# import gradio as gr # print('hello') # import torch # print('sdfsdf') # def greet(sentiment): # return "Hello " + sentiment + "!!" # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch() import gradio as gr from NeuralTextGenerator import BertTextGenerator # from transformers import pipeline # generator = pipeline("sentiment-analysis") print('dfg') model_name = "JuanJoseMV/BERT_text_gen" #"dbmdz/bert-base-italian-uncased" en_model = BertTextGenerator(model_name) tokenizer = en_model.tokenizer model = en_model.model device = model.device en_model.tokenizer.add_special_tokens({'additional_special_tokens': ['[POSITIVE-0]', '[POSITIVE-1]', '[POSITIVE-2]','[NEGATIVE-0]', '[NEGATIVE-1]', '[NEGATIVE-2]']}) en_model.model.resize_token_embeddings(len(en_model.tokenizer)) def classify(sentiment): parameters = {'n_sentences': 5, 'batch_size': 2, 'avg_len':30, 'max_len':50, # 'std_len' : 3, 'generation_method':'parallel', 'sample': True, 'burnin': 450, 'max_iter': 50, 'top_k': 100, 'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2]", # 'verbose': True } sents = en_model.generate(**parameters) gen_text = '\n'.join(sents) return gen_text demo = gr.Blocks() with demo: gr.Markdown() inputs = gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate") #gr.Dropdown(["POSITIVE", "NEGATIVE"], label="Sentiment to generate") output = gr.Textbox(label="Generated tweet") b1 = gr.Button("Generate") b1.click(classify, inputs=inputs, outputs=output) demo.launch()