Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as T
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision.transforms.functional import InterpolationMode
|
6 |
+
from transformers import AutoModel, AutoTokenizer
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Dùng CPU thay vì GPU
|
10 |
+
device = torch.device("cpu")
|
11 |
+
|
12 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
13 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
14 |
+
|
15 |
+
def build_transform(input_size):
|
16 |
+
transform = T.Compose([
|
17 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
18 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
19 |
+
T.ToTensor(),
|
20 |
+
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
|
21 |
+
])
|
22 |
+
return transform
|
23 |
+
|
24 |
+
def load_image(image, input_size=448):
|
25 |
+
transform = build_transform(input_size=input_size)
|
26 |
+
pixel_values = transform(image).unsqueeze(0) # Thêm batch dimension
|
27 |
+
return pixel_values
|
28 |
+
|
29 |
+
# Load model trên CPU
|
30 |
+
model = AutoModel.from_pretrained(
|
31 |
+
"5CD-AI/Vintern-1B-v3_5",
|
32 |
+
torch_dtype=torch.float32, # Dùng float32 cho CPU
|
33 |
+
low_cpu_mem_usage=True,
|
34 |
+
trust_remote_code=True,
|
35 |
+
).eval().to(device)
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, use_fast=False)
|
38 |
+
|
39 |
+
def process_image(image):
|
40 |
+
pixel_values = load_image(image).to(device)
|
41 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False, num_beams=3, repetition_penalty=2.5)
|
42 |
+
|
43 |
+
question = "<image>\nTrích xuất toàn bộ thông tin trong ảnh và trả về dạng text."
|
44 |
+
response, _ = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
45 |
+
|
46 |
+
return response
|
47 |
+
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=process_image,
|
50 |
+
inputs=gr.Image(type="pil"),
|
51 |
+
outputs="text",
|
52 |
+
title="Vietnamese Hand Writing ORC",
|
53 |
+
description="Extract all the information from the image and return it in text form."
|
54 |
+
)
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
iface.launch()
|