Spaces:
Running
Running
File size: 3,273 Bytes
5389132 de6d532 5389132 62a6dee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import gradio as gr
import cv2
import math
import numpy as np
import os
import mediapipe as mp
import predict
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
# Height and width that will be used by the model
DESIRED_HEIGHT = 480
DESIRED_WIDTH = 480
# Performs resizing and showing the image
def resize_and_show(image):
h, w = image.shape[:2]
if h < w:
img = cv2.resize(image, (DESIRED_WIDTH, math.floor(h/(w/DESIRED_WIDTH))))
else:
img = cv2.resize(image, (math.floor(w/(h/DESIRED_HEIGHT)), DESIRED_HEIGHT))
cv2.imshow('color', img)
cv2.waitKey(1000)
cv2.destroyAllWindows()
def segmentate(filepath):
BG_COLOR = (192, 192, 192) # gray
MASK_COLOR = (255, 255, 255) # white
# Create the options that will be used for ImageSegmenter
base_options = python.BaseOptions(model_asset_path='./hair_segmenter.tflite')
options = vision.ImageSegmenterOptions(base_options=base_options,output_category_mask=True)
# Create the image segmenter
with vision.ImageSegmenter.create_from_options(options) as segmenter:
# Loop through demo image(s)
# Create the MediaPipe image file that will be segmented
print(filepath)
image = mp.Image.create_from_file(filepath)
# Retrieve the masks for the segmented image
segmentation_result = segmenter.segment(image)
category_mask = segmentation_result.category_mask
# Generate solid color images for showing the output segmentation mask.
image_data = image.numpy_view()
fg_image = np.zeros(image_data.shape, dtype=np.uint8)
fg_image[:] = MASK_COLOR
bg_image = np.zeros(image_data.shape, dtype=np.uint8)
bg_image[:] = BG_COLOR
condition = np.stack((category_mask.numpy_view(),) * 3, axis=-1) > 0.2
output_image = np.where(condition, fg_image, bg_image)
# print(f'Segmentation mask of {name}:')
# resize_and_show(output_image)
prediction = predict.predict(filepath)[0][0]
print(prediction)
limits = [0.002, 0.1, 0.4, 0.95, 0.97, 0.991, 1]
print(np.where(prediction < limits)[0][0])
"""
img = cv2.cvtColor(output_image, cv2.COLOR_BGR2GRAY)
# print(np.unique(img))
_, thresh = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY_INV)
# plt.imshow(thresh, cmap='gray')
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
im = cv2.drawContours(img, contours, -1, (0,255,0), 3)
"""
return np.where(prediction < limits)[0][0] + 1, output_image
# GUI
title = 'Hair loss prediction'
description = 'Automatic Prediction of Nordwood scale state. For more information on the scale, click [here](https://www.medicalnewstoday.com/articles/327001#stages).'
examples = [[f'examples/{name}', 3] for name in sorted(os.listdir('examples'))]
iface = gr.Interface(
fn=segmentate,
inputs=[
gr.Image(type='filepath', label='Input Image')
],
outputs=[
gr.Number(label='Nordwood Scale'), gr.Image(label='Hair Segmentation')
],
examples=examples,
allow_flagging='never',
cache_examples=False,
title=title,
description=description
)
iface.launch(share=True)
|