File size: 3,273 Bytes
5389132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de6d532
5389132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62a6dee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
import cv2
import math
import numpy as np
import os
import mediapipe as mp
import predict

from mediapipe.tasks import python
from mediapipe.tasks.python import vision

# Height and width that will be used by the model
DESIRED_HEIGHT = 480
DESIRED_WIDTH = 480

# Performs resizing and showing the image
def resize_and_show(image):
  
  h, w = image.shape[:2]
  if h < w:
    img = cv2.resize(image, (DESIRED_WIDTH, math.floor(h/(w/DESIRED_WIDTH))))
  else:
    img = cv2.resize(image, (math.floor(w/(h/DESIRED_HEIGHT)), DESIRED_HEIGHT))
  cv2.imshow('color', img)
  cv2.waitKey(1000)
  cv2.destroyAllWindows()

def segmentate(filepath):
    BG_COLOR = (192, 192, 192) # gray
    MASK_COLOR = (255, 255, 255) # white

    # Create the options that will be used for ImageSegmenter
    base_options = python.BaseOptions(model_asset_path='./hair_segmenter.tflite')
    options = vision.ImageSegmenterOptions(base_options=base_options,output_category_mask=True)

    # Create the image segmenter
    with vision.ImageSegmenter.create_from_options(options) as segmenter:

      # Loop through demo image(s)

        # Create the MediaPipe image file that will be segmented
        print(filepath)
        image = mp.Image.create_from_file(filepath)
        
        # Retrieve the masks for the segmented image
        segmentation_result = segmenter.segment(image)
        category_mask = segmentation_result.category_mask

        # Generate solid color images for showing the output segmentation mask.
        image_data = image.numpy_view()
        fg_image = np.zeros(image_data.shape, dtype=np.uint8)
        fg_image[:] = MASK_COLOR
        bg_image = np.zeros(image_data.shape, dtype=np.uint8)
        bg_image[:] = BG_COLOR

        condition = np.stack((category_mask.numpy_view(),) * 3, axis=-1) > 0.2
        output_image = np.where(condition, fg_image, bg_image)

        # print(f'Segmentation mask of {name}:')
        # resize_and_show(output_image)
        prediction = predict.predict(filepath)[0][0]
        print(prediction)
        limits = [0.002, 0.1, 0.4, 0.95, 0.97, 0.991, 1]
        print(np.where(prediction < limits)[0][0])
        """
        img = cv2.cvtColor(output_image, cv2.COLOR_BGR2GRAY)
        # print(np.unique(img))
        _, thresh = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY_INV)
        # plt.imshow(thresh, cmap='gray')
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        im = cv2.drawContours(img, contours, -1, (0,255,0), 3)
        """
        return np.where(prediction < limits)[0][0] + 1, output_image

# GUI
title = 'Hair loss prediction'
description = 'Automatic Prediction of Nordwood scale state. For more information on the scale, click [here](https://www.medicalnewstoday.com/articles/327001#stages).'
examples = [[f'examples/{name}', 3] for name in sorted(os.listdir('examples'))]

iface = gr.Interface(
    fn=segmentate,
    inputs=[
        gr.Image(type='filepath', label='Input Image')
    ],
    outputs=[
        gr.Number(label='Nordwood Scale'), gr.Image(label='Hair Segmentation')
    ],
    examples=examples,
    allow_flagging='never',
    cache_examples=False,
    title=title,
    description=description
)
iface.launch(share=True)