textbox(label="User Data", elem_id="user_data_input", visible=True)
# block_ready_flag: 讓主站的 Vaitor component 知道 Blocks.load 已經執行完成(當 block_ready_flag = "READY" 時)
block_ready_flag = gr.Textbox(label="Block Ready Flag", elem_id="block_ready_flag", visible=False, value="LOADING")
youtube_link_btn = gr.Button("Submit_YouTube_Link", elem_id="youtube_link_btn", visible=True)
with gr.Row() as data_state:
content_subject_state = gr.State() # 使用 gr.State 存储 content_subject
content_grade_state = gr.State() # 使用 gr.State 存储 content_grade
trascript_state = gr.State() # 使用 gr.State 存储 trascript
key_moments_state = gr.State() # 使用 gr.State 存储 key_moments
streaming_chat_thread_id_state = gr.State() # 使用 gr.State 存储 streaming_chat_thread_id
with gr.Tab("AI小精靈"):
with gr.Row():
all_chatbot_select_btn = gr.Button("選擇 AI 小精靈 👈", elem_id="all_chatbot_select_btn", visible=False, variant="secondary", size="sm")
with gr.Row() as ai_chatbot_params:
ai_name = gr.Dropdown(
label="選擇 AI 助理",
choices=[
("飛特精靈","chatbot_open_ai"),
("飛特音速","chatbot_open_ai_streaming"),
("梨梨","lili"),
("麥麥","maimai"),
("狐狸貓","foxcat")
],
value="foxcat",
visible=True
)
ai_chatbot_ai_type = gr.Textbox(value="chat_completions", visible=True)
ai_chatbot_thread_id = gr.Textbox(label="thread_id", visible=True)
ai_chatbot_socratic_mode_btn = gr.Checkbox(label="蘇格拉底家教助理模式", value=False, visible=True)
latex_delimiters = [{"left": "$", "right": "$", "display": False}]
with gr.Accordion("選擇 AI 小精靈", elem_id="chatbot_select_accordion") as chatbot_select_accordion:
with gr.Row():
# 飛特音速
with gr.Column(scale=1, variant="panel", visible=True):
streaming_chatbot_avatar_url = "https://storage.googleapis.com/wpassets.junyiacademy.org/1/2020/11/1-%E6%98%9F%E7%A9%BA%E9%A0%AD%E8%B2%BC-%E5%A4%AA%E7%A9%BA%E7%8B%90%E7%8B%B8%E8%B2%93-150x150.png"
streaming_chatbot_description = """Hi,我是【飛特音速】, \n
說話比較快,但有什麼問題都可以問我喔! \n
🚀 我沒有預設問題、也沒有語音輸入,適合快問快答,一起練習問出好問題吧 \n
🔠 擅長用文字表達的你,可以用鍵盤輸入你的問題,我會盡力回答你的問題喔\n
💤 我還在成長,體力有限,每一次學習只能回答十個問題,請讓我休息一下再問問題喔~
"""
chatbot_open_ai_streaming_name = gr.State("chatbot_open_ai_streaming")
gr.Image(value=streaming_chatbot_avatar_url, height=100, width=100, show_label=False, show_download_button=False, show_share_button=False, show_fullscreen_button=False)
chatbot_open_ai_streaming_select_btn = gr.Button("👆選擇【飛特音速】", elem_id="streaming_chatbot_btn", visible=True, variant="primary")
with gr.Accordion("🚀 飛特音速 敘述", open=False):
gr.Markdown(value=streaming_chatbot_description, visible=True)
user_avatar = "https://em-content.zobj.net/source/google/263/flushed-face_1f633.png"
# 飛特精靈
with gr.Column(scale=1, variant="panel", visible=True):
vaitor_chatbot_avatar_url = "https://junyitopicimg.s3.amazonaws.com/s4byy--icon.jpe"
vaitor_chatbot_avatar_images = gr.State([user_avatar, vaitor_chatbot_avatar_url])
vaitor_chatbot_description = """Hi,我是你的AI學伴【飛特精靈】,\n
我可以陪你一起學習本次的內容,有什麼問題都可以問我喔!\n
🤔 如果你不知道怎麼發問,可以點擊左下方的問題一、問題二、問題三,我會幫你生成問題!\n
🗣️ 也可以點擊右下方用語音輸入,我會幫你轉換成文字,厲害吧!\n
🔠 或是直接鍵盤輸入你的問題,我會盡力回答你的問題喔!\n
💤 但我還在成長,體力有限,每一次學習只能回答十個問題,請讓我休息一下再問問題喔!\n
🦄 如果達到上限,或是遇到精靈很累,請問問其他朋友,像是飛特音速說話的速度比較快,你是否跟得上呢?你也可以和其他精靈互動看看喔!\n
"""
chatbot_open_ai_name = gr.State("chatbot_open_ai")
gr.Image(value=vaitor_chatbot_avatar_url, height=100, width=100, show_label=False, show_download_button=False, show_share_button=False, show_fullscreen_button=False)
vaitor_chatbot_select_btn = gr.Button("👆選擇【飛特精靈】", elem_id="chatbot_btn", visible=True, variant="primary")
with gr.Accordion("🦄 飛特精靈 敘述", open=False):
vaitor_chatbot_description_value = gr.Markdown(value=vaitor_chatbot_description, visible=True)
# 狐狸貓
with gr.Column(scale=1, variant="panel"):
foxcat_chatbot_avatar_url = "https://storage.googleapis.com/wpassets.junyiacademy.org/1/2020/06/%E7%A7%91%E5%AD%B8%E5%BE%BD%E7%AB%A0-2-150x150.png"
foxcat_avatar_images = gr.State([user_avatar, foxcat_chatbot_avatar_url])
foxcat_chatbot_description = """Hi,我是【狐狸貓】,可以陪你一起學習本次的內容,有什麼問題都可以問我喔!\n
🤔 三年級學生|10 歲|男\n
🗣️ 口頭禪:「感覺好好玩喔!」「咦?是這樣嗎?」\n
🔠 興趣:看知識型書籍、熱血的動漫卡通、料理、爬山、騎腳踏車。因為太喜歡吃魚了,正努力和爸爸學習釣魚、料理魚及各種有關魚的知識,最討厭的食物是青椒。\n
💤 個性:喜歡學習新知,擁有最旺盛的好奇心,家裡堆滿百科全書,例如:國家地理頻道出版的「終極魚百科」,雖都沒有看完,常常被梨梨唸是三分鐘熱度,但是也一點一點學習到不同領域的知識。雖然有時會忘東忘西,但認真起來也是很可靠,答應的事絕對使命必達。遇到挑戰時,勇於跳出舒適圈,追求自我改變,視困難為成長的機會。
"""
foxcat_chatbot_name = gr.State("foxcat")
gr.Image(value=foxcat_chatbot_avatar_url, height=100, width=100, show_label=False, show_download_button=False, show_share_button=False, show_fullscreen_button=False)
foxcat_chatbot_select_btn = gr.Button("👆選擇【狐狸貓】", visible=True, variant="primary", elem_classes="chatbot_select_btn")
with gr.Accordion("💜 狐狸貓 敘述", open=False):
foxcat_chatbot_description_value = gr.Markdown(value=foxcat_chatbot_description, visible=True)
# 梨梨
with gr.Column(scale=1, variant="panel"):
lili_chatbot_avatar_url = "https://junyitopicimg.s3.amazonaws.com/live/v1283-new-topic-44-icon.png"
lili_avatar_images = gr.State([user_avatar, lili_chatbot_avatar_url])
lili_chatbot_description = """你好,我是溫柔的【梨梨】,很高興可以在這裡陪伴你學習。如果你有任何疑問,請隨時向我提出哦! \n
🤔 三年級學生|10 歲|女\n
🗣️ 口頭禪:「真的假的?!」「讓我想一想喔」「你看吧!大問題拆解成小問題,就變得簡單啦!」「混混噩噩的生活不值得過」\n
🔠 興趣:烘焙餅乾(父母開糕餅店)、畫畫、聽流行音樂、收納。\n
💤 個性:
- 內向害羞,比起出去玩更喜歡待在家(除非是跟狐狸貓出去玩)
- 數理邏輯很好;其實覺得麥麥連珠炮的提問有點煩,但還是會耐心地回答
- 有驚人的眼力,總能觀察到其他人沒有察覺的細節
- 喜歡整整齊齊的環境,所以一到麥麥家就受不了
"""
lili_chatbot_name = gr.State("lili")
gr.Image(value=lili_chatbot_avatar_url, height=100, width=100, show_label=False, show_download_button=False, show_share_button=False, show_fullscreen_button=False)
lili_chatbot_select_btn = gr.Button("👆選擇【梨梨】", visible=True, variant="primary", elem_classes="chatbot_select_btn")
with gr.Accordion("🧡 梨梨 敘述", open=False):
lili_chatbot_description_value = gr.Markdown(value=lili_chatbot_description, visible=True)
# 麥麥
with gr.Column(scale=1, variant="panel"):
maimai_chatbot_avatar_url = "https://storage.googleapis.com/wpassets.junyiacademy.org/1/2020/07/%E6%80%9D%E8%80%83%E5%8A%9B%E8%B6%85%E4%BA%BA%E5%BE%BD%E7%AB%A0_%E5%B7%A5%E4%BD%9C%E5%8D%80%E5%9F%9F-1-%E8%A4%87%E6%9C%AC-150x150.png"
maimai_avatar_images = gr.State([user_avatar, maimai_chatbot_avatar_url])
maimai_chatbot_description = """Hi,我是迷人的【麥麥】,我在這裡等著和你一起探索新知,任何疑問都可以向我提出!\n
🤔 三年級學生|10 歲|男\n
🗣️ 口頭禪:「Oh My God!」「好奇怪喔!」「喔!原來是這樣啊!」\n
🔠 興趣:最愛去野外玩耍(心情好時會順便捕魚送給狐狸貓),喜歡講冷笑話、惡作劇。因為太喜歡玩具,而開始自己做玩具,家裡就好像他的遊樂場。\n
💤 個性:喜歡問問題,就算被梨梨ㄘㄟ,也還是照問|憨厚,外向好動,樂天開朗,不會被難題打敗|喜歡收集各式各樣的東西;房間只有在整理的那一天最乾淨
"""
maimai_chatbot_name = gr.State("maimai")
gr.Image(value=maimai_chatbot_avatar_url, height=100, width=100, show_label=False, show_download_button=False, show_share_button=False, show_fullscreen_button=False)
maimai_chatbot_select_btn = gr.Button("👆選擇【麥麥】", visible=True, variant="primary", elem_classes="chatbot_select_btn")
with gr.Accordion("💙 麥麥 敘述", open=False):
maimai_chatbot_description_value = gr.Markdown(value=maimai_chatbot_description, visible=True)
# 尚未開放
with gr.Column(scale=1, variant="panel"):
gr.Markdown(value="### 尚未開放", visible=True)
with gr.Row("飛特音速") as chatbot_open_ai_streaming:
with gr.Column():
streaming_chat_greeting = """
Hi,我是【飛特音速】,說話比較快,但有什麼問題都可以問我喔! \n
🚀 我沒有預設問題、也沒有語音輸入,適合快問快答的你 \n
🔠 鍵盤輸入你的問題,我會盡力回答你的問題喔!\n
💤 我還在成長,體力有限,每一次學習只能回答十個問題,請讓我休息一下再問問題喔!
"""
additional_inputs = [password, video_id, user_data, streaming_chat_thread_id_state, trascript_state, key_moments_state, content_subject_state, content_grade_state, ai_chatbot_socratic_mode_btn]
streaming_chat = gr.ChatInterface(
fn=chat_with_opan_ai_assistant_streaming,
chatbot=streaming_ai_chatbot,
additional_inputs=additional_inputs,
submit_btn="送出",
stop_btn=None,
description=streaming_chat_greeting
)
with gr.Row("一般精靈") as chatbot_ai:
with gr.Column():
ai_chatbot_greeting = [[
"請問你是誰?",
"""Hi,我是飛特精靈的朋友們【梨梨、麥麥、狐狸貓】,也可以陪你一起學習本次的內容,有什麼問題都可以問我喔!
🤔 如果你不知道怎麼發問,可以點擊左下方的問題一、問題二、問題三,我會幫你生成問題!
🗣️ 也可以點擊右下方用語音輸入,我會幫你轉換成文字,厲害吧!
🔠 或是直接鍵盤輸入你的問題,我會盡力回答你的問題喔!
💤 精靈們體力都有限,每一次學習只能回答十個問題,請讓我休息一下再問問題喔!
""",
]]
with gr.Row():
ai_chatbot = gr.Chatbot(label="ai_chatbot", show_share_button=False, show_label=False, latex_delimiters=latex_delimiters, value=ai_chatbot_greeting)
with gr.Row():
with gr.Accordion("你也有類似的問題想問嗎? 請按下 ◀︎", open=False) as ask_questions_accordion_2:
ai_chatbot_question_1 = gr.Button("問題一")
ai_chatbot_question_2 = gr.Button("問題一")
ai_chatbot_question_3 = gr.Button("問題一")
create_questions_btn = gr.Button("生成問題", variant="primary")
ai_chatbot_audio_input = gr.Audio(sources=["microphone"], type="filepath", max_length=60, label="語音輸入")
with gr.Row():
ai_msg = gr.Textbox(label="訊息輸入",scale=3)
ai_send_button = gr.Button("送出", variant="primary",scale=1)
ai_send_feedback_btn = gr.Button("提問力回饋", variant="primary", scale=1, visible=False)
with gr.Tab("文章模式"):
with gr.Row():
reading_passage = gr.Markdown(show_label=False, latex_delimiters = [{"left": "$", "right": "$", "display": False}])
reading_passage_speak_button = gr.Button("Speak", visible=False)
reading_passage_audio_output = gr.Audio(label="Audio Output", visible=False)
with gr.Tab("重點摘要"):
with gr.Row():
df_summarise = gr.Markdown(show_label=False, latex_delimiters = [{"left": "$", "right": "$", "display": False}])
with gr.Tab("心智圖",elem_id="mind_map_tab"):
with gr.Row():
mind_map_html = gr.HTML()
with gr.Tab("關鍵時刻"):
with gr.Row():
key_moments_html = gr.HTML(value="")
with gr.Tab("教學備課"):
with gr.Row():
content_subject = gr.Dropdown(label="選擇主題", choices=["數學", "自然", "國文", "英文", "社會","物理", "化學", "生物", "地理", "歷史", "公民"], value="", visible=False)
content_grade = gr.Dropdown(label="選擇年級", choices=["一年級", "二年級", "三年級", "四年級", "五年級", "六年級", "七年級", "八年級", "九年級", "十年級", "十一年級", "十二年級"], value="", visible=False)
content_level = gr.Dropdown(label="差異化教學", choices=["基礎", "中級", "進階"], value="基礎")
with gr.Row():
with gr.Tab("學習單"):
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
worksheet_content_type_name = gr.Textbox(value="worksheet", visible=False)
worksheet_algorithm = gr.Dropdown(label="選擇教學策略或理論", choices=["Bloom認知階層理論", "Polya數學解題法", "CRA教學法"], value="Bloom認知階層理論", visible=False)
worksheet_content_btn = gr.Button("生成學習單 📄", variant="primary", visible=True)
with gr.Accordion("微調", open=False):
worksheet_result_fine_tune_prompt = gr.Textbox(label="根據結果,輸入你想更改的想法")
worksheet_result_fine_tune_btn = gr.Button("微調結果", variant="primary")
worksheet_result_retrun_original = gr.Button("返回原始結果")
with gr.Accordion("prompt", open=False) as worksheet_accordion:
worksheet_prompt = gr.Textbox(label="worksheet_prompt", show_copy_button=True, lines=40)
with gr.Column(scale=2):
# 生成對應不同模式的結果
worksheet_result_prompt = gr.Textbox(visible=False)
worksheet_result_original = gr.Textbox(visible=False)
worksheet_result = gr.Markdown(label="初次生成結果", latex_delimiters = [{"left": "$", "right": "$", "display": False}])
worksheet_download_button = gr.Button("轉成 word,完成後請點擊右下角 download 按鈕", variant="primary")
worksheet_result_word_link = gr.File(label="Download Word")
with gr.Tab("教案"):
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
lesson_plan_content_type_name = gr.Textbox(value="lesson_plan", visible=False)
lesson_plan_time = gr.Slider(label="選擇課程時間(分鐘)", minimum=10, maximum=120, step=5, value=40)
lesson_plan_btn = gr.Button("生成教案 📕", variant="primary", visible=True)
with gr.Accordion("微調", open=False):
lesson_plan_result_fine_tune_prompt = gr.Textbox(label="根據結果,輸入你想更改的想法")
lesson_plan_result_fine_tune_btn = gr.Button("微調結果", variant="primary")
lesson_plan_result_retrun_original = gr.Button("返回原始結果")
with gr.Accordion("prompt", open=False) as lesson_plan_accordion:
lesson_plan_prompt = gr.Textbox(label="worksheet_prompt", show_copy_button=True, lines=40)
with gr.Column(scale=2):
# 生成對應不同模式的結果
lesson_plan_result_prompt = gr.Textbox(visible=False)
lesson_plan_result_original = gr.Textbox(visible=False)
lesson_plan_result = gr.Markdown(label="初次生成結果", latex_delimiters = [{"left": "$", "right": "$", "display": False}])
lesson_plan_download_button = gr.Button("轉成 word,完成後請點擊右下角 download 按鈕", variant="primary")
lesson_plan_result_word_link = gr.File(label="Download Word")
with gr.Tab("出場券"):
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
exit_ticket_content_type_name = gr.Textbox(value="exit_ticket", visible=False)
exit_ticket_time = gr.Slider(label="選擇出場券時間(分鐘)", minimum=5, maximum=10, step=1, value=8)
exit_ticket_btn = gr.Button("生成出場券 🎟️", variant="primary", visible=True)
with gr.Accordion("微調", open=False):
exit_ticket_result_fine_tune_prompt = gr.Textbox(label="根據結果,輸入你想更改的想法")
exit_ticket_result_fine_tune_btn = gr.Button("微調結果", variant="primary")
exit_ticket_result_retrun_original = gr.Button("返回原始結果")
with gr.Accordion("prompt", open=False) as exit_ticket_accordion:
exit_ticket_prompt = gr.Textbox(label="worksheet_prompt", show_copy_button=True, lines=40)
with gr.Column(scale=2):
# 生成對應不同模式的結果
exit_ticket_result_prompt = gr.Textbox(visible=False)
exit_ticket_result_original = gr.Textbox(visible=False)
exit_ticket_result = gr.Markdown(label="初次生成結果", latex_delimiters = [{"left": "$", "right": "$", "display": False}])
exit_ticket_download_button = gr.Button("轉成 word,完成後請點擊右下角 download 按鈕", variant="primary")
exit_ticket_result_word_link = gr.File(label="Download Word")
# with gr.Tab("素養導向閱讀題組"):
# literacy_oriented_reading_content = gr.Textbox(label="輸入閱讀材料")
# literacy_oriented_reading_content_btn = gr.Button("生成閱讀理解題")
# with gr.Tab("自我評估"):
# self_assessment_content = gr.Textbox(label="輸入自評問卷或檢查表")
# self_assessment_content_btn = gr.Button("生成自評問卷")
# with gr.Tab("自我反思評量"):
# self_reflection_content = gr.Textbox(label="輸入自我反思活動")
# self_reflection_content_btn = gr.Button("生成自我反思活動")
# with gr.Tab("後設認知"):
# metacognition_content = gr.Textbox(label="輸入後設認知相關問題")
# metacognition_content_btn = gr.Button("生成後設認知問題")
with gr.Accordion("免責聲明", open=True):
gr.Markdown("""
本內容由AI解析並自動生成,均一平台與影片作者不對內容的準確性做出保證。建議在學習或應用前,先行查證並確認相關資訊的正確性。
相關規範請參考:https://www.junyiacademy.org/event/jutor-policy/
""")
with gr.Accordion("See Details", open=False) as see_details:
with gr.Row():
is_env_prod = gr.Checkbox(value=False, label="is_env_prod")
LLM_model = gr.Dropdown(label="LLM Model", choices=["open-ai-gpt-4o", "anthropic-claude-3-sonnet", "gemini-1.5-pro", "gemini-1.5-flash"], value="open-ai-gpt-4o", visible=True, interactive=True)
with gr.Tab("逐字稿本文"):
with gr.Row() as transcript_admmin:
transcript_kind = gr.Textbox(value="transcript", show_label=False)
transcript_get_button = gr.Button("取得", size="sm", variant="primary")
transcript_edit_button = gr.Button("編輯", size="sm", variant="primary")
transcript_update_button = gr.Button("儲存", size="sm", variant="primary")
transcript_delete_button = gr.Button("刪除", size="sm", variant="primary")
transcript_create_button = gr.Button("重建", size="sm", variant="primary")
with gr.Row():
df_string_output = gr.Textbox(lines=40, label="Data Text", interactive=False, show_copy_button=True)
with gr.Tab("文章本文"):
with gr.Row() as reading_passage_admin:
with gr.Column():
with gr.Row():
reading_passage_kind = gr.Textbox(value="reading_passage_latex", show_label=False)
with gr.Row():
# reading_passage_text_to_latex = gr.Button("新增 LaTeX", size="sm", variant="primary")
reading_passage_get_button = gr.Button("取得", size="sm", variant="primary")
reading_passage_edit_button = gr.Button("編輯", size="sm", variant="primary")
reading_passage_update_button = gr.Button("儲存", size="sm", variant="primary")
reading_passage_delete_button = gr.Button("刪除", size="sm", variant="primary")
reading_passage_create_button = gr.Button("重建", size="sm", variant="primary")
with gr.Row():
reading_passage_text = gr.Textbox(label="reading_passage_latex", lines=40, interactive=False, show_copy_button=True)
with gr.Tab("重點摘要本文"):
with gr.Row() as summary_admmin:
with gr.Column():
with gr.Row():
summary_kind = gr.Textbox(value="summary_markdown", show_label=False)
with gr.Row():
# summary_to_markdown = gr.Button("新增 Markdown", size="sm", variant="primary")
summary_get_button = gr.Button("取得", size="sm", variant="primary")
summary_edit_button = gr.Button("編輯", size="sm", variant="primary")
summary_update_button = gr.Button("儲存", size="sm", variant="primary")
summary_delete_button = gr.Button("刪除", size="sm", variant="primary")
summary_create_button = gr.Button("重建", size="sm", variant="primary")
with gr.Row():
summary_text = gr.Textbox(label="summary_markdown", lines=40, interactive=False, show_copy_button=True)
with gr.Tab("關鍵時刻本文"):
with gr.Row() as key_moments_admin:
key_moments_kind = gr.Textbox(value="key_moments", show_label=False)
key_moments_get_button = gr.Button("取得", size="sm", variant="primary")
key_moments_edit_button = gr.Button("編輯", size="sm", variant="primary")
key_moments_update_button = gr.Button("儲存", size="sm", variant="primary")
key_moments_delete_button = gr.Button("刪除", size="sm", variant="primary")
key_moments_create_button = gr.Button("重建", size="sm", variant="primary")
with gr.Row():
key_moments = gr.Textbox(label="Key Moments", lines=40, interactive=False, show_copy_button=True)
with gr.Tab("問題本文"):
with gr.Row() as question_list_admin:
questions_kind = gr.Textbox(value="questions", show_label=False)
questions_get_button = gr.Button("取得", size="sm", variant="primary")
questions_edit_button = gr.Button("編輯", size="sm", variant="primary")
questions_update_button = gr.Button("儲存", size="sm", variant="primary")
questions_delete_button = gr.Button("刪除", size="sm", variant="primary")
questions_create_button = gr.Button("重建", size="sm", variant="primary")
with gr.Row():
questions_json = gr.Textbox(label="Questions", lines=40, interactive=False, show_copy_button=True)
with gr.Tab("問題答案本文"):
with gr.Row() as questions_answers_admin:
questions_answers_kind = gr.Textbox(value="questions_answers", show_label=False)
questions_answers_get_button = gr.Button("取得", size="sm", variant="primary")
questions_answers_edit_button = gr.Button("編輯", size="sm", variant="primary")
questions_answers_update_button = gr.Button("儲存", size="sm", variant="primary")
questions_answers_delete_button = gr.Button("刪除", size="sm", variant="primary")
questions_answers_create_button = gr.Button("重建", size="sm", variant="primary")
with gr.Row():
questions_answers_json = gr.Textbox(label="Questions Answers", lines=40, interactive=False, show_copy_button=True)
with gr.Tab("教學備課"):
with gr.Row() as worksheet_admin:
worksheet_kind = gr.Textbox(value="ai_content_list", show_label=False)
worksheet_get_button = gr.Button("取得", size="sm", variant="primary")
worksheet_edit_button = gr.Button("編輯", size="sm", variant="primary")
worksheet_update_button = gr.Button("儲存", size="sm", variant="primary")
worksheet_delete_button = gr.Button("刪除", size="sm", variant="primary")
worksheet_create_button = gr.Button("重建(X)", size="sm", variant="primary", interactive=False)
with gr.Row():
worksheet_json = gr.Textbox(label="worksheet", lines=40, interactive=False, show_copy_button=True)
with gr.Tab("逐字稿"):
simple_html_content = gr.HTML(label="Simple Transcript")
with gr.Tab("圖文"):
transcript_html = gr.HTML(label="YouTube Transcript and Video")
with gr.Tab("markdown"):
gr.Markdown("## 請複製以下 markdown 並貼到你的心智圖工具中,建議使用:https://markmap.js.org/repl")
mind_map = gr.Textbox(container=True, show_copy_button=True, lines=40, elem_id="mind_map_markdown")
with gr.Accordion("refresh all", open=False):
with gr.Row():
gr.Markdown("## 清單影片:重新生成所有內容")
with gr.Row():
refresh_video_ids = gr.Textbox(label="輸入影片 id,以 , 逗號分隔")
refresh_btn = gr.Button("refresh", variant="primary")
with gr.Row():
refresh_result = gr.JSON()
refresh_btn.click(
lambda: gr.update(interactive=False),
inputs=[],
outputs=[refresh_btn]
).then(
refresh_video_LLM_all_content,
inputs=[refresh_video_ids],
outputs=[refresh_result]
)
# OPEN AI CHATBOT SELECT
chatbot_select_outputs=[
chatbot_select_accordion,
all_chatbot_select_btn,
chatbot_open_ai_streaming,
chatbot_ai,
ai_name,
ai_chatbot_ai_type,
ai_chatbot_thread_id
]
# 聊天机器人的配置数据
chatbots = [
{
"button": vaitor_chatbot_select_btn,
"name_state": chatbot_open_ai_name,
"avatar_images": vaitor_chatbot_avatar_images,
"description_value": vaitor_chatbot_description_value,
"chatbot_select_outputs": chatbot_select_outputs,
"chatbot_output": ai_chatbot
},
{
"button": foxcat_chatbot_select_btn,
"name_state": foxcat_chatbot_name,
"avatar_images": foxcat_avatar_images,
"description_value": foxcat_chatbot_description_value,
"chatbot_select_outputs": chatbot_select_outputs,
"chatbot_output": ai_chatbot
},
{
"button": lili_chatbot_select_btn,
"name_state": lili_chatbot_name,
"avatar_images": lili_avatar_images,
"description_value": lili_chatbot_description_value,
"chatbot_select_outputs": chatbot_select_outputs,
"chatbot_output": ai_chatbot
},
{
"button": maimai_chatbot_select_btn,
"name_state": maimai_chatbot_name,
"avatar_images": maimai_avatar_images,
"description_value": maimai_chatbot_description_value,
"chatbot_select_outputs": chatbot_select_outputs,
"chatbot_output": ai_chatbot
}
]
def setup_chatbot_select_button(chatbot_dict):
button = chatbot_dict["button"]
chatbot_name_state = chatbot_dict["name_state"]
avatar_images = chatbot_dict["avatar_images"]
description_value = chatbot_dict["description_value"]
chatbot_select_outputs = chatbot_dict["chatbot_select_outputs"]
chatbot_output = chatbot_dict["chatbot_output"]
button.click(
chatbot_select, # 你可能需要修改这个函数以适应当前的逻辑
inputs=[chatbot_name_state],
outputs=chatbot_select_outputs
).then(
update_avatar_images,
inputs=[avatar_images, description_value],
outputs=[chatbot_output],
scroll_to_output=True
)
for chatbot_dict in chatbots:
setup_chatbot_select_button(chatbot_dict)
# STREAMING CHATBOT SELECT
chatbot_open_ai_streaming_select_btn.click(
chatbot_select,
inputs=[chatbot_open_ai_streaming_name],
outputs=chatbot_select_outputs
).then(
create_thread_id,
inputs=[],
outputs=[streaming_chat_thread_id_state]
)
# ALL CHATBOT SELECT LIST
all_chatbot_select_btn.click(
show_all_chatbot_accordion,
inputs=[],
outputs=[chatbot_select_accordion, all_chatbot_select_btn]
)
# OPENAI ASSISTANT CHATBOT 連接按鈕點擊事件
def setup_question_button_click(button, inputs_list, outputs_list, chat_func, scroll_to_output=True):
button.click(
chat_func,
inputs=inputs_list,
outputs=outputs_list,
scroll_to_output=scroll_to_output
)
# 其他精靈 ai_chatbot 模式
ai_send_button.click(
chat_with_any_ai,
inputs=[ai_chatbot_ai_type, password, video_id, user_data, trascript_state, key_moments, ai_msg, ai_chatbot, content_subject, content_grade, questions_answers_json, ai_chatbot_socratic_mode_btn, ai_chatbot_thread_id, ai_name],
outputs=[ai_msg, ai_chatbot, ai_send_button, ai_send_feedback_btn, ai_chatbot_thread_id],
scroll_to_output=True
)
ai_send_feedback_btn.click(
feedback_with_ai,
inputs=[user_data, ai_chatbot_ai_type, ai_chatbot, ai_chatbot_thread_id],
outputs=[ai_chatbot, ai_send_feedback_btn],
scroll_to_output=True
)
# 其他精靈 ai_chatbot 连接 QA 按钮点击事件
ai_chatbot_question_buttons = [ai_chatbot_question_1, ai_chatbot_question_2, ai_chatbot_question_3]
for question_btn in ai_chatbot_question_buttons:
inputs_list = [ai_chatbot_ai_type, password, video_id, user_data, trascript_state, key_moments, question_btn, ai_chatbot, content_subject, content_grade, questions_answers_json, ai_chatbot_socratic_mode_btn, ai_chatbot_thread_id, ai_name]
outputs_list = [ai_msg, ai_chatbot, ai_send_button, ai_send_feedback_btn, ai_chatbot_thread_id]
setup_question_button_click(question_btn, inputs_list, outputs_list, chat_with_any_ai)
# 為生成問題按鈕設定特殊的點擊事件
question_buttons = [
ai_chatbot_question_1,
ai_chatbot_question_2,
ai_chatbot_question_3
]
create_questions_btn.click(
change_questions,
inputs=[password, df_string_output],
outputs=question_buttons
)
ai_chatbot_audio_input.change(
process_open_ai_audio_to_chatbot,
inputs=[password, ai_chatbot_audio_input],
outputs=[ai_msg]
)
# 当输入 YouTube 链接时触发
process_youtube_link_inputs = [password, youtube_link, LLM_model]
process_youtube_link_outputs = [
video_id,
questions_answers_json,
df_string_output,
summary_text,
df_summarise,
key_moments,
key_moments_html,
mind_map,
mind_map_html,
transcript_html,
simple_html_content,
reading_passage_text,
reading_passage,
content_subject,
content_grade,
]
update_state_inputs = [
content_subject,
content_grade,
df_string_output,
key_moments,
questions_answers_json,
]
update_state_outputs = [
content_subject_state,
content_grade_state,
trascript_state,
key_moments_state,
streaming_chat_thread_id_state,
ai_chatbot_question_1,
ai_chatbot_question_2,
ai_chatbot_question_3
]
youtube_link.input(
process_youtube_link,
inputs=process_youtube_link_inputs,
outputs=process_youtube_link_outputs
).then(
update_state,
inputs=update_state_inputs,
outputs=update_state_outputs
)
youtube_link_btn.click(
process_youtube_link,
inputs=process_youtube_link_inputs,
outputs=process_youtube_link_outputs
).then(
update_state,
inputs=update_state_inputs,
outputs=update_state_outputs
)
# --- CRUD admin ---
def setup_content_buttons(buttons_config):
for config in buttons_config:
button = config['button']
action = config['action']
inputs = config['inputs']
outputs = config['outputs']
button.click(
fn=action,
inputs=inputs,
outputs=outputs
)
content_buttons_config = [
# Transcript actions
{
'button': transcript_get_button,
'action': get_LLM_content,
'inputs': [video_id, transcript_kind],
'outputs': [df_string_output]
},
{
'button': transcript_create_button,
'action': create_LLM_content,
'inputs': [video_id, df_string_output, transcript_kind, LLM_model],
'outputs': [df_string_output]
},
{
'button': transcript_delete_button,
'action': delete_LLM_content,
'inputs': [video_id, transcript_kind],
'outputs': [df_string_output]
},
{
'button': transcript_edit_button,
'action': enable_edit_mode,
'inputs': [],
'outputs': [df_string_output]
},
{
'button': transcript_update_button,
'action': update_LLM_content,
'inputs': [video_id, df_string_output, transcript_kind],
'outputs': [df_string_output]
},
# Reading passage actions
{
'button': reading_passage_get_button,
'action': get_LLM_content,
'inputs': [video_id, reading_passage_kind],
'outputs': [reading_passage_text]
},
{
'button': reading_passage_create_button,
'action': create_LLM_content,
'inputs': [video_id, df_string_output, reading_passage_kind, LLM_model],
'outputs': [reading_passage_text]
},
{
'button': reading_passage_delete_button,
'action': delete_LLM_content,
'inputs': [video_id, reading_passage_kind],
'outputs': [reading_passage_text]
},
{
'button': reading_passage_edit_button,
'action': enable_edit_mode,
'inputs': [],
'outputs': [reading_passage_text]
},
{
'button': reading_passage_update_button,
'action': update_LLM_content,
'inputs': [video_id, reading_passage_text, reading_passage_kind],
'outputs': [reading_passage_text]
},
# Summary actions
{
'button': summary_get_button,
'action': get_LLM_content,
'inputs': [video_id, summary_kind],
'outputs': [summary_text]
},
{
'button': summary_create_button,
'action': create_LLM_content,
'inputs': [video_id, df_string_output, summary_kind, LLM_model],
'outputs': [summary_text]
},
{
'button': summary_delete_button,
'action': delete_LLM_content,
'inputs': [video_id, summary_kind],
'outputs': [summary_text]
},
{
'button': summary_edit_button,
'action': enable_edit_mode,
'inputs': [],
'outputs': [summary_text]
},
{
'button': summary_update_button,
'action': update_LLM_content,
'inputs': [video_id, summary_text, summary_kind],
'outputs': [summary_text]
},
# Key moments actions
{
'button': key_moments_get_button,
'action': get_LLM_content,
'inputs': [video_id, key_moments_kind],
'outputs': [key_moments]
},
{
'button': key_moments_create_button,
'action': create_LLM_content,
'inputs': [video_id, df_string_output, key_moments_kind, LLM_model],
'outputs': [key_moments]
},
{
'button': key_moments_delete_button,
'action': delete_LLM_content,
'inputs': [video_id, key_moments_kind],
'outputs': [key_moments]
},
{
'button': key_moments_edit_button,
'action': enable_edit_mode,
'inputs': [],
'outputs': [key_moments]
},
{
'button': key_moments_update_button,
'action': update_LLM_content,
'inputs': [video_id, key_moments, key_moments_kind],
'outputs': [key_moments]
},
# Questions actions
{
'button': questions_get_button,
'action': get_LLM_content,
'inputs': [video_id, questions_kind],
'outputs': [questions_json]
},
{
'button': questions_create_button,
'action': create_LLM_content,
'inputs': [video_id, df_string_output, questions_kind, LLM_model],
'outputs': [questions_json]
},
{
'button': questions_delete_button,
'action': delete_LLM_content,
'inputs': [video_id, questions_kind],
'outputs': [questions_json]
},
{
'button': questions_edit_button,
'action': enable_edit_mode,
'inputs': [],
'outputs': [questions_json]
},
{
'button': questions_update_button,
'action': update_LLM_content,
'inputs': [video_id, questions_json, questions_kind],
'outputs': [questions_json]
},
# Questions answers actions
{
'button': questions_answers_get_button,
'action': get_LLM_content,
'inputs': [video_id, questions_answers_kind],
'outputs': [questions_answers_json]
},
{
'button': questions_answers_create_button,
'action': create_LLM_content,
'inputs': [video_id, df_string_output, questions_answers_kind, LLM_model],
'outputs': [questions_answers_json]
},
{
'button': questions_answers_delete_button,
'action': delete_LLM_content,
'inputs': [video_id, questions_answers_kind],
'outputs': [questions_answers_json]
},
{
'button': questions_answers_edit_button,
'action': enable_edit_mode,
'inputs': [],
'outputs': [questions_answers_json]
},
{
'button': questions_answers_update_button,
'action': update_LLM_content,
'inputs': [video_id, questions_answers_json, questions_answers_kind],
'outputs': [questions_answers_json]
},
# Worksheet actions
{
'button': worksheet_get_button,
'action': get_LLM_content,
'inputs': [video_id, worksheet_kind],
'outputs': [worksheet_json]
},
{
'button': worksheet_create_button,
'action': create_LLM_content,
'inputs': [video_id, df_string_output, worksheet_kind, LLM_model],
'outputs': [worksheet_json]
},
{
'button': worksheet_delete_button,
'action': delete_LLM_content,
'inputs': [video_id, worksheet_kind],
'outputs': [worksheet_json]
},
{
'button': worksheet_edit_button,
'action': enable_edit_mode,
'inputs': [],
'outputs': [worksheet_json]
},
{
'button': worksheet_update_button,
'action': update_LLM_content,
'inputs': [video_id, worksheet_json, worksheet_kind],
'outputs': [worksheet_json]
},
]
setup_content_buttons(content_buttons_config)
# --- Education Material ---
def setup_education_buttons(buttons_config):
for config in buttons_config:
button = config["button"]
action = config["action"]
inputs = config["inputs"]
outputs = config["outputs"]
button.click(
fn=action,
inputs=inputs,
outputs=outputs
)
education_buttons_config = [
# 學習單相關按鈕
{
"button": worksheet_content_btn,
"action": get_ai_content,
"inputs": [password, user_data, video_id, df_string_output, content_subject, content_grade, content_level, worksheet_algorithm, worksheet_content_type_name],
"outputs": [worksheet_result_original, worksheet_result, worksheet_prompt, worksheet_result_prompt]
},
{
"button": worksheet_result_fine_tune_btn,
"action": generate_ai_content_fine_tune_result,
"inputs": [password, user_data, worksheet_result_prompt, df_string_output, worksheet_result, worksheet_result_fine_tune_prompt, worksheet_content_type_name],
"outputs": [worksheet_result]
},
{
"button": worksheet_download_button,
"action": download_exam_result,
"inputs": [worksheet_result],
"outputs": [worksheet_result_word_link]
},
{
"button": worksheet_result_retrun_original,
"action": return_original_exam_result,
"inputs": [worksheet_result_original],
"outputs": [worksheet_result]
},
# 教案相關按鈕
{
"button": lesson_plan_btn,
"action": get_ai_content,
"inputs": [password, user_data, video_id, df_string_output, content_subject, content_grade, content_level, lesson_plan_time, lesson_plan_content_type_name],
"outputs": [lesson_plan_result_original, lesson_plan_result, lesson_plan_prompt, lesson_plan_result_prompt]
},
{
"button": lesson_plan_result_fine_tune_btn,
"action": generate_ai_content_fine_tune_result,
"inputs": [password, user_data, lesson_plan_result_prompt, df_string_output, lesson_plan_result, lesson_plan_result_fine_tune_prompt, lesson_plan_content_type_name],
"outputs": [lesson_plan_result]
},
{
"button": lesson_plan_download_button,
"action": download_exam_result,
"inputs": [lesson_plan_result],
"outputs": [lesson_plan_result_word_link]
},
{
"button": lesson_plan_result_retrun_original,
"action": return_original_exam_result,
"inputs": [lesson_plan_result_original],
"outputs": [lesson_plan_result]
},
# 出場券相關按鈕
{
"button": exit_ticket_btn,
"action": get_ai_content,
"inputs": [password, user_data, video_id, df_string_output, content_subject, content_grade, content_level, exit_ticket_time, exit_ticket_content_type_name],
"outputs": [exit_ticket_result_original, exit_ticket_result, exit_ticket_prompt, exit_ticket_result_prompt]
},
{
"button": exit_ticket_result_fine_tune_btn,
"action": generate_ai_content_fine_tune_result,
"inputs": [password, user_data, exit_ticket_result_prompt, df_string_output, exit_ticket_result, exit_ticket_result_fine_tune_prompt, exit_ticket_content_type_name],
"outputs": [exit_ticket_result]
},
{
"button": exit_ticket_download_button,
"action": download_exam_result,
"inputs": [exit_ticket_result],
"outputs": [exit_ticket_result_word_link]
},
{
"button": exit_ticket_result_retrun_original,
"action": return_original_exam_result,
"inputs": [exit_ticket_result_original],
"outputs": [exit_ticket_result]
}
]
setup_education_buttons(education_buttons_config)
# init_params
init_outputs = [
admin,
reading_passage_admin,
summary_admmin,
see_details,
worksheet_accordion,
lesson_plan_accordion,
exit_ticket_accordion,
password,
youtube_link,
block_ready_flag,
chatbot_open_ai_streaming,
chatbot_ai,
ai_chatbot_params,
is_env_prod,
]
demo.load(
init_params,
inputs =[youtube_link],
outputs = init_outputs
)
app = gr.mount_gradio_app(
app, demo, "/", server_name="0.0.0.0", server_port=7860, show_error=True
)
return app
if __name__ == "__main__":
import uvicorn
app = create_app()
uvicorn.run(app, host="0.0.0.0", port=7860) |