diff --git a/.gitattributes b/.gitattributes
index dab9a4e17afd2ef39d90ccb0b40ef2786fe77422..b314ee2877e0f99a1f467da4d38e7ccfc1a7760c 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+assets/docs/showcase.gif filter=lfs diff=lfs merge=lfs -text
+assets/docs/showcase2.gif filter=lfs diff=lfs merge=lfs -text
+assets/examples/driving/d0.mp4 filter=lfs diff=lfs merge=lfs -text
+assets/examples/driving/d10.mp4 filter=lfs diff=lfs merge=lfs -text
+assets/examples/driving/d13.mp4 filter=lfs diff=lfs merge=lfs -text
+assets/examples/driving/d3.mp4 filter=lfs diff=lfs merge=lfs -text
+assets/examples/driving/d6.mp4 filter=lfs diff=lfs merge=lfs -text
+assets/examples/driving/d9.mp4 filter=lfs diff=lfs merge=lfs -text
+pretrained_weights/docs/showcase2.gif filter=lfs diff=lfs merge=lfs -text
diff --git a/assets/.gitignore b/assets/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..e15a9cfe10736eb6cb5d228f0381b0af863082be
--- /dev/null
+++ b/assets/.gitignore
@@ -0,0 +1,2 @@
+examples/driving/*.pkl
+examples/driving/*_crop.mp4
diff --git a/assets/docs/changelog/2024-07-10.md b/assets/docs/changelog/2024-07-10.md
new file mode 100644
index 0000000000000000000000000000000000000000..82c34c8e8ad597392410c56342d6da06f7dac635
--- /dev/null
+++ b/assets/docs/changelog/2024-07-10.md
@@ -0,0 +1,22 @@
+## 2024/07/10
+
+**First, thank you all for your attention, support, sharing, and contributions to LivePortrait!** โค๏ธ
+The popularity of LivePortrait has exceeded our expectations. If you encounter any issues or other problems and we do not respond promptly, please accept our apologies. We are still actively updating and improving this repository.
+
+### Updates
+
+- Audio and video concatenating: If the driving video contains audio, it will automatically be included in the generated video. Additionally, the generated video will maintain the same FPS as the driving video. If you run LivePortrait on Windows, you need to install `ffprobe` and `ffmpeg` exe, see issue [#94](https://github.com/KwaiVGI/LivePortrait/issues/94).
+
+- Driving video auto-cropping: Implemented automatic cropping for driving videos by tracking facial landmarks and calculating a global cropping box with a 1:1 aspect ratio. Alternatively, you can crop using video editing software or other tools to achieve a 1:1 ratio. Auto-cropping is not enbaled by default, you can specify it by `--flag_crop_driving_video`.
+
+- Template making: Added the ability to create templates to protect privacy. The template is a `.pkl` file that only contains the motions of the driving video. Theoretically, it is impossible to reconstruct the original face from the template. These templates can be used to generate videos without needing the original driving video. By default, the template will be generated and saved as a .pkl file with the same name as the driving video. Once generated, you can specify it using the `-d` or `--driving_info` option.
+
+
+### About driving video
+
+- For a guide on using your own driving video, see the [driving video auto-cropping](https://github.com/KwaiVGI/LivePortrait/tree/main?tab=readme-ov-file#driving-video-auto-cropping) section.
+
+
+### Others
+
+- If you encounter a black box problem, disable half-precision inference by using `--no_flag_use_half_precision`, reported by issue [#40](https://github.com/KwaiVGI/LivePortrait/issues/40), [#48](https://github.com/KwaiVGI/LivePortrait/issues/48), [#62](https://github.com/KwaiVGI/LivePortrait/issues/62).
diff --git a/assets/docs/inference.gif b/assets/docs/inference.gif
new file mode 100644
index 0000000000000000000000000000000000000000..7e18022e5245dcb6449df6d190b538d5ca024e06
Binary files /dev/null and b/assets/docs/inference.gif differ
diff --git a/assets/docs/showcase.gif b/assets/docs/showcase.gif
new file mode 100644
index 0000000000000000000000000000000000000000..fae84c2d3550a37446e482286b70902b21e2e232
--- /dev/null
+++ b/assets/docs/showcase.gif
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7bca5f38bfd555bf7c013312d87883afdf39d97fba719ac171c60f897af49e21
+size 6623248
diff --git a/assets/docs/showcase2.gif b/assets/docs/showcase2.gif
new file mode 100644
index 0000000000000000000000000000000000000000..29175c0eeb85b9db0ffd61e3e9281dffe3536352
--- /dev/null
+++ b/assets/docs/showcase2.gif
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eb1fffb139681775780b2956e7d0289f55d199c1a3e14ab263887864d4b0d586
+size 2881351
diff --git a/assets/examples/driving/d0.mp4 b/assets/examples/driving/d0.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..92391dd3ff235fc82f29b7cc77fe4a7ce183d934
--- /dev/null
+++ b/assets/examples/driving/d0.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:63f6f9962e1fdf6e6722172e7a18155204858d5d5ce3b1e0646c150360c33bed
+size 2958395
diff --git a/assets/examples/driving/d0.pkl b/assets/examples/driving/d0.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..d6588062e8fcad1d09898be6dbb0a57b8c5503fb
--- /dev/null
+++ b/assets/examples/driving/d0.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e68ccd7d726efada2f9479940c96f11d7e988e68e60b58e7cba69ec21db769a0
+size 41087
diff --git a/assets/examples/driving/d1.pkl b/assets/examples/driving/d1.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..8e11db176d93c34f7b44aa94487ac0a6715168cb
--- /dev/null
+++ b/assets/examples/driving/d1.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:16b47d68396e4a5fc0756b4c83827e8fc27c08bc92be1aa04809f741d9db95f9
+size 8599
diff --git a/assets/examples/driving/d10.mp4 b/assets/examples/driving/d10.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..8008dacea2798956f250ff3ecc44e13f4c7a900a
--- /dev/null
+++ b/assets/examples/driving/d10.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ac7ee3c2419046f11dc230b6db33c2391a98334eba2b1d773e7eb9627992622f
+size 1064930
diff --git a/assets/examples/driving/d10.pkl b/assets/examples/driving/d10.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..e23816c0f7a5468d249297e9ad7dd94bb4239a5c
--- /dev/null
+++ b/assets/examples/driving/d10.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:82b6bca311c3e1eaf3a0708cb369a9c56b398b4783e61455bbe28c88a5520418
+size 234995
diff --git a/assets/examples/driving/d11.mp4 b/assets/examples/driving/d11.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..378d00065aaa1d30d6b14be10e0e78188deba152
Binary files /dev/null and b/assets/examples/driving/d11.mp4 differ
diff --git a/assets/examples/driving/d11.pkl b/assets/examples/driving/d11.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..183a7c1d8dd8bc8f04cc6ddd7c4cb950746324af
--- /dev/null
+++ b/assets/examples/driving/d11.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4b9bbd523d03ba8cc8c6b560bb236be111fe40e59a9bccba3fadbae73010ad29
+size 118124
diff --git a/assets/examples/driving/d12.mp4 b/assets/examples/driving/d12.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..984922e5c722fa9672dc6c6765bf1183466daf5b
Binary files /dev/null and b/assets/examples/driving/d12.mp4 differ
diff --git a/assets/examples/driving/d12.pkl b/assets/examples/driving/d12.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..e399b1ae898693d8d7e8016fec32d54505ca546d
--- /dev/null
+++ b/assets/examples/driving/d12.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:dd7ebf491c9b36cb6fe55c18201ddc25f69131c25c9f158076e40a1e0c83ac95
+size 96116
diff --git a/assets/examples/driving/d13.mp4 b/assets/examples/driving/d13.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..23b6af6e4afa879a11ec8284bfdb3253739e6b41
--- /dev/null
+++ b/assets/examples/driving/d13.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d03e39c28323cde1c5fc6c5629aa83fe6c834fa7c9ed2dac969e1247eaafdb60
+size 2475854
diff --git a/assets/examples/driving/d14.mp4 b/assets/examples/driving/d14.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..e4a25d614cae7ae9b0425539da1c24d09d06c7db
Binary files /dev/null and b/assets/examples/driving/d14.mp4 differ
diff --git a/assets/examples/driving/d18.mp4 b/assets/examples/driving/d18.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..c23ade1841fa5744af3ffdc3a42d52b9227a9d2e
Binary files /dev/null and b/assets/examples/driving/d18.mp4 differ
diff --git a/assets/examples/driving/d19.mp4 b/assets/examples/driving/d19.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..07562e983f601d00bcc0e388fe60872c046bcbaf
Binary files /dev/null and b/assets/examples/driving/d19.mp4 differ
diff --git a/assets/examples/driving/d2.pkl b/assets/examples/driving/d2.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..6bc7d490b84d9a06436b133e4c1457b6055f8dc1
--- /dev/null
+++ b/assets/examples/driving/d2.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:021a0e83d4ae81ab75b49b31a6cf75ac7987c86e02808aced3dd49894512a082
+size 8599
diff --git a/assets/examples/driving/d3.mp4 b/assets/examples/driving/d3.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..8b70b6aa3c0e566a4fa3e5959f2d3b916e99b708
--- /dev/null
+++ b/assets/examples/driving/d3.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ef5c86e49b1b43dcb1449b499eb5a7f0cbae2f78aec08b5598193be1e4257099
+size 1430968
diff --git a/assets/examples/driving/d3.pkl b/assets/examples/driving/d3.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..aed295974ae5933f845db8be748c39f1b0de31f6
--- /dev/null
+++ b/assets/examples/driving/d3.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4f51d50dfd8ca5f5154ae8d40d676308970c68720c99d3cd58a62d5d4cf53002
+size 185730
diff --git a/assets/examples/driving/d5.pkl b/assets/examples/driving/d5.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..4fde2987728e8e4491600c68c951189c095ef90e
--- /dev/null
+++ b/assets/examples/driving/d5.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:91f2863838a089fe418b22864e7c48ac1f2b9d4513afb033a9d9dd5979a90b8c
+size 77776
diff --git a/assets/examples/driving/d6.mp4 b/assets/examples/driving/d6.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..44f351385cef843b21b03fab8c3b10e0c005ec5e
--- /dev/null
+++ b/assets/examples/driving/d6.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:00e3ea79bbf28cbdc4fbb67ec655d9a0fe876e880ec45af55ae481348d0c0fff
+size 1967790
diff --git a/assets/examples/driving/d6.pkl b/assets/examples/driving/d6.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..5ef270369619bb339cba3723f11cbfc151284db1
--- /dev/null
+++ b/assets/examples/driving/d6.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1dac86504addf300e0b3dc3faa209099f9f1a40e659794ea7031df4f29787113
+size 528486
diff --git a/assets/examples/driving/d7.pkl b/assets/examples/driving/d7.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..be7c9d74d12c19a8460b215da117de737889b5b2
--- /dev/null
+++ b/assets/examples/driving/d7.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:84aed70f3dd01ebd818c51fc11762eeff51efeef05b1f15a660b105c4c0748da
+size 93496
diff --git a/assets/examples/driving/d8.pkl b/assets/examples/driving/d8.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..dc631a4fcbd858afec881f66fd13b19f820d2eab
--- /dev/null
+++ b/assets/examples/driving/d8.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:099afc34d40794aa733644af76dcd1bc387573c381a82340018df7019a06d68e
+size 144334
diff --git a/assets/examples/driving/d9.mp4 b/assets/examples/driving/d9.mp4
new file mode 100644
index 0000000000000000000000000000000000000000..7803b3bf5c460a79d94e5cfbedb0de1f52d449d2
--- /dev/null
+++ b/assets/examples/driving/d9.mp4
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9a414aa1d547be35306d692065a2157434bf40a6025ba8e30ce12e5bb322cc33
+size 2257929
diff --git a/assets/examples/driving/d9.pkl b/assets/examples/driving/d9.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..b78e79d664747db9b937f41e04ac052f15a2ac06
--- /dev/null
+++ b/assets/examples/driving/d9.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8d2b938526b64c6658f2b1c5776f3f98d3190bb74f2c8ee0891f73ea14cef8a0
+size 307840
diff --git a/assets/examples/source/s0.jpg b/assets/examples/source/s0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ef44c593be38cea30422fff9ed986a8a77889348
Binary files /dev/null and b/assets/examples/source/s0.jpg differ
diff --git a/assets/examples/source/s1.jpg b/assets/examples/source/s1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ebacda3519a1452aee239f7e104d2c6ff40beb25
Binary files /dev/null and b/assets/examples/source/s1.jpg differ
diff --git a/assets/examples/source/s10.jpg b/assets/examples/source/s10.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ee9616b592f070fbe90a8717da01477e8d4ee01f
Binary files /dev/null and b/assets/examples/source/s10.jpg differ
diff --git a/assets/examples/source/s11.jpg b/assets/examples/source/s11.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..bd2fa2d2867336215012943addd7c7def2a29ccb
Binary files /dev/null and b/assets/examples/source/s11.jpg differ
diff --git a/assets/examples/source/s12.jpg b/assets/examples/source/s12.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d3d65c1e8e099ec279d730d296875b937f885417
Binary files /dev/null and b/assets/examples/source/s12.jpg differ
diff --git a/assets/examples/source/s2.jpg b/assets/examples/source/s2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..e851bd20b65c552266a87bb87a9b509e3ea56f7d
Binary files /dev/null and b/assets/examples/source/s2.jpg differ
diff --git a/assets/examples/source/s3.jpg b/assets/examples/source/s3.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9f3ba2a358e5b88450e7466761dff3e983e18e16
Binary files /dev/null and b/assets/examples/source/s3.jpg differ
diff --git a/assets/examples/source/s4.jpg b/assets/examples/source/s4.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..17f611bf942ad168d4e4d03b7e5c42d6650c4be1
Binary files /dev/null and b/assets/examples/source/s4.jpg differ
diff --git a/assets/examples/source/s5.jpg b/assets/examples/source/s5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9abad7ef061b93579a373cf141d38710d9b1e32d
Binary files /dev/null and b/assets/examples/source/s5.jpg differ
diff --git a/assets/examples/source/s6.jpg b/assets/examples/source/s6.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..91c13d5f2b48d143ca596566ad10f0a0e5693da4
Binary files /dev/null and b/assets/examples/source/s6.jpg differ
diff --git a/assets/examples/source/s7.jpg b/assets/examples/source/s7.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..cf96f2d5651f7ae0faf08193ecd3df282c5c3b53
Binary files /dev/null and b/assets/examples/source/s7.jpg differ
diff --git a/assets/examples/source/s8.jpg b/assets/examples/source/s8.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b415ed1d4a4e5cf01e6dc30d6b4ced20814558d5
Binary files /dev/null and b/assets/examples/source/s8.jpg differ
diff --git a/assets/examples/source/s9.jpg b/assets/examples/source/s9.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3ef7251ba10bf83356587016b126a52bdbca7b18
Binary files /dev/null and b/assets/examples/source/s9.jpg differ
diff --git a/assets/gradio_description_animation.md b/assets/gradio_description_animation.md
new file mode 100644
index 0000000000000000000000000000000000000000..2c0528c460097ee5311d2401b1f7bd028798624d
--- /dev/null
+++ b/assets/gradio_description_animation.md
@@ -0,0 +1,16 @@
+๐ฅ To animate the source portrait with the driving video, please follow these steps:
+
+1. In the Animation Options section, we recommend enabling the do crop (source) option if faces occupy a small portion of your image.
+
+
+2. Press the ๐ Animate button and wait for a moment. Your animated video will appear in the result block. This may take a few moments.
+
+
+3. If you want to upload your own driving video, the best practice:
+
+ - Crop it to a 1:1 aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-driving by checking `do crop (driving video)`.
+ - Focus on the head area, similar to the example videos.
+ - Minimize shoulder movement.
+ - Make sure the first frame of driving video is a frontal face with **neutral expression**.
+
+
diff --git a/assets/gradio_description_retargeting.md b/assets/gradio_description_retargeting.md
new file mode 100644
index 0000000000000000000000000000000000000000..a706686219c6e0e0b67890f92b5eb8ae8c7761f8
--- /dev/null
+++ b/assets/gradio_description_retargeting.md
@@ -0,0 +1,4 @@
+
+
+## Retargeting
+๐ฅ To edit the eyes and lip open ratio of the source portrait, drag the sliders and click the ๐ Retargeting button. You can try running it multiple times. ๐ Set both ratios to 0.8 to see what's going on!
diff --git a/assets/gradio_description_upload.md b/assets/gradio_description_upload.md
new file mode 100644
index 0000000000000000000000000000000000000000..e4357cc3da9379109a064ae279a1f1ad541b42e4
--- /dev/null
+++ b/assets/gradio_description_upload.md
@@ -0,0 +1,2 @@
+## ๐ค This is the gradio demo for **LivePortrait** for video.
+Please upload or use a webcam to get a Source Portrait (any aspect ratio) and upload a Driving Video (1:1 aspect ratio, or any aspect ratio with do crop (driving video)
checked).
diff --git a/assets/gradio_title.md b/assets/gradio_title.md
new file mode 100644
index 0000000000000000000000000000000000000000..64ecfee7852fdba517bb6a66761e75fedeec867d
--- /dev/null
+++ b/assets/gradio_title.md
@@ -0,0 +1,11 @@
+
+
+
LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control
+
+
+
diff --git a/pretrained_weights/.gitattributes b/pretrained_weights/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..5efc53606f0f3a9de8c418e28249314548b2595b
--- /dev/null
+++ b/pretrained_weights/.gitattributes
@@ -0,0 +1,45 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tar filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
+liveportrait/retargeting_models/stitching_retargeting_module.pth filter=lfs diff=lfs merge=lfs -text
+liveportrait/base_models/appearance_feature_extractor.pth filter=lfs diff=lfs merge=lfs -text
+liveportrait/base_models/motion_extractor.pth filter=lfs diff=lfs merge=lfs -text
+liveportrait/base_models/spade_generator.pth filter=lfs diff=lfs merge=lfs -text
+liveportrait/base_models/warping_module.pth filter=lfs diff=lfs merge=lfs -text
+insightface/models/buffalo_l/2d106det.onnx filter=lfs diff=lfs merge=lfs -text
+insightface/models/buffalo_l/det_10g.onnx filter=lfs diff=lfs merge=lfs -text
+liveportrait/landmark.onnx filter=lfs diff=lfs merge=lfs -text
+docs/inference.gif filter=lfs diff=lfs merge=lfs -text
+docs/showcase2.gif filter=lfs diff=lfs merge=lfs -text
diff --git a/pretrained_weights/.gitignore b/pretrained_weights/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..01ca12487c4d36154b7b0b9f7189e3d8649eb06d
--- /dev/null
+++ b/pretrained_weights/.gitignore
@@ -0,0 +1,18 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+**/__pycache__/
+*.py[cod]
+**/*.py[cod]
+*$py.class
+
+# Model weights
+#**/*.pth
+#**/*.onnx
+
+# Ipython notebook
+*.ipynb
+
+# Temporary files or benchmark resources
+animations/*
+tmp/*
+gradio_cached_examples/
diff --git a/pretrained_weights/.gitkeep b/pretrained_weights/.gitkeep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/pretrained_weights/README.md b/pretrained_weights/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..1d4d8384bf3108d3fa7afc431a312f04346009fd
--- /dev/null
+++ b/pretrained_weights/README.md
@@ -0,0 +1,148 @@
+---
+license: mit
+---
+
+LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control
+
+
+
+
+
+
+ 1 Kuaishou Technology 2 University of Science and Technology of China 3 Fudan University
+
+
+
+
+
+
+
+
+
+ ๐ฅ For more results, visit our homepage ๐ฅ
+
+
+
+
+## ๐ฅ Updates
+- **`2024/07/04`**: ๐ฅ We released the initial version of the inference code and models. Continuous updates, stay tuned!
+- **`2024/07/04`**: ๐ We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).
+
+## Introduction
+This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
+We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) ๐.
+
+## ๐ฅ Getting Started
+### 1. Clone the code and prepare the environment
+```bash
+git clone https://github.com/KwaiVGI/LivePortrait
+cd LivePortrait
+
+# create env using conda
+conda create -n LivePortrait python==3.9.18
+conda activate LivePortrait
+# install dependencies with pip
+pip install -r requirements.txt
+```
+
+### 2. Download pretrained weights
+Download our pretrained LivePortrait weights and face detection models of InsightFace from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory ๐. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows:
+```text
+pretrained_weights
+โโโ insightface
+โ โโโ models
+โ โโโ buffalo_l
+โ โโโ 2d106det.onnx
+โ โโโ det_10g.onnx
+โโโ liveportrait
+ โโโ base_models
+ โ โโโ appearance_feature_extractor.pth
+ โ โโโ motion_extractor.pth
+ โ โโโ spade_generator.pth
+ โ โโโ warping_module.pth
+ โโโ landmark.onnx
+ โโโ retargeting_models
+ โโโ stitching_retargeting_module.pth
+```
+
+### 3. Inference ๐
+
+```bash
+python inference.py
+```
+
+If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
+
+
+
+
+
+Or, you can change the input by specifying the `-s` and `-d` arguments:
+
+```bash
+python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
+
+# or disable pasting back
+python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
+
+# more options to see
+python inference.py -h
+```
+
+**More interesting results can be found in our [Homepage](https://liveportrait.github.io)** ๐
+
+### 4. Gradio interface
+
+We also provide a Gradio interface for a better experience, just run by:
+
+```bash
+python app.py
+```
+
+### 5. Inference speed evaluation ๐๐๐
+We have also provided a script to evaluate the inference speed of each module:
+
+```bash
+python speed.py
+```
+
+Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
+
+| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
+|-----------------------------------|:-------------:|:--------------:|:-------------:|
+| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
+| Motion Extractor | 28.12 | 108 | 0.84 |
+| Spade Generator | 55.37 | 212 | 7.59 |
+| Warping Module | 45.53 | 174 | 5.21 |
+| Stitching and Retargeting Modules| 0.23 | 2.3 | 0.31 |
+
+*Note: the listed values of Stitching and Retargeting Modules represent the combined parameter counts and the total sequential inference time of three MLP networks.*
+
+
+## Acknowledgements
+We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
+
+## Citation ๐
+If you find LivePortrait useful for your research, welcome to ๐ this repo and cite our work using the following BibTeX:
+```bibtex
+@article{guo2024live,
+ title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
+ author = {Jianzhu Guo and Dingyun Zhang and Xiaoqiang Liu and Zhizhou Zhong and Yuan Zhang and Pengfei Wan and Di Zhang},
+ year = {2024},
+ journal = {arXiv preprint:2407.03168},
+}
+```
diff --git a/pretrained_weights/docs/inference.gif b/pretrained_weights/docs/inference.gif
new file mode 100644
index 0000000000000000000000000000000000000000..7e18022e5245dcb6449df6d190b538d5ca024e06
Binary files /dev/null and b/pretrained_weights/docs/inference.gif differ
diff --git a/pretrained_weights/docs/showcase2.gif b/pretrained_weights/docs/showcase2.gif
new file mode 100644
index 0000000000000000000000000000000000000000..29175c0eeb85b9db0ffd61e3e9281dffe3536352
--- /dev/null
+++ b/pretrained_weights/docs/showcase2.gif
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eb1fffb139681775780b2956e7d0289f55d199c1a3e14ab263887864d4b0d586
+size 2881351
diff --git a/pretrained_weights/insightface/models/buffalo_l/2d106det.onnx b/pretrained_weights/insightface/models/buffalo_l/2d106det.onnx
new file mode 100644
index 0000000000000000000000000000000000000000..cdb163d88b5f51396855ebc795e0114322c98b6b
--- /dev/null
+++ b/pretrained_weights/insightface/models/buffalo_l/2d106det.onnx
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
+size 5030888
diff --git a/pretrained_weights/insightface/models/buffalo_l/det_10g.onnx b/pretrained_weights/insightface/models/buffalo_l/det_10g.onnx
new file mode 100644
index 0000000000000000000000000000000000000000..aa586e034379fa5ea5babc8aa73d47afcd0fa6c2
--- /dev/null
+++ b/pretrained_weights/insightface/models/buffalo_l/det_10g.onnx
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
+size 16923827
diff --git a/pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth b/pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth
new file mode 100644
index 0000000000000000000000000000000000000000..f05eb700c3eca1939c9d4e436bd063217eaa4587
--- /dev/null
+++ b/pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5279bb8654293dbdf327030b397f107237dd9212fb11dd75b83dfb635211ceb5
+size 3387959
diff --git a/pretrained_weights/liveportrait/base_models/motion_extractor.pth b/pretrained_weights/liveportrait/base_models/motion_extractor.pth
new file mode 100644
index 0000000000000000000000000000000000000000..a118cb8e26afc734be9abd4a6ef0163adcbd63b0
--- /dev/null
+++ b/pretrained_weights/liveportrait/base_models/motion_extractor.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:251e6a94ad667a1d0c69526d292677165110ef7f0cf0f6d199f0e414e8aa0ca5
+size 112545506
diff --git a/pretrained_weights/liveportrait/base_models/spade_generator.pth b/pretrained_weights/liveportrait/base_models/spade_generator.pth
new file mode 100644
index 0000000000000000000000000000000000000000..0086702b84762790e06c5a4332f36d0857f594fc
--- /dev/null
+++ b/pretrained_weights/liveportrait/base_models/spade_generator.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4780afc7909a9f84e24c01d73b31a555ef651521a1fe3b2429bd04534d992aee
+size 221813590
diff --git a/pretrained_weights/liveportrait/base_models/warping_module.pth b/pretrained_weights/liveportrait/base_models/warping_module.pth
new file mode 100644
index 0000000000000000000000000000000000000000..e9d4cd1bcb62e2b654c28e32f66e56d51fb10389
--- /dev/null
+++ b/pretrained_weights/liveportrait/base_models/warping_module.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2f61a6f265fe344f14132364859a78bdbbc2068577170693da57fb96d636e282
+size 182180086
diff --git a/pretrained_weights/liveportrait/landmark.onnx b/pretrained_weights/liveportrait/landmark.onnx
new file mode 100644
index 0000000000000000000000000000000000000000..48eb59185aa92b6efa2855ce99129d8aff248938
--- /dev/null
+++ b/pretrained_weights/liveportrait/landmark.onnx
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:31d22a5041326c31f19b78886939a634a5aedcaa5ab8b9b951a1167595d147db
+size 114666491
diff --git a/pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth b/pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth
new file mode 100644
index 0000000000000000000000000000000000000000..59f0f3830b78b8587f0bd8b9ef8fd3ffdbd9290a
--- /dev/null
+++ b/pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3652d5a3f95099141a56986aaddec92fadf0a73c87a20fac9a2c07c32b28b611
+size 2393098
diff --git a/src/__pycache__/gradio_pipeline.cpython-39.pyc b/src/__pycache__/gradio_pipeline.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..89365a6f31d6e07266cf4fbd0220a87b193166a7
Binary files /dev/null and b/src/__pycache__/gradio_pipeline.cpython-39.pyc differ
diff --git a/src/__pycache__/live_portrait_pipeline.cpython-39.pyc b/src/__pycache__/live_portrait_pipeline.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5507461c4427abd678894bac9bc3ddcc5202eb82
Binary files /dev/null and b/src/__pycache__/live_portrait_pipeline.cpython-39.pyc differ
diff --git a/src/__pycache__/live_portrait_wrapper.cpython-39.pyc b/src/__pycache__/live_portrait_wrapper.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..84b8c2595c402fcf2f28aa87f5f8006d6d000720
Binary files /dev/null and b/src/__pycache__/live_portrait_wrapper.cpython-39.pyc differ
diff --git a/src/config/__init__.py b/src/config/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/config/__pycache__/__init__.cpython-39.pyc b/src/config/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..02a517557ff52674a93fc39a8b9da695ea7f8299
Binary files /dev/null and b/src/config/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/config/__pycache__/argument_config.cpython-39.pyc b/src/config/__pycache__/argument_config.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..02bd664ee90dc9a5d812f29d95e848f503f779d2
Binary files /dev/null and b/src/config/__pycache__/argument_config.cpython-39.pyc differ
diff --git a/src/config/__pycache__/base_config.cpython-39.pyc b/src/config/__pycache__/base_config.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..02a3fb2c0473b479a3cbc10e23d0662bb1910159
Binary files /dev/null and b/src/config/__pycache__/base_config.cpython-39.pyc differ
diff --git a/src/config/__pycache__/crop_config.cpython-39.pyc b/src/config/__pycache__/crop_config.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7ed40da6face322af9b0a0d12a1705223290f7b9
Binary files /dev/null and b/src/config/__pycache__/crop_config.cpython-39.pyc differ
diff --git a/src/config/__pycache__/inference_config.cpython-39.pyc b/src/config/__pycache__/inference_config.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..968148f9c2102c903ee0d993d8f6ae2b1b7623ee
Binary files /dev/null and b/src/config/__pycache__/inference_config.cpython-39.pyc differ
diff --git a/src/config/argument_config.py b/src/config/argument_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..bdcd5c2ce811e91e7f71ee950cff0c0ee03292cf
--- /dev/null
+++ b/src/config/argument_config.py
@@ -0,0 +1,50 @@
+# coding: utf-8
+
+"""
+All configs for user
+"""
+
+from dataclasses import dataclass
+import tyro
+from typing_extensions import Annotated
+from typing import Optional
+from .base_config import PrintableConfig, make_abs_path
+
+
+@dataclass(repr=False) # use repr from PrintableConfig
+class ArgumentConfig(PrintableConfig):
+ ########## input arguments ##########
+ source_image: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s6.jpg') # path to the source portrait
+ driving_info: Annotated[str, tyro.conf.arg(aliases=["-d"])] = make_abs_path('../../assets/examples/driving/d11.mp4') # path to driving video or template (.pkl format)
+ output_dir: Annotated[str, tyro.conf.arg(aliases=["-o"])] = 'animations/' # directory to save output video
+ source_driving_info: Annotated[str, tyro.conf.arg(aliases=["-sd"])] = make_abs_path('../../assets/examples/driving/d10.mp4') # path to driving video or template (.pkl format)
+ flag_svideo: Annotated[str, tyro.conf.arg(aliases=["-vd"])] = False
+
+ ########## inference arguments ##########
+
+ flag_use_half_precision: bool = True # whether to use half precision (FP16). If black boxes appear, it might be due to GPU incompatibility; set to False.
+ flag_crop_driving_video: bool = False # whether to crop the driving video, if the given driving info is a video
+ device_id: int = 0 # gpu device id
+ flag_force_cpu: bool = False # force cpu inference, WIP!
+ flag_lip_zero : bool = True # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False
+ flag_eye_retargeting: bool = False # not recommend to be True, WIP
+ flag_lip_retargeting: bool = False # not recommend to be True, WIP
+ flag_stitching: bool = True # recommend to True if head movement is small, False if head movement is large
+ flag_relative_motion: bool = True # whether to use relative motion
+ flag_pasteback: bool = True # whether to paste-back/stitch the animated face cropping from the face-cropping space to the original image space
+ flag_do_crop: bool = True # whether to crop the source portrait to the face-cropping space
+ flag_do_rot: bool = True # whether to conduct the rotation when flag_do_crop is True
+
+ ########## crop arguments ##########
+ scale: float = 2.3 # the ratio of face area is smaller if scale is larger
+ vx_ratio: float = 0 # the ratio to move the face to left or right in cropping space
+ vy_ratio: float = -0.125 # the ratio to move the face to up or down in cropping space
+
+ scale_crop_video: float = 2.2 # scale factor for cropping video
+ vx_ratio_crop_video: float = 0. # adjust y offset
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
+
+ ########## gradio arguments ##########
+ server_port: Annotated[int, tyro.conf.arg(aliases=["-p"])] = 8890 # port for gradio server
+ share: bool = False # whether to share the server to public
+ server_name: Optional[str] = "127.0.0.1" # set the local server name, "0.0.0.0" to broadcast all
diff --git a/src/config/base_config.py b/src/config/base_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..343b8c248efb7acf8143ed044753ea7783568482
--- /dev/null
+++ b/src/config/base_config.py
@@ -0,0 +1,29 @@
+# coding: utf-8
+
+"""
+pretty printing class
+"""
+
+from __future__ import annotations
+import os.path as osp
+from typing import Tuple
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+class PrintableConfig: # pylint: disable=too-few-public-methods
+ """Printable Config defining str function"""
+
+ def __repr__(self):
+ lines = [self.__class__.__name__ + ":"]
+ for key, val in vars(self).items():
+ if isinstance(val, Tuple):
+ flattened_val = "["
+ for item in val:
+ flattened_val += str(item) + "\n"
+ flattened_val = flattened_val.rstrip("\n")
+ val = flattened_val + "]"
+ lines += f"{key}: {str(val)}".split("\n")
+ return "\n ".join(lines)
diff --git a/src/config/crop_config.py b/src/config/crop_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b7ff05cb4d6940b01e2220b77835337365ef153
--- /dev/null
+++ b/src/config/crop_config.py
@@ -0,0 +1,29 @@
+# coding: utf-8
+
+"""
+parameters used for crop faces
+"""
+
+from dataclasses import dataclass
+
+from .base_config import PrintableConfig
+
+
+@dataclass(repr=False) # use repr from PrintableConfig
+class CropConfig(PrintableConfig):
+ insightface_root: str = "../../pretrained_weights/insightface"
+ landmark_ckpt_path: str = "../../pretrained_weights/liveportrait/landmark.onnx"
+ device_id: int = 0 # gpu device id
+ flag_force_cpu: bool = False # force cpu inference, WIP
+ ########## source image cropping option ##########
+ dsize: int = 512 # crop size
+ scale: float = 2.5 # scale factor
+ vx_ratio: float = 0 # vx ratio
+ vy_ratio: float = -0.125 # vy ratio +up, -down
+ max_face_num: int = 0 # max face number, 0 mean no limit
+
+ ########## driving video auto cropping option ##########
+ scale_crop_video: float = 2.2 # 2.0 # scale factor for cropping video
+ vx_ratio_crop_video: float = 0.0 # adjust y offset
+ vy_ratio_crop_video: float = -0.1 # adjust x offset
+ direction: str = "large-small" # direction of cropping
diff --git a/src/config/inference_config.py b/src/config/inference_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..79e9b274b53bf3208c243c8dca79dc6563fea3aa
--- /dev/null
+++ b/src/config/inference_config.py
@@ -0,0 +1,52 @@
+# coding: utf-8
+
+"""
+config dataclass used for inference
+"""
+
+import os.path as osp
+import cv2
+from numpy import ndarray
+from dataclasses import dataclass
+from typing import Literal, Tuple
+from .base_config import PrintableConfig, make_abs_path
+
+
+@dataclass(repr=False) # use repr from PrintableConfig
+class InferenceConfig(PrintableConfig):
+ # MODEL CONFIG, NOT EXPOERTED PARAMS
+ models_config: str = make_abs_path('./models.yaml') # portrait animation config
+ checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
+ checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
+ checkpoint_G: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/spade_generator.pth') # path to checkpoint of G
+ checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
+ checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
+
+ # EXPOERTED PARAMS
+ flag_use_half_precision: bool = True
+ flag_crop_driving_video: bool = False
+ flag_crop_source_video: bool = False
+ device_id: int = 0
+ flag_lip_zero: bool = True
+ flag_eye_retargeting: bool = False
+ flag_lip_retargeting: bool = False
+ flag_stitching: bool = True
+ flag_relative_motion: bool = True
+ flag_pasteback: bool = True
+ flag_do_crop: bool = True
+ flag_do_rot: bool = True
+ flag_force_cpu: bool = False
+
+ # NOT EXPOERTED PARAMS
+ lip_zero_threshold: float = 0.03 # threshold for flag_lip_zero
+ anchor_frame: int = 0 # TO IMPLEMENT
+
+ input_shape: Tuple[int, int] = (256, 256) # input shape
+ output_format: Literal['mp4', 'gif'] = 'mp4' # output video format
+ crf: int = 15 # crf for output video
+ output_fps: int = 25 # default output fps
+
+ mask_crop: ndarray = cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR)
+ size_gif: int = 256 # default gif size, TO IMPLEMENT
+ source_max_dim: int = 1280 # the max dim of height and width of source image
+ source_division: int = 2 # make sure the height and width of source image can be divided by this number
diff --git a/src/config/models.yaml b/src/config/models.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..75efb6aa8d8f676611656837f74b74a1583c6d5c
--- /dev/null
+++ b/src/config/models.yaml
@@ -0,0 +1,43 @@
+model_params:
+ appearance_feature_extractor_params: # the F in the paper
+ image_channel: 3
+ block_expansion: 64
+ num_down_blocks: 2
+ max_features: 512
+ reshape_channel: 32
+ reshape_depth: 16
+ num_resblocks: 6
+ motion_extractor_params: # the M in the paper
+ num_kp: 21
+ backbone: convnextv2_tiny
+ warping_module_params: # the W in the paper
+ num_kp: 21
+ block_expansion: 64
+ max_features: 512
+ num_down_blocks: 2
+ reshape_channel: 32
+ estimate_occlusion_map: True
+ dense_motion_params:
+ block_expansion: 32
+ max_features: 1024
+ num_blocks: 5
+ reshape_depth: 16
+ compress: 4
+ spade_generator_params: # the G in the paper
+ upscale: 2 # represents upsample factor 256x256 -> 512x512
+ block_expansion: 64
+ max_features: 512
+ num_down_blocks: 2
+ stitching_retargeting_module_params: # the S in the paper
+ stitching:
+ input_size: 126 # (21*3)*2
+ hidden_sizes: [128, 128, 64]
+ output_size: 65 # (21*3)+2(tx,ty)
+ lip:
+ input_size: 65 # (21*3)+2
+ hidden_sizes: [128, 128, 64]
+ output_size: 63 # (21*3)
+ eye:
+ input_size: 66 # (21*3)+3
+ hidden_sizes: [256, 256, 128, 128, 64]
+ output_size: 63 # (21*3)
diff --git a/src/gradio_pipeline.py b/src/gradio_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..6dba24a4ad8227f08b467e7e438908ec00162958
--- /dev/null
+++ b/src/gradio_pipeline.py
@@ -0,0 +1,148 @@
+# coding: utf-8
+
+"""
+Pipeline for gradio
+"""
+import gradio as gr
+
+from .config.argument_config import ArgumentConfig
+from .live_portrait_pipeline import LivePortraitPipeline
+from .utils.io import load_img_online
+from .utils.rprint import rlog as log
+from .utils.crop import prepare_paste_back, paste_back
+from .utils.camera import get_rotation_matrix
+
+
+def update_args(args, user_args):
+ """update the args according to user inputs
+ """
+ for k, v in user_args.items():
+ if hasattr(args, k):
+ setattr(args, k, v)
+ return args
+
+
+class GradioPipeline(LivePortraitPipeline):
+
+ def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
+ super().__init__(inference_cfg, crop_cfg)
+ # self.live_portrait_wrapper = self.live_portrait_wrapper
+ self.args = args
+
+ def execute_video(
+ self,
+ input_image_path,
+ input_video_path,
+ flag_relative_input,
+ flag_do_crop_input,
+ flag_remap_input,
+ flag_crop_driving_video_input
+ ):
+ """ for video driven potrait animation
+ """
+ if input_image_path is not None and input_video_path is not None:
+ args_user = {
+ 'source_image': input_image_path,
+ 'driving_info': input_video_path,
+ 'flag_relative': flag_relative_input,
+ 'flag_do_crop': flag_do_crop_input,
+ 'flag_pasteback': flag_remap_input,
+ 'flag_crop_driving_video': flag_crop_driving_video_input
+ }
+ # update config from user input
+ self.args = update_args(self.args, args_user)
+ self.live_portrait_wrapper.update_config(self.args.__dict__)
+ self.cropper.update_config(self.args.__dict__)
+ # video driven animation
+ video_path, video_path_concat = self.execute(self.args)
+ gr.Info("Run successfully!", duration=2)
+ return video_path, video_path_concat,
+ else:
+ raise gr.Error("The input source portrait or driving video hasn't been prepared yet ๐ฅ!", duration=5)
+
+ def execute_s_video(
+ self,
+ input_s_video_path,
+ input_video_path,
+ flag_relative_input,
+ flag_do_crop_input,
+ flag_remap_input,
+ flag_crop_driving_video_input
+ ):
+ """ for video driven source to video animation
+ """
+ if input_s_video_path is not None and input_video_path is not None:
+ args_user = {
+ 'source_driving_info': input_s_video_path,
+ 'driving_info': input_video_path,
+ 'flag_relative': flag_relative_input,
+ 'flag_do_crop': flag_do_crop_input,
+ 'flag_pasteback': flag_remap_input,
+ 'flag_crop_driving_video': flag_crop_driving_video_input
+ }
+ # update config from user input
+ self.args = update_args(self.args, args_user)
+ self.live_portrait_wrapper.update_config(self.args.__dict__)
+ self.cropper.update_config(self.args.__dict__)
+ # video driven animation
+ video_path, video_path_concat = self.execute_source_video(self.args)
+ gr.Info("Run successfully!", duration=3)
+ return video_path, video_path_concat,
+ else:
+ raise gr.Error("The input source video or driving video hasn't been prepared yet ๐ฅ!", duration=5)
+
+ def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_image, flag_do_crop=True):
+ """ for single image retargeting
+ """
+ # disposable feature
+ f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
+ self.prepare_retargeting(input_image, flag_do_crop)
+
+ if input_eye_ratio is None or input_lip_ratio is None:
+ raise gr.Error("Invalid ratio input ๐ฅ!", duration=5)
+ else:
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
+ x_s_user = x_s_user.to(self.live_portrait_wrapper.device)
+ f_s_user = f_s_user.to(self.live_portrait_wrapper.device)
+ # โ_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], source_lmk_user)
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
+ # โ_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], source_lmk_user)
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
+ num_kp = x_s_user.shape[1]
+ # default: use x_s
+ x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
+ # D(W(f_s; x_s, xโฒ_d))
+ out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
+ out = self.live_portrait_wrapper.parse_output(out['out'])[0]
+ out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
+ gr.Info("Run successfully!", duration=2)
+ return out, out_to_ori_blend
+
+ def prepare_retargeting(self, input_image, flag_do_crop=True):
+ """ for single image retargeting
+ """
+ if input_image is not None:
+ # gr.Info("Upload successfully!", duration=2)
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
+ ######## process source portrait ########
+ img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=16)
+ log(f"Load source image from {input_image}.")
+ crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
+ if flag_do_crop:
+ I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
+ else:
+ I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
+ ############################################
+ f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
+ x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
+ source_lmk_user = crop_info['lmk_crop']
+ crop_M_c2o = crop_info['M_c2o']
+ mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
+ return f_s_user, x_s_user, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
+ else:
+ # when press the clear button, go here
+ raise gr.Error("The retargeting input hasn't been prepared yet ๐ฅ!", duration=5)
diff --git a/src/live_portrait_pipeline.py b/src/live_portrait_pipeline.py
new file mode 100644
index 0000000000000000000000000000000000000000..45d9224398dcb8f398b78d3ab065c46f6a81674a
--- /dev/null
+++ b/src/live_portrait_pipeline.py
@@ -0,0 +1,579 @@
+# coding: utf-8
+
+"""
+Pipeline of LivePortrait
+"""
+import matplotlib.pyplot as plt
+import torch
+torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
+
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+import numpy as np
+import os
+import os.path as osp
+from rich.progress import track
+
+from .config.argument_config import ArgumentConfig
+from .config.inference_config import InferenceConfig
+from .config.crop_config import CropConfig
+from .utils.cropper import Cropper
+from .utils.camera import get_rotation_matrix
+from .utils.video import images2video, concat_frames,concat_frame, get_fps, add_audio_to_video, has_audio_stream
+from .utils.crop import _transform_img, prepare_paste_back, paste_back
+from .utils.io import load_image_rgb, load_driving_info, resize_to_limit, dump, load
+from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix
+from .utils.rprint import rlog as log
+# from .utils.viz import viz_lmk
+from .live_portrait_wrapper import LivePortraitWrapper
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+class LivePortraitPipeline(object):
+
+ def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
+ self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
+ self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)
+
+ def execute(self, args: ArgumentConfig):
+ # for convenience
+ inf_cfg = self.live_portrait_wrapper.inference_cfg
+ device = self.live_portrait_wrapper.device
+ crop_cfg = self.cropper.crop_cfg
+
+ ######## process source portrait ########
+ img_rgb = load_image_rgb(args.source_image)
+ # cv2.imwrite("./img.png", img_rgb)
+ img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
+ log(f"Load source image from {args.source_image}")
+ crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
+ if crop_info is None:
+ raise Exception("No face detected in the source image!")
+ source_lmk = crop_info['lmk_crop']
+ img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
+
+ if inf_cfg.flag_do_crop:
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
+ else:
+ img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
+ x_c_s = x_s_info['kp']
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
+ f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
+ x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
+
+ flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
+ if flag_lip_zero:
+ # let lip-open scalar to be 0 at first
+ c_d_lip_before_animation = [0.]
+ combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
+ if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
+ flag_lip_zero = False
+ else:
+ lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
+ ############################################
+
+ ######## process driving info ########
+ flag_load_from_template = is_template(args.driving_info)
+ driving_rgb_crop_256x256_lst = None
+ wfp_template = None
+
+ if flag_load_from_template:
+ # NOTE: load from template, it is fast, but the cropping video is None
+ log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
+ template_dct = load(args.driving_info)
+ n_frames = template_dct['n_frames']
+
+ # set output_fps
+ output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
+ log(f'The FPS of template: {output_fps}')
+
+ if args.flag_crop_driving_video:
+ log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
+
+ elif osp.exists(args.driving_info) and is_video(args.driving_info):
+ # load from video file, AND make motion template
+ log(f"Load video: {args.driving_info}")
+ if osp.isdir(args.driving_info):
+ output_fps = inf_cfg.output_fps
+ else:
+ output_fps = int(get_fps(args.driving_info))
+ log(f'The FPS of {args.driving_info} is: {output_fps}')
+
+ log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
+ driving_rgb_lst = load_driving_info(args.driving_info)
+
+ ######## make motion template ########
+ log("Start making motion template...")
+ if inf_cfg.flag_crop_driving_video:
+ ret = self.cropper.crop_driving_video(driving_rgb_lst)
+ log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
+ driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
+ else:
+ driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
+
+ c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
+ # save the motion template
+ I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
+ template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
+
+ wfp_template = remove_suffix(args.driving_info) + '.pkl'
+ dump(wfp_template, template_dct)
+ log(f"Dump motion template to {wfp_template}")
+
+ n_frames = I_d_lst.shape[0]
+ else:
+ raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
+ #########################################
+
+ ######## prepare for pasteback ########
+ I_p_pstbk_lst = None
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
+ I_p_pstbk_lst = []
+ log("Prepared pasteback mask done.")
+ #########################################
+
+ I_p_lst = []
+ R_d_0, x_d_0_info = None, None
+
+ for i in track(range(n_frames), description='๐Animating...', total=n_frames):
+ x_d_i_info = template_dct['motion'][i]
+ x_d_i_info = dct2device(x_d_i_info, device)
+ R_d_i = x_d_i_info['R_d']
+
+ if i == 0:
+ R_d_0 = R_d_i
+ x_d_0_info = x_d_i_info
+
+ if inf_cfg.flag_relative_motion:
+ R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
+ delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
+ scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
+ t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
+ else:
+ R_new = R_d_i
+ delta_new = x_d_i_info['exp']
+ scale_new = x_s_info['scale']
+ t_new = x_d_i_info['t']
+
+ t_new[..., 2].fill_(0) # zero tz
+ x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
+
+ # Algorithm 1:
+ if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
+ # without stitching or retargeting
+ if flag_lip_zero:
+ x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
+ else:
+ pass
+ elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
+ # with stitching and without retargeting
+ if flag_lip_zero:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
+ else:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
+ else:
+ eyes_delta, lip_delta = None, None
+ if inf_cfg.flag_eye_retargeting:
+ c_d_eyes_i = c_d_eyes_lst[i]
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
+ # โ_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
+ if inf_cfg.flag_lip_retargeting:
+ c_d_lip_i = c_d_lip_lst[i]
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
+ # โ_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)
+
+ if inf_cfg.flag_relative_motion: # use x_s
+ x_d_i_new = x_s + \
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
+ else: # use x_d,i
+ x_d_i_new = x_d_i_new + \
+ (eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
+ (lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
+
+ if inf_cfg.flag_stitching:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
+
+ out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
+ I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
+ I_p_lst.append(I_p_i)
+
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ # TODO: pasteback is slow, considering optimize it using multi-threading or GPU
+ I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
+ I_p_pstbk_lst.append(I_p_pstbk)
+
+ mkdir(args.output_dir)
+ wfp_concat = None
+ flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
+
+ ######### build final concact result #########
+ # driving frame | source image | generation, or source image | generation
+ frames_concatenated = concat_frame(driving_rgb_crop_256x256_lst, img_crop_256x256, I_p_lst)
+ wfp_concat = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat.mp4')
+ images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
+
+ if flag_has_audio:
+ # final result with concact
+ wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_concat_with_audio.mp4')
+ add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
+ os.replace(wfp_concat_with_audio, wfp_concat)
+ log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
+
+ # save drived result
+ wfp = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}.mp4')
+ if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
+ images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
+ else:
+ images2video(I_p_lst, wfp=wfp, fps=output_fps)
+
+ ######### build final result #########
+ if flag_has_audio:
+ wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
+ add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
+ os.replace(wfp_with_audio, wfp)
+ log(f"Replace {wfp} with {wfp_with_audio}")
+
+ # final log
+ if wfp_template not in (None, ''):
+ log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
+ log(f'Animated video: {wfp}')
+ log(f'Animated video with concact: {wfp_concat}')
+
+ return wfp, wfp_concat
+
+ def execute_source_video(self, args: ArgumentConfig):
+ # for convenience
+ inf_cfg = self.live_portrait_wrapper.inference_cfg
+ device = self.live_portrait_wrapper.device
+ crop_cfg = self.cropper.crop_cfg
+
+ # prepare source video
+ source_driving_rgb_crop_256x256_lst = None
+ source_wfp_template = None
+ if osp.exists(args.source_driving_info) and is_video(args.source_driving_info):
+ # load from video file, AND make motion template
+ log(f"Load video: {args.source_driving_info}")
+ if osp.isdir(args.source_driving_info):
+ output_fps = inf_cfg.output_fps
+ else:
+ output_fps = int(get_fps(args.source_driving_info))
+ log(f'The FPS of {args.source_driving_info} is: {output_fps}')
+
+ log(f"Load video file (mp4 mov avi etc...): {args.source_driving_info}")
+ source_driving_rgb_lst = load_driving_info(args.source_driving_info)
+
+ ######## process source portrait ########
+ crop_info_lst = []
+ x_s_info_lst = []
+ x_c_s_lst=[]
+ R_s_lst=[]
+ f_s_lst=[]
+ x_s_lst=[]
+ img_crop_256x256_lst = []
+ img_rgb_lst = []
+ for img_rgb in source_driving_rgb_lst:
+ # img_rgb = load_image_rgb(args.source_image)
+ # cv2.imwrite("./img.png", img_rgb)
+ img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
+
+ crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
+ if crop_info is None:
+ raise Exception("No face detected in the source image!")
+ source_lmk = crop_info['lmk_crop']
+ img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
+
+ img_crop_256x256_lst.append(img_crop_256x256)
+ if inf_cfg.flag_do_crop:
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
+ else:
+ img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
+ I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
+ x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
+ x_c_s = x_s_info['kp']
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
+ f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
+ x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
+
+ x_c_s_lst.append(x_c_s)
+ R_s_lst.append(R_s)
+ f_s_lst.append(f_s)
+ x_s_lst.append(x_s)
+ x_s_info_lst.append(x_s_info)
+ crop_info_lst.append(crop_info)
+ img_rgb_lst.append(img_rgb)
+
+ flag_lip_zero = inf_cfg.flag_lip_zero # not overwrite
+ if flag_lip_zero:
+ # let lip-open scalar to be 0 at first
+ c_d_lip_before_animation = [0.]
+ combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
+ if combined_lip_ratio_tensor_before_animation[0][0] < inf_cfg.lip_zero_threshold:
+ flag_lip_zero = False
+ else:
+ lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
+ ############################################
+
+
+
+
+ ######## make motion template ########
+ log("Start making motion template...")
+ if inf_cfg.flag_crop_source_video:
+ ret = self.cropper.crop_driving_video(source_driving_rgb_lst)
+ log(f'source video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
+ source_driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
+ source_driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_driving_rgb_crop_lst]
+ else:
+ source_driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_driving_rgb_lst)
+ source_driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_driving_rgb_lst] # force to resize to 256x256
+
+ source_c_d_eyes_lst, source_c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(source_driving_lmk_crop_lst)
+ # save the motion template
+ source_I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(source_driving_rgb_crop_256x256_lst)
+ source_template_dct = self.make_motion_template(source_I_d_lst, source_c_d_eyes_lst, source_c_d_lip_lst, output_fps=output_fps)
+
+ source_wfp_template = remove_suffix(args.source_driving_info) + '.pkl'
+ dump(source_wfp_template, source_template_dct)
+ log(f"Dump motion template to {source_wfp_template}")
+
+ source_n_frames = source_I_d_lst.shape[0]
+ else:
+ raise Exception(f"{args.source_driving_info} not exists or unsupported driving info types!")
+
+
+
+
+ ######## process driving info ########
+ flag_load_from_template = is_template(args.driving_info)
+ driving_rgb_crop_256x256_lst = None
+ wfp_template = None
+
+ if flag_load_from_template:
+ # NOTE: load from template, it is fast, but the cropping video is None
+ log(f"Load from template: {args.driving_info}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
+ template_dct = load(args.driving_info)
+ n_frames = template_dct['n_frames']
+
+ # set output_fps
+ output_fps = template_dct.get('output_fps', inf_cfg.output_fps)
+ log(f'The FPS of template: {output_fps}')
+
+ if args.flag_crop_driving_video:
+ log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
+
+ elif osp.exists(args.driving_info) and is_video(args.driving_info):
+ # load from video file, AND make motion template
+ log(f"Load video: {args.driving_info}")
+ if osp.isdir(args.driving_info):
+ output_fps = inf_cfg.output_fps
+ else:
+ output_fps = int(get_fps(args.driving_info))
+ log(f'The FPS of {args.driving_info} is: {output_fps}')
+
+ log(f"Load video file (mp4 mov avi etc...): {args.driving_info}")
+ driving_rgb_lst = load_driving_info(args.driving_info)
+
+ ######## make motion template ########
+ log("Start making motion template...")
+ if inf_cfg.flag_crop_driving_video:
+ ret = self.cropper.crop_driving_video(driving_rgb_lst)
+ log(f'Driving video is cropped, {len(ret["frame_crop_lst"])} frames are processed.')
+ driving_rgb_crop_lst, driving_lmk_crop_lst = ret['frame_crop_lst'], ret['lmk_crop_lst']
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
+ else:
+ driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
+
+ c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_driving_ratio(driving_lmk_crop_lst)
+ # save the motion template
+ I_d_lst = self.live_portrait_wrapper.prepare_driving_videos(driving_rgb_crop_256x256_lst)
+ template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
+
+ wfp_template = remove_suffix(args.driving_info) + '.pkl'
+ dump(wfp_template, template_dct)
+ log(f"Dump motion template to {wfp_template}")
+
+ n_frames = I_d_lst.shape[0]
+ else:
+ raise Exception(f"{args.driving_info} not exists or unsupported driving info types!")
+ #########################################
+
+ n_frame = min(n_frames,source_n_frames)
+ I_p_lst = []
+ R_d_0, x_d_0_info = None, None
+
+ ######## prepare for pasteback ########
+ I_p_pstbk_lst = None
+ mask_ori_float_lst=[]
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ for i in range(n_frame):
+ mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info_lst[i]['M_c2o'], dsize=(img_rgb_lst[i].shape[1], img_rgb_lst[i].shape[0]))
+ mask_ori_float_lst.append(mask_ori_float)
+ I_p_pstbk_lst = []
+ log("Prepared pasteback mask done.")
+ #########################################
+
+
+
+ for i in track(range(n_frame), description='๐Animating...', total=n_frame):
+ x_d_i_info = template_dct['motion'][i]
+ x_d_i_info = dct2device(x_d_i_info, device)
+ R_d_i = x_d_i_info['R_d']
+
+ if i == 0:
+ R_d_0 = R_d_i
+ x_d_0_info = x_d_i_info
+
+ if inf_cfg.flag_relative_motion:
+ R_new = R_s_lst[i]
+ delta_new = x_d_i_info['exp'] - x_d_0_info['exp']
+ scale_new = x_s_info_lst[i]['scale']
+ t_new = x_s_info_lst[i]['t']
+
+ # R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s_lst[i]
+ # delta_new = x_s_info_lst[i]['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
+ # scale_new = x_s_info_lst[i]['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
+ # t_new = x_s_info_lst[i]['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
+
+ # R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s_lst[i]
+ # delta_new =x_d_i_info['exp'] - x_d_0_info['exp']
+ # scale_new = x_s_info_lst[i]['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
+ # t_new = x_s_info_lst[i]['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
+ else:
+ R_new = R_d_i
+ delta_new = x_d_i_info['exp']
+ scale_new = x_s_info_lst[i]['scale']
+ t_new = x_d_i_info['t']
+
+ t_new[..., 2].fill_(0) # zero tz
+ x_d_i_new = scale_new * (x_c_s_lst[i] @ R_new + delta_new) + t_new
+
+ # Algorithm 1:
+ if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
+ # without stitching or retargeting
+ if flag_lip_zero:
+ x_d_i_new += lip_delta_before_animation.reshape(-1, x_s_lst[i].shape[1], 3)
+ else:
+ pass
+ elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
+ # with stitching and without retargeting
+ if flag_lip_zero:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s_lst[i].shape[1], 3)
+ else:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new)
+ else:
+ eyes_delta, lip_delta = None, None
+ if inf_cfg.flag_eye_retargeting:
+ c_d_eyes_i = c_d_eyes_lst[i]
+ combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
+ # โ_eyes,i = R_eyes(x_s_lst[i]; c_s,eyes, c_d,eyes,i)
+ eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_lst[i], combined_eye_ratio_tensor)
+ if inf_cfg.flag_lip_retargeting:
+ c_d_lip_i = c_d_lip_lst[i]
+ combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
+ # โ_lip,i = R_lip(x_s_lst[i]; c_s,lip, c_d,lip,i)
+ lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_lst[i], combined_lip_ratio_tensor)
+
+ if inf_cfg.flag_relative_motion: # use x_s_lst[i]
+ x_d_i_new = x_s_lst[i] + \
+ (eyes_delta.reshape(-1, x_s_lst[i].shape[1], 3) if eyes_delta is not None else 0) + \
+ (lip_delta.reshape(-1, x_s_lst[i].shape[1], 3) if lip_delta is not None else 0)
+ else: # use x_d,i
+ x_d_i_new = x_d_i_new + \
+ (eyes_delta.reshape(-1, x_s_lst[i].shape[1], 3) if eyes_delta is not None else 0) + \
+ (lip_delta.reshape(-1, x_s_lst[i].shape[1], 3) if lip_delta is not None else 0)
+
+ if inf_cfg.flag_stitching:
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s_lst[i], x_d_i_new)
+
+ out = self.live_portrait_wrapper.warp_decode(f_s_lst[i], x_s_lst[i], x_d_i_new)
+ I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
+
+ I_p_lst.append(I_p_i)
+
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ # TODO: pasteback is slow, considering optimize it using multi-threading or GPU
+ I_p_pstbk = paste_back(I_p_i, crop_info_lst[i]['M_c2o'], img_rgb_lst[i], mask_ori_float_lst[i])
+ I_p_pstbk_lst.append(I_p_pstbk)
+ # end for
+ mkdir(args.output_dir)
+ wfp_concat = None
+ flag_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving_info)
+
+ ######### build final concact result #########
+ # driving frame | source image | generation, or source image | generation
+ frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256_lst, I_p_lst)
+ wfp_concat = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}_concat.mp4')
+ images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
+
+ if flag_has_audio:
+ # final result with concact
+ wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}_concat_with_audio.mp4')
+ add_audio_to_video(wfp_concat, args.driving_info, wfp_concat_with_audio)
+ os.replace(wfp_concat_with_audio, wfp_concat)
+ log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
+
+ # save drived result
+ wfp = osp.join(args.output_dir, f'{basename(args.source_driving_info)}--{basename(args.driving_info)}.mp4')
+ if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
+ images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
+ else:
+ images2video(I_p_lst, wfp=wfp, fps=output_fps)
+
+ ######### build final result #########
+ if flag_has_audio:
+ wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source_image)}--{basename(args.driving_info)}_with_audio.mp4')
+ add_audio_to_video(wfp, args.driving_info, wfp_with_audio)
+ os.replace(wfp_with_audio, wfp)
+ log(f"Replace {wfp} with {wfp_with_audio}")
+
+ # final log
+ if wfp_template not in (None, ''):
+ log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
+ log(f'Animated video: {wfp}')
+ log(f'Animated video with concact: {wfp_concat}')
+
+ return wfp, wfp_concat
+
+ def make_motion_template(self, I_d_lst, c_d_eyes_lst, c_d_lip_lst, **kwargs):
+ n_frames = I_d_lst.shape[0]
+ template_dct = {
+ 'n_frames': n_frames,
+ 'output_fps': kwargs.get('output_fps', 25),
+ 'motion': [],
+ 'c_d_eyes_lst': [],
+ 'c_d_lip_lst': [],
+ }
+
+ for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
+ # collect s_d, R_d, ฮด_d and t_d for inference
+ I_d_i = I_d_lst[i]
+ x_d_i_info = self.live_portrait_wrapper.get_kp_info(I_d_i)
+ R_d_i = get_rotation_matrix(x_d_i_info['pitch'], x_d_i_info['yaw'], x_d_i_info['roll'])
+
+ item_dct = {
+ 'scale': x_d_i_info['scale'].cpu().numpy().astype(np.float32),
+ 'R_d': R_d_i.cpu().numpy().astype(np.float32),
+ 'exp': x_d_i_info['exp'].cpu().numpy().astype(np.float32),
+ 't': x_d_i_info['t'].cpu().numpy().astype(np.float32),
+ }
+
+ template_dct['motion'].append(item_dct)
+
+ c_d_eyes = c_d_eyes_lst[i].astype(np.float32)
+ template_dct['c_d_eyes_lst'].append(c_d_eyes)
+
+ c_d_lip = c_d_lip_lst[i].astype(np.float32)
+ template_dct['c_d_lip_lst'].append(c_d_lip)
+
+ return template_dct
diff --git a/src/live_portrait_wrapper.py b/src/live_portrait_wrapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..318df716f43fdb36474b7cb0c5e0935ad5a1cb2c
--- /dev/null
+++ b/src/live_portrait_wrapper.py
@@ -0,0 +1,311 @@
+# coding: utf-8
+
+"""
+Wrapper for LivePortrait core functions
+"""
+
+import os.path as osp
+import numpy as np
+import cv2
+import torch
+import yaml
+
+from .utils.timer import Timer
+from .utils.helper import load_model, concat_feat
+from .utils.camera import headpose_pred_to_degree, get_rotation_matrix
+from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
+from .config.inference_config import InferenceConfig
+from .utils.rprint import rlog as log
+
+
+class LivePortraitWrapper(object):
+
+ def __init__(self, inference_cfg: InferenceConfig):
+
+ self.inference_cfg = inference_cfg
+ self.device_id = inference_cfg.device_id
+ if inference_cfg.flag_force_cpu:
+ self.device = 'cpu'
+ else:
+ self.device = 'cuda:' + str(self.device_id)
+
+ model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader)
+ # init F
+ self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor')
+ log(f'Load appearance_feature_extractor done.')
+ # init M
+ self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor')
+ log(f'Load motion_extractor done.')
+ # init W
+ self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module')
+ log(f'Load warping_module done.')
+ # init G
+ self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator')
+ log(f'Load spade_generator done.')
+ # init S and R
+ if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S):
+ self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module')
+ log(f'Load stitching_retargeting_module done.')
+ else:
+ self.stitching_retargeting_module = None
+
+
+ self.timer = Timer()
+
+ def update_config(self, user_args):
+ for k, v in user_args.items():
+ if hasattr(self.inference_cfg, k):
+ setattr(self.inference_cfg, k, v)
+
+ def prepare_source(self, img: np.ndarray) -> torch.Tensor:
+ """ construct the input as standard
+ img: HxWx3, uint8, 256x256
+ """
+ h, w = img.shape[:2]
+ if h != self.inference_cfg.input_shape[0] or w != self.inference_cfg.input_shape[1]:
+ x = cv2.resize(img, (self.inference_cfg.input_shape[0], self.inference_cfg.input_shape[1]))
+ else:
+ x = img.copy()
+
+ if x.ndim == 3:
+ x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
+ elif x.ndim == 4:
+ x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
+ else:
+ raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
+ x = np.clip(x, 0, 1) # clip to 0~1
+ x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
+ x = x.to(self.device)
+ return x
+
+ def prepare_driving_videos(self, imgs) -> torch.Tensor:
+ """ construct the input as standard
+ imgs: NxBxHxWx3, uint8
+ """
+ if isinstance(imgs, list):
+ _imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1
+ elif isinstance(imgs, np.ndarray):
+ _imgs = imgs
+ else:
+ raise ValueError(f'imgs type error: {type(imgs)}')
+
+ y = _imgs.astype(np.float32) / 255.
+ y = np.clip(y, 0, 1) # clip to 0~1
+ y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW
+ y = y.to(self.device)
+
+ return y
+
+ def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
+ """ get the appearance feature of the image by F
+ x: Bx3xHxW, normalized to 0~1
+ """
+ with torch.no_grad():
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
+ feature_3d = self.appearance_feature_extractor(x)
+
+ return feature_3d.float()
+
+ def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
+ """ get the implicit keypoint information
+ x: Bx3xHxW, normalized to 0~1
+ flag_refine_info: whether to transform the pose to degrees and the dimention of the reshape
+ return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'
+ """
+ with torch.no_grad():
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
+ kp_info = self.motion_extractor(x)
+
+ if self.inference_cfg.flag_use_half_precision:
+ # float the dict
+ for k, v in kp_info.items():
+ if isinstance(v, torch.Tensor):
+ kp_info[k] = v.float()
+
+ flag_refine_info: bool = kwargs.get('flag_refine_info', True)
+ if flag_refine_info:
+ bs = kp_info['kp'].shape[0]
+ kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1
+ kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1
+ kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1
+ kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3
+ kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3
+
+ return kp_info
+
+ def get_pose_dct(self, kp_info: dict) -> dict:
+ pose_dct = dict(
+ pitch=headpose_pred_to_degree(kp_info['pitch']).item(),
+ yaw=headpose_pred_to_degree(kp_info['yaw']).item(),
+ roll=headpose_pred_to_degree(kp_info['roll']).item(),
+ )
+ return pose_dct
+
+ def get_fs_and_kp_info(self, source_prepared, driving_first_frame):
+
+ # get the canonical keypoints of source image by M
+ source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True)
+ source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll'])
+
+ # get the canonical keypoints of first driving frame by M
+ driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True)
+ driving_first_frame_rotation = get_rotation_matrix(
+ driving_first_frame_kp_info['pitch'],
+ driving_first_frame_kp_info['yaw'],
+ driving_first_frame_kp_info['roll']
+ )
+
+ # get feature volume by F
+ source_feature_3d = self.extract_feature_3d(source_prepared)
+
+ return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation
+
+ def transform_keypoint(self, kp_info: dict):
+ """
+ transform the implicit keypoints with the pose, shift, and expression deformation
+ kp: BxNx3
+ """
+ kp = kp_info['kp'] # (bs, k, 3)
+ pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
+
+ t, exp = kp_info['t'], kp_info['exp']
+ scale = kp_info['scale']
+
+ pitch = headpose_pred_to_degree(pitch)
+ yaw = headpose_pred_to_degree(yaw)
+ roll = headpose_pred_to_degree(roll)
+
+ bs = kp.shape[0]
+ if kp.ndim == 2:
+ num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
+ else:
+ num_kp = kp.shape[1] # Bxnum_kpx3
+
+ rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
+
+ # Eqn.2: s * (R * x_c,s + exp) + t
+ kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
+ kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
+ kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
+
+ return kp_transformed
+
+ def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: BxNx3
+ eye_close_ratio: Bx3
+ Return: Bx(3*num_kp+2)
+ """
+ feat_eye = concat_feat(kp_source, eye_close_ratio)
+
+ with torch.no_grad():
+ delta = self.stitching_retargeting_module['eye'](feat_eye)
+
+ return delta
+
+ def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: BxNx3
+ lip_close_ratio: Bx2
+ """
+ feat_lip = concat_feat(kp_source, lip_close_ratio)
+
+ with torch.no_grad():
+ delta = self.stitching_retargeting_module['lip'](feat_lip)
+
+ return delta
+
+ def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: BxNx3
+ kp_driving: BxNx3
+ Return: Bx(3*num_kp+2)
+ """
+ feat_stiching = concat_feat(kp_source, kp_driving)
+
+ with torch.no_grad():
+ delta = self.stitching_retargeting_module['stitching'](feat_stiching)
+
+ return delta
+
+ def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """ conduct the stitching
+ kp_source: Bxnum_kpx3
+ kp_driving: Bxnum_kpx3
+ """
+
+ if self.stitching_retargeting_module is not None:
+
+ bs, num_kp = kp_source.shape[:2]
+
+ kp_driving_new = kp_driving.clone()
+ delta = self.stitch(kp_source, kp_driving_new)
+
+ delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3
+ delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2
+
+ kp_driving_new += delta_exp
+ kp_driving_new[..., :2] += delta_tx_ty
+
+ return kp_driving_new
+
+ return kp_driving
+
+ def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """ get the image after the warping of the implicit keypoints
+ feature_3d: Bx32x16x64x64, feature volume
+ kp_source: BxNx3
+ kp_driving: BxNx3
+ """
+ # The line 18 in Algorithm 1: D(W(f_s; x_s, xโฒ_d,i)๏ผ
+ with torch.no_grad():
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
+ # get decoder input
+ ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
+ # decode
+ ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])
+
+ # float the dict
+ if self.inference_cfg.flag_use_half_precision:
+ for k, v in ret_dct.items():
+ if isinstance(v, torch.Tensor):
+ ret_dct[k] = v.float()
+
+ return ret_dct
+
+ def parse_output(self, out: torch.Tensor) -> np.ndarray:
+ """ construct the output as standard
+ return: 1xHxWx3, uint8
+ """
+ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3
+ out = np.clip(out, 0, 1) # clip to 0~1
+ out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255
+
+ return out
+
+ def calc_driving_ratio(self, driving_lmk_lst):
+ input_eye_ratio_lst = []
+ input_lip_ratio_lst = []
+ for lmk in driving_lmk_lst:
+
+ # for eyes retargeting
+ input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None]))
+ # for lip retargeting
+ input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None]))
+ return input_eye_ratio_lst, input_lip_ratio_lst
+
+ def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
+ c_s_eyes = calc_eye_close_ratio(source_lmk[None])
+ c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device)
+ c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device)
+ # [c_s,eyes, c_d,eyes,i]
+ combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1)
+ return combined_eye_ratio_tensor
+
+ def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
+ c_s_lip = calc_lip_close_ratio(source_lmk[None])
+ c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device)
+ c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1
+ # [c_s,lip, c_d,lip,i]
+ combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
+ return combined_lip_ratio_tensor
diff --git a/src/modules/__init__.py b/src/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/modules/__pycache__/__init__.cpython-39.pyc b/src/modules/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9d7d1b5856d852ea6503a0ab2f08d0ee9fe315e4
Binary files /dev/null and b/src/modules/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/appearance_feature_extractor.cpython-39.pyc b/src/modules/__pycache__/appearance_feature_extractor.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..caadfb9ca097fcb23464d782bbedcb90593ed56c
Binary files /dev/null and b/src/modules/__pycache__/appearance_feature_extractor.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/convnextv2.cpython-39.pyc b/src/modules/__pycache__/convnextv2.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2f8905f673e1ec650234002bd4133ab04e1f94bd
Binary files /dev/null and b/src/modules/__pycache__/convnextv2.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/dense_motion.cpython-39.pyc b/src/modules/__pycache__/dense_motion.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..25c43a9da009d766897d2d4e1d822f5b8473dd71
Binary files /dev/null and b/src/modules/__pycache__/dense_motion.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/motion_extractor.cpython-39.pyc b/src/modules/__pycache__/motion_extractor.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ce597f29d945fc24dcdb90a823585bbbe3ff17d8
Binary files /dev/null and b/src/modules/__pycache__/motion_extractor.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/spade_generator.cpython-39.pyc b/src/modules/__pycache__/spade_generator.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..68c8eeab383f0fb3b6977bfbf834faee6a5eade9
Binary files /dev/null and b/src/modules/__pycache__/spade_generator.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/stitching_retargeting_network.cpython-39.pyc b/src/modules/__pycache__/stitching_retargeting_network.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a519257ac04531027d5abbf0e1767a03304285b1
Binary files /dev/null and b/src/modules/__pycache__/stitching_retargeting_network.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/util.cpython-39.pyc b/src/modules/__pycache__/util.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8a7619121672ee8275fcd8202cf5d0709040c4ba
Binary files /dev/null and b/src/modules/__pycache__/util.cpython-39.pyc differ
diff --git a/src/modules/__pycache__/warping_network.cpython-39.pyc b/src/modules/__pycache__/warping_network.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..81dbd09cc2dd75fd721b4927dc150083bc28f70e
Binary files /dev/null and b/src/modules/__pycache__/warping_network.cpython-39.pyc differ
diff --git a/src/modules/appearance_feature_extractor.py b/src/modules/appearance_feature_extractor.py
new file mode 100644
index 0000000000000000000000000000000000000000..78469ed244aff039b854cda99c7e06fe9ecef048
--- /dev/null
+++ b/src/modules/appearance_feature_extractor.py
@@ -0,0 +1,54 @@
+# coding: utf-8
+
+"""
+Appearance extractor(F) defined in paper, which maps the source image s to a 3D appearance feature volume.
+"""
+
+import torch
+from torch import nn
+from .util import SameBlock2d, DownBlock2d, ResBlock3d
+
+
+class AppearanceFeatureExtractor(nn.Module):
+
+ def __init__(self, image_channel, block_expansion, num_down_blocks, max_features, reshape_channel, reshape_depth, num_resblocks):
+ super(AppearanceFeatureExtractor, self).__init__()
+ self.image_channel = image_channel
+ self.block_expansion = block_expansion
+ self.num_down_blocks = num_down_blocks
+ self.max_features = max_features
+ self.reshape_channel = reshape_channel
+ self.reshape_depth = reshape_depth
+ # image_channel: 3
+ # block_expansion: 64
+ # num_down_blocks: 2
+ # max_features: 512
+ # reshape_channel: 32
+ # reshape_depth: 16
+ # num_resblocks: 6
+ self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))
+
+ down_blocks = []
+ for i in range(num_down_blocks):
+ in_features = min(max_features, block_expansion * (2 ** i))
+ out_features = min(max_features, block_expansion * (2 ** (i + 1)))
+ down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
+ self.down_blocks = nn.ModuleList(down_blocks)
+
+ self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
+
+ self.resblocks_3d = torch.nn.Sequential()
+ for i in range(num_resblocks):
+ self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
+
+ def forward(self, source_image):
+ out = self.first(source_image) # Bx3x256x256 -> Bx64x256x256
+
+ for i in range(len(self.down_blocks)):
+ out = self.down_blocks[i](out)
+ out = self.second(out)
+ bs, c, h, w = out.shape # ->Bx512x64x64
+
+ f_s = out.view(bs, self.reshape_channel, self.reshape_depth, h, w) # ->Bx32x16x64x64
+ f_s = self.resblocks_3d(f_s) # ->Bx32x16x64x64
+ return f_s
diff --git a/src/modules/convnextv2.py b/src/modules/convnextv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..1dd14cffa191ba9a1c95c118d730c06ffa45382a
--- /dev/null
+++ b/src/modules/convnextv2.py
@@ -0,0 +1,149 @@
+# coding: utf-8
+
+"""
+This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation.
+"""
+
+import torch
+import torch.nn as nn
+# from timm.models.layers import trunc_normal_, DropPath
+from .util import LayerNorm, DropPath, trunc_normal_, GRN
+
+__all__ = ['convnextv2_tiny']
+
+
+class Block(nn.Module):
+ """ ConvNeXtV2 Block.
+
+ Args:
+ dim (int): Number of input channels.
+ drop_path (float): Stochastic depth rate. Default: 0.0
+ """
+
+ def __init__(self, dim, drop_path=0.):
+ super().__init__()
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
+ self.norm = LayerNorm(dim, eps=1e-6)
+ self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
+ self.act = nn.GELU()
+ self.grn = GRN(4 * dim)
+ self.pwconv2 = nn.Linear(4 * dim, dim)
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+
+ def forward(self, x):
+ input = x
+ x = self.dwconv(x)
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
+ x = self.norm(x)
+ x = self.pwconv1(x)
+ x = self.act(x)
+ x = self.grn(x)
+ x = self.pwconv2(x)
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
+
+ x = input + self.drop_path(x)
+ return x
+
+
+class ConvNeXtV2(nn.Module):
+ """ ConvNeXt V2
+
+ Args:
+ in_chans (int): Number of input image channels. Default: 3
+ num_classes (int): Number of classes for classification head. Default: 1000
+ depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
+ dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
+ drop_path_rate (float): Stochastic depth rate. Default: 0.
+ head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
+ """
+
+ def __init__(
+ self,
+ in_chans=3,
+ depths=[3, 3, 9, 3],
+ dims=[96, 192, 384, 768],
+ drop_path_rate=0.,
+ **kwargs
+ ):
+ super().__init__()
+ self.depths = depths
+ self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
+ stem = nn.Sequential(
+ nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
+ LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
+ )
+ self.downsample_layers.append(stem)
+ for i in range(3):
+ downsample_layer = nn.Sequential(
+ LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
+ nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
+ )
+ self.downsample_layers.append(downsample_layer)
+
+ self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
+ dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
+ cur = 0
+ for i in range(4):
+ stage = nn.Sequential(
+ *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
+ )
+ self.stages.append(stage)
+ cur += depths[i]
+
+ self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
+
+ # NOTE: the output semantic items
+ num_bins = kwargs.get('num_bins', 66)
+ num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints
+ self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints
+
+ # print('dims[-1]: ', dims[-1])
+ self.fc_scale = nn.Linear(dims[-1], 1) # scale
+ self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins
+ self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins
+ self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins
+ self.fc_t = nn.Linear(dims[-1], 3) # translation
+ self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta
+
+ def _init_weights(self, m):
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
+ trunc_normal_(m.weight, std=.02)
+ nn.init.constant_(m.bias, 0)
+
+ def forward_features(self, x):
+ for i in range(4):
+ x = self.downsample_layers[i](x)
+ x = self.stages[i](x)
+ return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
+
+ def forward(self, x):
+ x = self.forward_features(x)
+
+ # implicit keypoints
+ kp = self.fc_kp(x)
+
+ # pose and expression deformation
+ pitch = self.fc_pitch(x)
+ yaw = self.fc_yaw(x)
+ roll = self.fc_roll(x)
+ t = self.fc_t(x)
+ exp = self.fc_exp(x)
+ scale = self.fc_scale(x)
+
+ ret_dct = {
+ 'pitch': pitch,
+ 'yaw': yaw,
+ 'roll': roll,
+ 't': t,
+ 'exp': exp,
+ 'scale': scale,
+
+ 'kp': kp, # canonical keypoint
+ }
+
+ return ret_dct
+
+
+def convnextv2_tiny(**kwargs):
+ model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
+ return model
diff --git a/src/modules/dense_motion.py b/src/modules/dense_motion.py
new file mode 100644
index 0000000000000000000000000000000000000000..1527df8793f33d265c0d29046361514caadcb71c
--- /dev/null
+++ b/src/modules/dense_motion.py
@@ -0,0 +1,104 @@
+# coding: utf-8
+
+"""
+The module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving
+"""
+
+from torch import nn
+import torch.nn.functional as F
+import torch
+from .util import Hourglass, make_coordinate_grid, kp2gaussian
+
+
+class DenseMotionNetwork(nn.Module):
+ def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=True):
+ super(DenseMotionNetwork, self).__init__()
+ self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) # ~60+G
+
+ self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) # 65G! NOTE: computation cost is large
+ self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) # 0.8G
+ self.norm = nn.BatchNorm3d(compress, affine=True)
+ self.num_kp = num_kp
+ self.flag_estimate_occlusion_map = estimate_occlusion_map
+
+ if self.flag_estimate_occlusion_map:
+ self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3)
+ else:
+ self.occlusion = None
+
+ def create_sparse_motions(self, feature, kp_driving, kp_source):
+ bs, _, d, h, w = feature.shape # (bs, 4, 16, 64, 64)
+ identity_grid = make_coordinate_grid((d, h, w), ref=kp_source) # (16, 64, 64, 3)
+ identity_grid = identity_grid.view(1, 1, d, h, w, 3) # (1, 1, d=16, h=64, w=64, 3)
+ coordinate_grid = identity_grid - kp_driving.view(bs, self.num_kp, 1, 1, 1, 3)
+
+ k = coordinate_grid.shape[1]
+
+ # NOTE: there lacks an one-order flow
+ driving_to_source = coordinate_grid + kp_source.view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3)
+
+ # adding background feature
+ identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1)
+ sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # (bs, 1+num_kp, d, h, w, 3)
+ return sparse_motions
+
+ def create_deformed_feature(self, feature, sparse_motions):
+ bs, _, d, h, w = feature.shape
+ feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w)
+ feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w)
+ sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3)
+ sparse_deformed = F.grid_sample(feature_repeat, sparse_motions, align_corners=False)
+ sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w)
+
+ return sparse_deformed
+
+ def create_heatmap_representations(self, feature, kp_driving, kp_source):
+ spatial_size = feature.shape[3:] # (d=16, h=64, w=64)
+ gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
+ gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) # (bs, num_kp, d, h, w)
+ heatmap = gaussian_driving - gaussian_source # (bs, num_kp, d, h, w)
+
+ # adding background feature
+ zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()).to(heatmap.device)
+ heatmap = torch.cat([zeros, heatmap], dim=1)
+ heatmap = heatmap.unsqueeze(2) # (bs, 1+num_kp, 1, d, h, w)
+ return heatmap
+
+ def forward(self, feature, kp_driving, kp_source):
+ bs, _, d, h, w = feature.shape # (bs, 32, 16, 64, 64)
+
+ feature = self.compress(feature) # (bs, 4, 16, 64, 64)
+ feature = self.norm(feature) # (bs, 4, 16, 64, 64)
+ feature = F.relu(feature) # (bs, 4, 16, 64, 64)
+
+ out_dict = dict()
+
+ # 1. deform 3d feature
+ sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) # (bs, 1+num_kp, d, h, w, 3)
+ deformed_feature = self.create_deformed_feature(feature, sparse_motion) # (bs, 1+num_kp, c=4, d=16, h=64, w=64)
+
+ # 2. (bs, 1+num_kp, d, h, w)
+ heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) # (bs, 1+num_kp, 1, d, h, w)
+
+ input = torch.cat([heatmap, deformed_feature], dim=2) # (bs, 1+num_kp, c=5, d=16, h=64, w=64)
+ input = input.view(bs, -1, d, h, w) # (bs, (1+num_kp)*c=105, d=16, h=64, w=64)
+
+ prediction = self.hourglass(input)
+
+ mask = self.mask(prediction)
+ mask = F.softmax(mask, dim=1) # (bs, 1+num_kp, d=16, h=64, w=64)
+ out_dict['mask'] = mask
+ mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w)
+ sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w)
+ deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) mask take effect in this place
+ deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3)
+
+ out_dict['deformation'] = deformation
+
+ if self.flag_estimate_occlusion_map:
+ bs, _, d, h, w = prediction.shape
+ prediction_reshape = prediction.view(bs, -1, h, w)
+ occlusion_map = torch.sigmoid(self.occlusion(prediction_reshape)) # Bx1x64x64
+ out_dict['occlusion_map'] = occlusion_map
+
+ return out_dict
diff --git a/src/modules/motion_extractor.py b/src/modules/motion_extractor.py
new file mode 100644
index 0000000000000000000000000000000000000000..9318c101c507da2eae37b64c1bdbf34079c23d23
--- /dev/null
+++ b/src/modules/motion_extractor.py
@@ -0,0 +1,35 @@
+# coding: utf-8
+
+"""
+Motion extractor(M), which directly predicts the canonical keypoints, head pose and expression deformation of the input image
+"""
+
+from torch import nn
+import torch
+
+from .convnextv2 import convnextv2_tiny
+from .util import filter_state_dict
+
+model_dict = {
+ 'convnextv2_tiny': convnextv2_tiny,
+}
+
+
+class MotionExtractor(nn.Module):
+ def __init__(self, **kwargs):
+ super(MotionExtractor, self).__init__()
+
+ # default is convnextv2_base
+ backbone = kwargs.get('backbone', 'convnextv2_tiny')
+ self.detector = model_dict.get(backbone)(**kwargs)
+
+ def load_pretrained(self, init_path: str):
+ if init_path not in (None, ''):
+ state_dict = torch.load(init_path, map_location=lambda storage, loc: storage)['model']
+ state_dict = filter_state_dict(state_dict, remove_name='head')
+ ret = self.detector.load_state_dict(state_dict, strict=False)
+ print(f'Load pretrained model from {init_path}, ret: {ret}')
+
+ def forward(self, x):
+ out = self.detector(x)
+ return out
diff --git a/src/modules/spade_generator.py b/src/modules/spade_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..314cd74d9d03785fe9b380b50edaad2081fcf192
--- /dev/null
+++ b/src/modules/spade_generator.py
@@ -0,0 +1,59 @@
+# coding: utf-8
+
+"""
+Spade decoder(G) defined in the paper, which input the warped feature to generate the animated image.
+"""
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+from .util import SPADEResnetBlock
+
+
+class SPADEDecoder(nn.Module):
+ def __init__(self, upscale=1, max_features=256, block_expansion=64, out_channels=64, num_down_blocks=2):
+ for i in range(num_down_blocks):
+ input_channels = min(max_features, block_expansion * (2 ** (i + 1)))
+ self.upscale = upscale
+ super().__init__()
+ norm_G = 'spadespectralinstance'
+ label_num_channels = input_channels # 256
+
+ self.fc = nn.Conv2d(input_channels, 2 * input_channels, 3, padding=1)
+ self.G_middle_0 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_1 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_2 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_3 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_4 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.G_middle_5 = SPADEResnetBlock(2 * input_channels, 2 * input_channels, norm_G, label_num_channels)
+ self.up_0 = SPADEResnetBlock(2 * input_channels, input_channels, norm_G, label_num_channels)
+ self.up_1 = SPADEResnetBlock(input_channels, out_channels, norm_G, label_num_channels)
+ self.up = nn.Upsample(scale_factor=2)
+
+ if self.upscale is None or self.upscale <= 1:
+ self.conv_img = nn.Conv2d(out_channels, 3, 3, padding=1)
+ else:
+ self.conv_img = nn.Sequential(
+ nn.Conv2d(out_channels, 3 * (2 * 2), kernel_size=3, padding=1),
+ nn.PixelShuffle(upscale_factor=2)
+ )
+
+ def forward(self, feature):
+ seg = feature # Bx256x64x64
+ x = self.fc(feature) # Bx512x64x64
+ x = self.G_middle_0(x, seg)
+ x = self.G_middle_1(x, seg)
+ x = self.G_middle_2(x, seg)
+ x = self.G_middle_3(x, seg)
+ x = self.G_middle_4(x, seg)
+ x = self.G_middle_5(x, seg)
+
+ x = self.up(x) # Bx512x64x64 -> Bx512x128x128
+ x = self.up_0(x, seg) # Bx512x128x128 -> Bx256x128x128
+ x = self.up(x) # Bx256x128x128 -> Bx256x256x256
+ x = self.up_1(x, seg) # Bx256x256x256 -> Bx64x256x256
+
+ x = self.conv_img(F.leaky_relu(x, 2e-1)) # Bx64x256x256 -> Bx3xHxW
+ x = torch.sigmoid(x) # Bx3xHxW
+
+ return x
\ No newline at end of file
diff --git a/src/modules/stitching_retargeting_network.py b/src/modules/stitching_retargeting_network.py
new file mode 100644
index 0000000000000000000000000000000000000000..b459c4b3765dab58b2ff5e5325711679a350bee0
--- /dev/null
+++ b/src/modules/stitching_retargeting_network.py
@@ -0,0 +1,38 @@
+# coding: utf-8
+
+"""
+Stitching module(S) and two retargeting modules(R) defined in the paper.
+
+- The stitching module pastes the animated portrait back into the original image space without pixel misalignment, such as in
+the stitching region.
+
+- The eyes retargeting module is designed to address the issue of incomplete eye closure during cross-id reenactment, especially
+when a person with small eyes drives a person with larger eyes.
+
+- The lip retargeting module is designed similarly to the eye retargeting module, and can also normalize the input by ensuring that
+the lips are in a closed state, which facilitates better animation driving.
+"""
+from torch import nn
+
+
+class StitchingRetargetingNetwork(nn.Module):
+ def __init__(self, input_size, hidden_sizes, output_size):
+ super(StitchingRetargetingNetwork, self).__init__()
+ layers = []
+ for i in range(len(hidden_sizes)):
+ if i == 0:
+ layers.append(nn.Linear(input_size, hidden_sizes[i]))
+ else:
+ layers.append(nn.Linear(hidden_sizes[i - 1], hidden_sizes[i]))
+ layers.append(nn.ReLU(inplace=True))
+ layers.append(nn.Linear(hidden_sizes[-1], output_size))
+ self.mlp = nn.Sequential(*layers)
+
+ def initialize_weights_to_zero(self):
+ for m in self.modules():
+ if isinstance(m, nn.Linear):
+ nn.init.zeros_(m.weight)
+ nn.init.zeros_(m.bias)
+
+ def forward(self, x):
+ return self.mlp(x)
diff --git a/src/modules/util.py b/src/modules/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..7dddb99b8085ce4f753e295d9db192a06a725baf
--- /dev/null
+++ b/src/modules/util.py
@@ -0,0 +1,441 @@
+# coding: utf-8
+
+"""
+This file defines various neural network modules and utility functions, including convolutional and residual blocks,
+normalizations, and functions for spatial transformation and tensor manipulation.
+"""
+
+from torch import nn
+import torch.nn.functional as F
+import torch
+import torch.nn.utils.spectral_norm as spectral_norm
+import math
+import warnings
+
+
+def kp2gaussian(kp, spatial_size, kp_variance):
+ """
+ Transform a keypoint into gaussian like representation
+ """
+ mean = kp
+
+ coordinate_grid = make_coordinate_grid(spatial_size, mean)
+ number_of_leading_dimensions = len(mean.shape) - 1
+ shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
+ coordinate_grid = coordinate_grid.view(*shape)
+ repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
+ coordinate_grid = coordinate_grid.repeat(*repeats)
+
+ # Preprocess kp shape
+ shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
+ mean = mean.view(*shape)
+
+ mean_sub = (coordinate_grid - mean)
+
+ out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
+
+ return out
+
+
+def make_coordinate_grid(spatial_size, ref, **kwargs):
+ d, h, w = spatial_size
+ x = torch.arange(w).type(ref.dtype).to(ref.device)
+ y = torch.arange(h).type(ref.dtype).to(ref.device)
+ z = torch.arange(d).type(ref.dtype).to(ref.device)
+
+ # NOTE: must be right-down-in
+ x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right
+ y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom
+ z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner
+
+ yy = y.view(1, -1, 1).repeat(d, 1, w)
+ xx = x.view(1, 1, -1).repeat(d, h, 1)
+ zz = z.view(-1, 1, 1).repeat(1, h, w)
+
+ meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
+
+ return meshed
+
+
+class ConvT2d(nn.Module):
+ """
+ Upsampling block for use in decoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1):
+ super(ConvT2d, self).__init__()
+
+ self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride,
+ padding=padding, output_padding=output_padding)
+ self.norm = nn.InstanceNorm2d(out_features)
+
+ def forward(self, x):
+ out = self.convT(x)
+ out = self.norm(out)
+ out = F.leaky_relu(out)
+ return out
+
+
+class ResBlock3d(nn.Module):
+ """
+ Res block, preserve spatial resolution.
+ """
+
+ def __init__(self, in_features, kernel_size, padding):
+ super(ResBlock3d, self).__init__()
+ self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
+ self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding)
+ self.norm1 = nn.BatchNorm3d(in_features, affine=True)
+ self.norm2 = nn.BatchNorm3d(in_features, affine=True)
+
+ def forward(self, x):
+ out = self.norm1(x)
+ out = F.relu(out)
+ out = self.conv1(out)
+ out = self.norm2(out)
+ out = F.relu(out)
+ out = self.conv2(out)
+ out += x
+ return out
+
+
+class UpBlock3d(nn.Module):
+ """
+ Upsampling block for use in decoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
+ super(UpBlock3d, self).__init__()
+
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
+ padding=padding, groups=groups)
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
+
+ def forward(self, x):
+ out = F.interpolate(x, scale_factor=(1, 2, 2))
+ out = self.conv(out)
+ out = self.norm(out)
+ out = F.relu(out)
+ return out
+
+
+class DownBlock2d(nn.Module):
+ """
+ Downsampling block for use in encoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
+ super(DownBlock2d, self).__init__()
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
+ self.pool = nn.AvgPool2d(kernel_size=(2, 2))
+
+ def forward(self, x):
+ out = self.conv(x)
+ out = self.norm(out)
+ out = F.relu(out)
+ out = self.pool(out)
+ return out
+
+
+class DownBlock3d(nn.Module):
+ """
+ Downsampling block for use in encoder.
+ """
+
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
+ super(DownBlock3d, self).__init__()
+ '''
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
+ padding=padding, groups=groups, stride=(1, 2, 2))
+ '''
+ self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
+ padding=padding, groups=groups)
+ self.norm = nn.BatchNorm3d(out_features, affine=True)
+ self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
+
+ def forward(self, x):
+ out = self.conv(x)
+ out = self.norm(out)
+ out = F.relu(out)
+ out = self.pool(out)
+ return out
+
+
+class SameBlock2d(nn.Module):
+ """
+ Simple block, preserve spatial resolution.
+ """
+
+ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
+ super(SameBlock2d, self).__init__()
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups)
+ self.norm = nn.BatchNorm2d(out_features, affine=True)
+ if lrelu:
+ self.ac = nn.LeakyReLU()
+ else:
+ self.ac = nn.ReLU()
+
+ def forward(self, x):
+ out = self.conv(x)
+ out = self.norm(out)
+ out = self.ac(out)
+ return out
+
+
+class Encoder(nn.Module):
+ """
+ Hourglass Encoder
+ """
+
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
+ super(Encoder, self).__init__()
+
+ down_blocks = []
+ for i in range(num_blocks):
+ down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1))
+ self.down_blocks = nn.ModuleList(down_blocks)
+
+ def forward(self, x):
+ outs = [x]
+ for down_block in self.down_blocks:
+ outs.append(down_block(outs[-1]))
+ return outs
+
+
+class Decoder(nn.Module):
+ """
+ Hourglass Decoder
+ """
+
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
+ super(Decoder, self).__init__()
+
+ up_blocks = []
+
+ for i in range(num_blocks)[::-1]:
+ in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
+ out_filters = min(max_features, block_expansion * (2 ** i))
+ up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
+
+ self.up_blocks = nn.ModuleList(up_blocks)
+ self.out_filters = block_expansion + in_features
+
+ self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
+ self.norm = nn.BatchNorm3d(self.out_filters, affine=True)
+
+ def forward(self, x):
+ out = x.pop()
+ for up_block in self.up_blocks:
+ out = up_block(out)
+ skip = x.pop()
+ out = torch.cat([out, skip], dim=1)
+ out = self.conv(out)
+ out = self.norm(out)
+ out = F.relu(out)
+ return out
+
+
+class Hourglass(nn.Module):
+ """
+ Hourglass architecture.
+ """
+
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
+ super(Hourglass, self).__init__()
+ self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
+ self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
+ self.out_filters = self.decoder.out_filters
+
+ def forward(self, x):
+ return self.decoder(self.encoder(x))
+
+
+class SPADE(nn.Module):
+ def __init__(self, norm_nc, label_nc):
+ super().__init__()
+
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
+ nhidden = 128
+
+ self.mlp_shared = nn.Sequential(
+ nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
+ nn.ReLU())
+ self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
+ self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
+
+ def forward(self, x, segmap):
+ normalized = self.param_free_norm(x)
+ segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
+ actv = self.mlp_shared(segmap)
+ gamma = self.mlp_gamma(actv)
+ beta = self.mlp_beta(actv)
+ out = normalized * (1 + gamma) + beta
+ return out
+
+
+class SPADEResnetBlock(nn.Module):
+ def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
+ super().__init__()
+ # Attributes
+ self.learned_shortcut = (fin != fout)
+ fmiddle = min(fin, fout)
+ self.use_se = use_se
+ # create conv layers
+ self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
+ self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
+ if self.learned_shortcut:
+ self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
+ # apply spectral norm if specified
+ if 'spectral' in norm_G:
+ self.conv_0 = spectral_norm(self.conv_0)
+ self.conv_1 = spectral_norm(self.conv_1)
+ if self.learned_shortcut:
+ self.conv_s = spectral_norm(self.conv_s)
+ # define normalization layers
+ self.norm_0 = SPADE(fin, label_nc)
+ self.norm_1 = SPADE(fmiddle, label_nc)
+ if self.learned_shortcut:
+ self.norm_s = SPADE(fin, label_nc)
+
+ def forward(self, x, seg1):
+ x_s = self.shortcut(x, seg1)
+ dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
+ dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
+ out = x_s + dx
+ return out
+
+ def shortcut(self, x, seg1):
+ if self.learned_shortcut:
+ x_s = self.conv_s(self.norm_s(x, seg1))
+ else:
+ x_s = x
+ return x_s
+
+ def actvn(self, x):
+ return F.leaky_relu(x, 2e-1)
+
+
+def filter_state_dict(state_dict, remove_name='fc'):
+ new_state_dict = {}
+ for key in state_dict:
+ if remove_name in key:
+ continue
+ new_state_dict[key] = state_dict[key]
+ return new_state_dict
+
+
+class GRN(nn.Module):
+ """ GRN (Global Response Normalization) layer
+ """
+
+ def __init__(self, dim):
+ super().__init__()
+ self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
+ self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
+
+ def forward(self, x):
+ Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
+ Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
+ return self.gamma * (x * Nx) + self.beta + x
+
+
+class LayerNorm(nn.Module):
+ r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
+ shape (batch_size, height, width, channels) while channels_first corresponds to inputs
+ with shape (batch_size, channels, height, width).
+ """
+
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
+ self.eps = eps
+ self.data_format = data_format
+ if self.data_format not in ["channels_last", "channels_first"]:
+ raise NotImplementedError
+ self.normalized_shape = (normalized_shape, )
+
+ def forward(self, x):
+ if self.data_format == "channels_last":
+ return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
+ elif self.data_format == "channels_first":
+ u = x.mean(1, keepdim=True)
+ s = (x - u).pow(2).mean(1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.eps)
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
+ return x
+
+
+def _no_grad_trunc_normal_(tensor, mean, std, a, b):
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
+ def norm_cdf(x):
+ # Computes standard normal cumulative distribution function
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
+
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
+ "The distribution of values may be incorrect.",
+ stacklevel=2)
+
+ with torch.no_grad():
+ # Values are generated by using a truncated uniform distribution and
+ # then using the inverse CDF for the normal distribution.
+ # Get upper and lower cdf values
+ l = norm_cdf((a - mean) / std)
+ u = norm_cdf((b - mean) / std)
+
+ # Uniformly fill tensor with values from [l, u], then translate to
+ # [2l-1, 2u-1].
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
+
+ # Use inverse cdf transform for normal distribution to get truncated
+ # standard normal
+ tensor.erfinv_()
+
+ # Transform to proper mean, std
+ tensor.mul_(std * math.sqrt(2.))
+ tensor.add_(mean)
+
+ # Clamp to ensure it's in the proper range
+ tensor.clamp_(min=a, max=b)
+ return tensor
+
+
+def drop_path(x, drop_prob=0., training=False, scale_by_keep=True):
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
+ 'survival rate' as the argument.
+
+ """
+ if drop_prob == 0. or not training:
+ return x
+ keep_prob = 1 - drop_prob
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
+ if keep_prob > 0.0 and scale_by_keep:
+ random_tensor.div_(keep_prob)
+ return x * random_tensor
+
+
+class DropPath(nn.Module):
+ """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
+ """
+
+ def __init__(self, drop_prob=None, scale_by_keep=True):
+ super(DropPath, self).__init__()
+ self.drop_prob = drop_prob
+ self.scale_by_keep = scale_by_keep
+
+ def forward(self, x):
+ return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
+
+
+def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
diff --git a/src/modules/warping_network.py b/src/modules/warping_network.py
new file mode 100644
index 0000000000000000000000000000000000000000..64110dd963381d4c07c3925bdd9acdec73fe6a8c
--- /dev/null
+++ b/src/modules/warping_network.py
@@ -0,0 +1,77 @@
+# coding: utf-8
+
+"""
+Warping field estimator(W) defined in the paper, which generates a warping field using the implicit
+keypoint representations x_s and x_d, and employs this flow field to warp the source feature volume f_s.
+"""
+
+from torch import nn
+import torch.nn.functional as F
+from .util import SameBlock2d
+from .dense_motion import DenseMotionNetwork
+
+
+class WarpingNetwork(nn.Module):
+ def __init__(
+ self,
+ num_kp,
+ block_expansion,
+ max_features,
+ num_down_blocks,
+ reshape_channel,
+ estimate_occlusion_map=False,
+ dense_motion_params=None,
+ **kwargs
+ ):
+ super(WarpingNetwork, self).__init__()
+
+ self.upscale = kwargs.get('upscale', 1)
+ self.flag_use_occlusion_map = kwargs.get('flag_use_occlusion_map', True)
+
+ if dense_motion_params is not None:
+ self.dense_motion_network = DenseMotionNetwork(
+ num_kp=num_kp,
+ feature_channel=reshape_channel,
+ estimate_occlusion_map=estimate_occlusion_map,
+ **dense_motion_params
+ )
+ else:
+ self.dense_motion_network = None
+
+ self.third = SameBlock2d(max_features, block_expansion * (2 ** num_down_blocks), kernel_size=(3, 3), padding=(1, 1), lrelu=True)
+ self.fourth = nn.Conv2d(in_channels=block_expansion * (2 ** num_down_blocks), out_channels=block_expansion * (2 ** num_down_blocks), kernel_size=1, stride=1)
+
+ self.estimate_occlusion_map = estimate_occlusion_map
+
+ def deform_input(self, inp, deformation):
+ return F.grid_sample(inp, deformation, align_corners=False)
+
+ def forward(self, feature_3d, kp_driving, kp_source):
+ if self.dense_motion_network is not None:
+ # Feature warper, Transforming feature representation according to deformation and occlusion
+ dense_motion = self.dense_motion_network(
+ feature=feature_3d, kp_driving=kp_driving, kp_source=kp_source
+ )
+ if 'occlusion_map' in dense_motion:
+ occlusion_map = dense_motion['occlusion_map'] # Bx1x64x64
+ else:
+ occlusion_map = None
+
+ deformation = dense_motion['deformation'] # Bx16x64x64x3
+ out = self.deform_input(feature_3d, deformation) # Bx32x16x64x64
+
+ bs, c, d, h, w = out.shape # Bx32x16x64x64
+ out = out.view(bs, c * d, h, w) # -> Bx512x64x64
+ out = self.third(out) # -> Bx256x64x64
+ out = self.fourth(out) # -> Bx256x64x64
+
+ if self.flag_use_occlusion_map and (occlusion_map is not None):
+ out = out * occlusion_map
+
+ ret_dct = {
+ 'occlusion_map': occlusion_map,
+ 'deformation': deformation,
+ 'out': out,
+ }
+
+ return ret_dct
diff --git a/src/utils/__init__.py b/src/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/utils/__pycache__/__init__.cpython-39.pyc b/src/utils/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9b664cce611e2fa6363895fc28b3eca23833ca1c
Binary files /dev/null and b/src/utils/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/camera.cpython-39.pyc b/src/utils/__pycache__/camera.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..aca2fe47f09cd903669eebf10dcb76462b7a56c8
Binary files /dev/null and b/src/utils/__pycache__/camera.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/crop.cpython-39.pyc b/src/utils/__pycache__/crop.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bb7e805a95e489c6cea51ed6040c80055f317ae2
Binary files /dev/null and b/src/utils/__pycache__/crop.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/cropper.cpython-39.pyc b/src/utils/__pycache__/cropper.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..001e41b79c7af5f410f658acfdf284891d9128a3
Binary files /dev/null and b/src/utils/__pycache__/cropper.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/face_analysis_diy.cpython-39.pyc b/src/utils/__pycache__/face_analysis_diy.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a92f45a0afa2762f3ca456213c141e17e38218e6
Binary files /dev/null and b/src/utils/__pycache__/face_analysis_diy.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/helper.cpython-39.pyc b/src/utils/__pycache__/helper.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..29b45a0fdd23e0a3ce4abe17bc697ceb3037cca5
Binary files /dev/null and b/src/utils/__pycache__/helper.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/io.cpython-39.pyc b/src/utils/__pycache__/io.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0a9bfb3f886933b9d760413ae521f9a39152985f
Binary files /dev/null and b/src/utils/__pycache__/io.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/landmark_runner.cpython-39.pyc b/src/utils/__pycache__/landmark_runner.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f9d4a8f9387e1b4e1cf6e8b30e6917f6325389f8
Binary files /dev/null and b/src/utils/__pycache__/landmark_runner.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/retargeting_utils.cpython-39.pyc b/src/utils/__pycache__/retargeting_utils.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1abd4371f430a99bc8692d20fef957cc005a7c5d
Binary files /dev/null and b/src/utils/__pycache__/retargeting_utils.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/rprint.cpython-39.pyc b/src/utils/__pycache__/rprint.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fcfe61aa9da50ec877a7ee13e76ebf136431369b
Binary files /dev/null and b/src/utils/__pycache__/rprint.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/timer.cpython-39.pyc b/src/utils/__pycache__/timer.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8ec8f608cf3e3e127782cdabd627b048eb38b1af
Binary files /dev/null and b/src/utils/__pycache__/timer.cpython-39.pyc differ
diff --git a/src/utils/__pycache__/video.cpython-39.pyc b/src/utils/__pycache__/video.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2d02f6d07cbae6b44185b8de46b1d307c9652c1e
Binary files /dev/null and b/src/utils/__pycache__/video.cpython-39.pyc differ
diff --git a/src/utils/camera.py b/src/utils/camera.py
new file mode 100644
index 0000000000000000000000000000000000000000..485a1f737e3946f8e48eb7b889f73d4f38d0dbd9
--- /dev/null
+++ b/src/utils/camera.py
@@ -0,0 +1,73 @@
+# coding: utf-8
+
+"""
+functions for processing and transforming 3D facial keypoints
+"""
+
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+PI = np.pi
+
+
+def headpose_pred_to_degree(pred):
+ """
+ pred: (bs, 66) or (bs, 1) or others
+ """
+ if pred.ndim > 1 and pred.shape[1] == 66:
+ # NOTE: note that the average is modified to 97.5
+ device = pred.device
+ idx_tensor = [idx for idx in range(0, 66)]
+ idx_tensor = torch.FloatTensor(idx_tensor).to(device)
+ pred = F.softmax(pred, dim=1)
+ degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 97.5
+
+ return degree
+
+ return pred
+
+
+def get_rotation_matrix(pitch_, yaw_, roll_):
+ """ the input is in degree
+ """
+ # transform to radian
+ pitch = pitch_ / 180 * PI
+ yaw = yaw_ / 180 * PI
+ roll = roll_ / 180 * PI
+
+ device = pitch.device
+
+ if pitch.ndim == 1:
+ pitch = pitch.unsqueeze(1)
+ if yaw.ndim == 1:
+ yaw = yaw.unsqueeze(1)
+ if roll.ndim == 1:
+ roll = roll.unsqueeze(1)
+
+ # calculate the euler matrix
+ bs = pitch.shape[0]
+ ones = torch.ones([bs, 1]).to(device)
+ zeros = torch.zeros([bs, 1]).to(device)
+ x, y, z = pitch, yaw, roll
+
+ rot_x = torch.cat([
+ ones, zeros, zeros,
+ zeros, torch.cos(x), -torch.sin(x),
+ zeros, torch.sin(x), torch.cos(x)
+ ], dim=1).reshape([bs, 3, 3])
+
+ rot_y = torch.cat([
+ torch.cos(y), zeros, torch.sin(y),
+ zeros, ones, zeros,
+ -torch.sin(y), zeros, torch.cos(y)
+ ], dim=1).reshape([bs, 3, 3])
+
+ rot_z = torch.cat([
+ torch.cos(z), -torch.sin(z), zeros,
+ torch.sin(z), torch.cos(z), zeros,
+ zeros, zeros, ones
+ ], dim=1).reshape([bs, 3, 3])
+
+ rot = rot_z @ rot_y @ rot_x
+ return rot.permute(0, 2, 1) # transpose
diff --git a/src/utils/crop.py b/src/utils/crop.py
new file mode 100644
index 0000000000000000000000000000000000000000..28c8fd1bbfac361c0d17757c578c43d2c9ebccb9
--- /dev/null
+++ b/src/utils/crop.py
@@ -0,0 +1,398 @@
+# coding: utf-8
+
+"""
+cropping function and the related preprocess functions for cropping
+"""
+
+import numpy as np
+import os.path as osp
+from math import sin, cos, acos, degrees
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) # NOTE: enforce single thread
+from .rprint import rprint as print
+
+DTYPE = np.float32
+CV2_INTERP = cv2.INTER_LINEAR
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+def _transform_img(img, M, dsize, flags=CV2_INTERP, borderMode=None):
+ """ conduct similarity or affine transformation to the image, do not do border operation!
+ img:
+ M: 2x3 matrix or 3x3 matrix
+ dsize: target shape (width, height)
+ """
+ if isinstance(dsize, tuple) or isinstance(dsize, list):
+ _dsize = tuple(dsize)
+ else:
+ _dsize = (dsize, dsize)
+
+ if borderMode is not None:
+ return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags, borderMode=borderMode, borderValue=(0, 0, 0))
+ else:
+ return cv2.warpAffine(img, M[:2, :], dsize=_dsize, flags=flags)
+
+
+def _transform_pts(pts, M):
+ """ conduct similarity or affine transformation to the pts
+ pts: Nx2 ndarray
+ M: 2x3 matrix or 3x3 matrix
+ return: Nx2
+ """
+ return pts @ M[:2, :2].T + M[:2, 2]
+
+
+def parse_pt2_from_pt101(pt101, use_lip=True):
+ """
+ parsing the 2 points according to the 101 points, which cancels the roll
+ """
+ # the former version use the eye center, but it is not robust, now use interpolation
+ pt_left_eye = np.mean(pt101[[39, 42, 45, 48]], axis=0) # left eye center
+ pt_right_eye = np.mean(pt101[[51, 54, 57, 60]], axis=0) # right eye center
+
+ if use_lip:
+ # use lip
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
+ pt_center_lip = (pt101[75] + pt101[81]) / 2
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
+ else:
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt106(pt106, use_lip=True):
+ """
+ parsing the 2 points according to the 106 points, which cancels the roll
+ """
+ pt_left_eye = np.mean(pt106[[33, 35, 40, 39]], axis=0) # left eye center
+ pt_right_eye = np.mean(pt106[[87, 89, 94, 93]], axis=0) # right eye center
+
+ if use_lip:
+ # use lip
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
+ pt_center_lip = (pt106[52] + pt106[61]) / 2
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
+ else:
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt203(pt203, use_lip=True):
+ """
+ parsing the 2 points according to the 203 points, which cancels the roll
+ """
+ pt_left_eye = np.mean(pt203[[0, 6, 12, 18]], axis=0) # left eye center
+ pt_right_eye = np.mean(pt203[[24, 30, 36, 42]], axis=0) # right eye center
+ if use_lip:
+ # use lip
+ pt_center_eye = (pt_left_eye + pt_right_eye) / 2
+ pt_center_lip = (pt203[48] + pt203[66]) / 2
+ pt2 = np.stack([pt_center_eye, pt_center_lip], axis=0)
+ else:
+ pt2 = np.stack([pt_left_eye, pt_right_eye], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt68(pt68, use_lip=True):
+ """
+ parsing the 2 points according to the 68 points, which cancels the roll
+ """
+ lm_idx = np.array([31, 37, 40, 43, 46, 49, 55], dtype=np.int32) - 1
+ if use_lip:
+ pt5 = np.stack([
+ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye
+ np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye
+ pt68[lm_idx[0], :], # nose
+ pt68[lm_idx[5], :], # lip
+ pt68[lm_idx[6], :] # lip
+ ], axis=0)
+
+ pt2 = np.stack([
+ (pt5[0] + pt5[1]) / 2,
+ (pt5[3] + pt5[4]) / 2
+ ], axis=0)
+ else:
+ pt2 = np.stack([
+ np.mean(pt68[lm_idx[[1, 2]], :], 0), # left eye
+ np.mean(pt68[lm_idx[[3, 4]], :], 0), # right eye
+ ], axis=0)
+
+ return pt2
+
+
+def parse_pt2_from_pt5(pt5, use_lip=True):
+ """
+ parsing the 2 points according to the 5 points, which cancels the roll
+ """
+ if use_lip:
+ pt2 = np.stack([
+ (pt5[0] + pt5[1]) / 2,
+ (pt5[3] + pt5[4]) / 2
+ ], axis=0)
+ else:
+ pt2 = np.stack([
+ pt5[0],
+ pt5[1]
+ ], axis=0)
+ return pt2
+
+
+def parse_pt2_from_pt_x(pts, use_lip=True):
+ if pts.shape[0] == 101:
+ pt2 = parse_pt2_from_pt101(pts, use_lip=use_lip)
+ elif pts.shape[0] == 106:
+ pt2 = parse_pt2_from_pt106(pts, use_lip=use_lip)
+ elif pts.shape[0] == 68:
+ pt2 = parse_pt2_from_pt68(pts, use_lip=use_lip)
+ elif pts.shape[0] == 5:
+ pt2 = parse_pt2_from_pt5(pts, use_lip=use_lip)
+ elif pts.shape[0] == 203:
+ pt2 = parse_pt2_from_pt203(pts, use_lip=use_lip)
+ elif pts.shape[0] > 101:
+ # take the first 101 points
+ pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip)
+ else:
+ raise Exception(f'Unknow shape: {pts.shape}')
+
+ if not use_lip:
+ # NOTE: to compile with the latter code, need to rotate the pt2 90 degrees clockwise manually
+ v = pt2[1] - pt2[0]
+ pt2[1, 0] = pt2[0, 0] - v[1]
+ pt2[1, 1] = pt2[0, 1] + v[0]
+
+ return pt2
+
+
+def parse_rect_from_landmark(
+ pts,
+ scale=1.5,
+ need_square=True,
+ vx_ratio=0,
+ vy_ratio=0,
+ use_deg_flag=False,
+ **kwargs
+):
+ """parsing center, size, angle from 101/68/5/x landmarks
+ vx_ratio: the offset ratio along the pupil axis x-axis, multiplied by size
+ vy_ratio: the offset ratio along the pupil axis y-axis, multiplied by size, which is used to contain more forehead area
+
+ judge with pts.shape
+ """
+ pt2 = parse_pt2_from_pt_x(pts, use_lip=kwargs.get('use_lip', True))
+
+ uy = pt2[1] - pt2[0]
+ l = np.linalg.norm(uy)
+ if l <= 1e-3:
+ uy = np.array([0, 1], dtype=DTYPE)
+ else:
+ uy /= l
+ ux = np.array((uy[1], -uy[0]), dtype=DTYPE)
+
+ # the rotation degree of the x-axis, the clockwise is positive, the counterclockwise is negative (image coordinate system)
+ # print(uy)
+ # print(ux)
+ angle = acos(ux[0])
+ if ux[1] < 0:
+ angle = -angle
+
+ # rotation matrix
+ M = np.array([ux, uy])
+
+ # calculate the size which contains the angle degree of the bbox, and the center
+ center0 = np.mean(pts, axis=0)
+ rpts = (pts - center0) @ M.T # (M @ P.T).T = P @ M.T
+ lt_pt = np.min(rpts, axis=0)
+ rb_pt = np.max(rpts, axis=0)
+ center1 = (lt_pt + rb_pt) / 2
+
+ size = rb_pt - lt_pt
+ if need_square:
+ m = max(size[0], size[1])
+ size[0] = m
+ size[1] = m
+
+ size *= scale # scale size
+ center = center0 + ux * center1[0] + uy * center1[1] # counterclockwise rotation, equivalent to M.T @ center1.T
+ center = center + ux * (vx_ratio * size) + uy * \
+ (vy_ratio * size) # considering the offset in vx and vy direction
+
+ if use_deg_flag:
+ angle = degrees(angle)
+
+ return center, size, angle
+
+
+def parse_bbox_from_landmark(pts, **kwargs):
+ center, size, angle = parse_rect_from_landmark(pts, **kwargs)
+ cx, cy = center
+ w, h = size
+
+ # calculate the vertex positions before rotation
+ bbox = np.array([
+ [cx-w/2, cy-h/2], # left, top
+ [cx+w/2, cy-h/2],
+ [cx+w/2, cy+h/2], # right, bottom
+ [cx-w/2, cy+h/2]
+ ], dtype=DTYPE)
+
+ # construct rotation matrix
+ bbox_rot = bbox.copy()
+ R = np.array([
+ [np.cos(angle), -np.sin(angle)],
+ [np.sin(angle), np.cos(angle)]
+ ], dtype=DTYPE)
+
+ # calculate the relative position of each vertex from the rotation center, then rotate these positions, and finally add the coordinates of the rotation center
+ bbox_rot = (bbox_rot - center) @ R.T + center
+
+ return {
+ 'center': center, # 2x1
+ 'size': size, # scalar
+ 'angle': angle, # rad, counterclockwise
+ 'bbox': bbox, # 4x2
+ 'bbox_rot': bbox_rot, # 4x2
+ }
+
+
+def crop_image_by_bbox(img, bbox, lmk=None, dsize=512, angle=None, flag_rot=False, **kwargs):
+ left, top, right, bot = bbox
+ if int(right - left) != int(bot - top):
+ print(f'right-left {right-left} != bot-top {bot-top}')
+ size = right - left
+
+ src_center = np.array([(left + right) / 2, (top + bot) / 2], dtype=DTYPE)
+ tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE)
+
+ s = dsize / size # scale
+ if flag_rot and angle is not None:
+ costheta, sintheta = cos(angle), sin(angle)
+ cx, cy = src_center[0], src_center[1] # ori center
+ tcx, tcy = tgt_center[0], tgt_center[1] # target center
+ # need to infer
+ M_o2c = np.array(
+ [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
+ [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
+ dtype=DTYPE
+ )
+ else:
+ M_o2c = np.array(
+ [[s, 0, tgt_center[0] - s * src_center[0]],
+ [0, s, tgt_center[1] - s * src_center[1]]],
+ dtype=DTYPE
+ )
+
+ # if flag_rot and angle is None:
+ # print('angle is None, but flag_rotate is True', style="bold yellow")
+
+ img_crop = _transform_img(img, M_o2c, dsize=dsize, borderMode=kwargs.get('borderMode', None))
+ lmk_crop = _transform_pts(lmk, M_o2c) if lmk is not None else None
+
+ M_o2c = np.vstack([M_o2c, np.array([0, 0, 1], dtype=DTYPE)])
+ M_c2o = np.linalg.inv(M_o2c)
+
+ # cv2.imwrite('crop.jpg', img_crop)
+
+ return {
+ 'img_crop': img_crop,
+ 'lmk_crop': lmk_crop,
+ 'M_o2c': M_o2c,
+ 'M_c2o': M_c2o,
+ }
+
+
+def _estimate_similar_transform_from_pts(
+ pts,
+ dsize,
+ scale=1.5,
+ vx_ratio=0,
+ vy_ratio=-0.1,
+ flag_do_rot=True,
+ **kwargs
+):
+ """ calculate the affine matrix of the cropped image from sparse points, the original image to the cropped image, the inverse is the cropped image to the original image
+ pts: landmark, 101 or 68 points or other points, Nx2
+ scale: the larger scale factor, the smaller face ratio
+ vx_ratio: x shift
+ vy_ratio: y shift, the smaller the y shift, the lower the face region
+ rot_flag: if it is true, conduct correction
+ """
+ center, size, angle = parse_rect_from_landmark(
+ pts, scale=scale, vx_ratio=vx_ratio, vy_ratio=vy_ratio,
+ use_lip=kwargs.get('use_lip', True)
+ )
+
+ s = dsize / size[0] # scale
+ tgt_center = np.array([dsize / 2, dsize / 2], dtype=DTYPE) # center of dsize
+
+ if flag_do_rot:
+ costheta, sintheta = cos(angle), sin(angle)
+ cx, cy = center[0], center[1] # ori center
+ tcx, tcy = tgt_center[0], tgt_center[1] # target center
+ # need to infer
+ M_INV = np.array(
+ [[s * costheta, s * sintheta, tcx - s * (costheta * cx + sintheta * cy)],
+ [-s * sintheta, s * costheta, tcy - s * (-sintheta * cx + costheta * cy)]],
+ dtype=DTYPE
+ )
+ else:
+ M_INV = np.array(
+ [[s, 0, tgt_center[0] - s * center[0]],
+ [0, s, tgt_center[1] - s * center[1]]],
+ dtype=DTYPE
+ )
+
+ M_INV_H = np.vstack([M_INV, np.array([0, 0, 1])])
+ M = np.linalg.inv(M_INV_H)
+
+ # M_INV is from the original image to the cropped image, M is from the cropped image to the original image
+ return M_INV, M[:2, ...]
+
+
+def crop_image(img, pts: np.ndarray, **kwargs):
+ dsize = kwargs.get('dsize', 224)
+ scale = kwargs.get('scale', 1.5) # 1.5 | 1.6
+ vy_ratio = kwargs.get('vy_ratio', -0.1) # -0.0625 | -0.1
+
+ M_INV, _ = _estimate_similar_transform_from_pts(
+ pts,
+ dsize=dsize,
+ scale=scale,
+ vy_ratio=vy_ratio,
+ flag_do_rot=kwargs.get('flag_do_rot', True),
+ )
+
+ img_crop = _transform_img(img, M_INV, dsize) # origin to crop
+ pt_crop = _transform_pts(pts, M_INV)
+
+ M_o2c = np.vstack([M_INV, np.array([0, 0, 1], dtype=DTYPE)])
+ M_c2o = np.linalg.inv(M_o2c)
+
+ ret_dct = {
+ 'M_o2c': M_o2c, # from the original image to the cropped image 3x3
+ 'M_c2o': M_c2o, # from the cropped image to the original image 3x3
+ 'img_crop': img_crop, # the cropped image
+ 'pt_crop': pt_crop, # the landmarks of the cropped image
+ }
+
+ return ret_dct
+
+def average_bbox_lst(bbox_lst):
+ if len(bbox_lst) == 0:
+ return None
+ bbox_arr = np.array(bbox_lst)
+ return np.mean(bbox_arr, axis=0).tolist()
+
+def prepare_paste_back(mask_crop, crop_M_c2o, dsize):
+ """prepare mask for later image paste back
+ """
+ mask_ori = _transform_img(mask_crop, crop_M_c2o, dsize)
+ mask_ori = mask_ori.astype(np.float32) / 255.
+ return mask_ori
+
+def paste_back(img_crop, M_c2o, img_ori, mask_ori):
+ """paste back the image
+ """
+ dsize = (img_ori.shape[1], img_ori.shape[0])
+ result = _transform_img(img_crop, M_c2o, dsize=dsize)
+ result = np.clip(mask_ori * result + (1 - mask_ori) * img_ori, 0, 255).astype(np.uint8)
+ return result
diff --git a/src/utils/cropper.py b/src/utils/cropper.py
new file mode 100644
index 0000000000000000000000000000000000000000..9e44260c68fedc7074e6080c9b7e4ef417754cb4
--- /dev/null
+++ b/src/utils/cropper.py
@@ -0,0 +1,223 @@
+# coding: utf-8
+
+import os.path as osp
+from dataclasses import dataclass, field
+from typing import List, Tuple, Union
+
+import cv2
+import numpy as np
+
+cv2.setNumThreads(0)
+cv2.ocl.setUseOpenCL(False)
+
+from ..config.crop_config import CropConfig
+from .crop import (
+ average_bbox_lst,
+ crop_image,
+ crop_image_by_bbox,
+ parse_bbox_from_landmark,
+)
+from .face_analysis_diy import FaceAnalysisDIY
+from .io import contiguous
+from .landmark_runner import LandmarkRunner
+from .rprint import rlog as log
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+@dataclass
+class Trajectory:
+ start: int = -1 # start frame
+ end: int = -1 # end frame
+ lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list
+ bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # bbox list
+
+ frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(
+ default_factory=list
+ ) # frame list
+
+ lmk_crop_lst: Union[Tuple, List, np.ndarray] = field(
+ default_factory=list
+ ) # lmk list
+ frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(
+ default_factory=list
+ ) # frame crop list
+
+
+class Cropper(object):
+ def __init__(self, **kwargs) -> None:
+ self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None)
+ device_id = kwargs.get("device_id", 0)
+ flag_force_cpu = kwargs.get("flag_force_cpu", False)
+ if flag_force_cpu:
+ device = "cpu"
+ face_analysis_wrapper_provicer = ["CPUExecutionProvider"]
+ else:
+ device = "cuda"
+ face_analysis_wrapper_provicer = ["CUDAExecutionProvider"]
+ self.landmark_runner = LandmarkRunner(
+ ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path),
+ onnx_provider=device,
+ device_id=device_id,
+ )
+ self.landmark_runner.warmup()
+
+ self.face_analysis_wrapper = FaceAnalysisDIY(
+ name="buffalo_l",
+ root=make_abs_path(self.crop_cfg.insightface_root),
+ providers=face_analysis_wrapper_provicer,
+ )
+ self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512))
+ self.face_analysis_wrapper.warmup()
+
+ def update_config(self, user_args):
+ for k, v in user_args.items():
+ if hasattr(self.crop_cfg, k):
+ setattr(self.crop_cfg, k, v)
+
+ def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig):
+ # crop a source image and get neccessary information
+ img_rgb = img_rgb_.copy() # copy it
+
+ img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
+ src_face = self.face_analysis_wrapper.get(
+ img_bgr,
+ flag_do_landmark_2d_106=True,
+ direction=crop_cfg.direction,
+ max_face_num=crop_cfg.max_face_num,
+ )
+
+ if len(src_face) == 0:
+ log("No face detected in the source image.")
+ return None
+ elif len(src_face) > 1:
+ log(
+ f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}."
+ )
+
+ # NOTE: temporarily only pick the first face, to support multiple face in the future
+ src_face = src_face[0]
+ lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface
+ # for (x, y) in lmk:
+ # cv2.circle(img_bgr, (int(x), int(y)), 2, (0, 255, 0), -1)
+
+ # cv2.imwrite("./landmark.png", img_bgr)
+ # crop the face
+ ret_dct = crop_image(
+ img_rgb, # ndarray
+ lmk, # 106x2 or Nx2
+ dsize=crop_cfg.dsize,
+ scale=crop_cfg.scale,
+ vx_ratio=crop_cfg.vx_ratio,
+ vy_ratio=crop_cfg.vy_ratio,
+ )
+
+ lmk = self.landmark_runner.run(img_rgb, lmk)
+ ret_dct["lmk_crop"] = lmk
+
+ # update a 256x256 version for network input
+ ret_dct["img_crop_256x256"] = cv2.resize(
+ ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA
+ )
+ ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize
+ # cv2.imwrite("./resize_image.png", ret_dct["img_crop_256x256"] )
+ return ret_dct
+
+ def crop_driving_video(self, driving_rgb_lst, **kwargs):
+ """Tracking based landmarks/alignment and cropping"""
+ trajectory = Trajectory()
+ direction = kwargs.get("direction", "large-small")
+ for idx, frame_rgb in enumerate(driving_rgb_lst):
+ if idx == 0 or trajectory.start == -1:
+ src_face = self.face_analysis_wrapper.get(
+ contiguous(frame_rgb[..., ::-1]),
+ flag_do_landmark_2d_106=True,
+ direction=direction,
+ )
+ if len(src_face) == 0:
+ log(f"No face detected in the frame #{idx}")
+ continue
+ elif len(src_face) > 1:
+ log(
+ f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}."
+ )
+ src_face = src_face[0]
+ lmk = src_face.landmark_2d_106
+ lmk = self.landmark_runner.run(frame_rgb, lmk)
+ trajectory.start, trajectory.end = idx, idx
+ # for (x, y) in lmk:
+ # cv2.circle(frame_rgb, (int(x), int(y)), 2, (0, 255, 0), -1)
+
+ # cv2.imwrite("./landmarks.png", frame_rgb)
+ else:
+ lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
+ trajectory.end = idx
+
+ trajectory.lmk_lst.append(lmk)
+ ret_bbox = parse_bbox_from_landmark(
+ lmk,
+ scale=self.crop_cfg.scale_crop_video,
+ vx_ratio_crop_video=self.crop_cfg.vx_ratio_crop_video,
+ vy_ratio=self.crop_cfg.vy_ratio_crop_video,
+ )["bbox"]
+ bbox = [
+ ret_bbox[0, 0],
+ ret_bbox[0, 1],
+ ret_bbox[2, 0],
+ ret_bbox[2, 1],
+ ] # 4,
+ trajectory.bbox_lst.append(bbox) # bbox
+ trajectory.frame_rgb_lst.append(frame_rgb)
+
+ global_bbox = average_bbox_lst(trajectory.bbox_lst)
+
+ for idx, (frame_rgb, lmk) in enumerate(
+ zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)
+ ):
+ ret_dct = crop_image_by_bbox(
+ frame_rgb,
+ global_bbox,
+ lmk=lmk,
+ dsize=kwargs.get("dsize", 512),
+ flag_rot=False,
+ borderValue=(0, 0, 0),
+ )
+ trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop"])
+ trajectory.lmk_crop_lst.append(ret_dct["lmk_crop"])
+
+ return {
+ "frame_crop_lst": trajectory.frame_rgb_crop_lst,
+ "lmk_crop_lst": trajectory.lmk_crop_lst,
+ }
+
+ def calc_lmks_from_cropped_video(self, driving_rgb_crop_lst, **kwargs):
+ """Tracking based landmarks/alignment"""
+ trajectory = Trajectory()
+ direction = kwargs.get("direction", "large-small")
+
+ for idx, frame_rgb_crop in enumerate(driving_rgb_crop_lst):
+ if idx == 0 or trajectory.start == -1:
+ src_face = self.face_analysis_wrapper.get(
+ contiguous(frame_rgb_crop[..., ::-1]), # convert to BGR
+ flag_do_landmark_2d_106=True,
+ direction=direction,
+ )
+ if len(src_face) == 0:
+ log(f"No face detected in the frame #{idx}")
+ raise Exception(f"No face detected in the frame #{idx}")
+ elif len(src_face) > 1:
+ log(
+ f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}."
+ )
+ src_face = src_face[0]
+ lmk = src_face.landmark_2d_106
+ lmk = self.landmark_runner.run(frame_rgb_crop, lmk)
+ trajectory.start, trajectory.end = idx, idx
+ else:
+ lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1])
+ trajectory.end = idx
+
+ trajectory.lmk_lst.append(lmk)
+ return trajectory.lmk_lst
diff --git a/src/utils/dependencies/insightface/__init__.py b/src/utils/dependencies/insightface/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..59d142782336123f4cea6976a4c7f5bb2dc5c9f7
--- /dev/null
+++ b/src/utils/dependencies/insightface/__init__.py
@@ -0,0 +1,20 @@
+# coding: utf-8
+# pylint: disable=wrong-import-position
+"""InsightFace: A Face Analysis Toolkit."""
+from __future__ import absolute_import
+
+try:
+ #import mxnet as mx
+ import onnxruntime
+except ImportError:
+ raise ImportError(
+ "Unable to import dependency onnxruntime. "
+ )
+
+__version__ = '0.7.3'
+
+from . import model_zoo
+from . import utils
+from . import app
+from . import data
+
diff --git a/src/utils/dependencies/insightface/__pycache__/__init__.cpython-39.pyc b/src/utils/dependencies/insightface/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9d2e36024bd9a3290083ba0203a9cf5aaaf69232
Binary files /dev/null and b/src/utils/dependencies/insightface/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/app/__init__.py b/src/utils/dependencies/insightface/app/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1132e780f1c91b598cfabb2f1c1cf1037b9f0fd9
--- /dev/null
+++ b/src/utils/dependencies/insightface/app/__init__.py
@@ -0,0 +1 @@
+from .face_analysis import *
diff --git a/src/utils/dependencies/insightface/app/__pycache__/__init__.cpython-39.pyc b/src/utils/dependencies/insightface/app/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..66fc328e5ea7e709dc6b5015533b9ba07e8977cc
Binary files /dev/null and b/src/utils/dependencies/insightface/app/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/app/__pycache__/common.cpython-39.pyc b/src/utils/dependencies/insightface/app/__pycache__/common.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..38858ce92e5df53ac86252f75cbd924172524e9e
Binary files /dev/null and b/src/utils/dependencies/insightface/app/__pycache__/common.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/app/__pycache__/face_analysis.cpython-39.pyc b/src/utils/dependencies/insightface/app/__pycache__/face_analysis.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8a99313335f7da3b8a8eed7704787a3c186f079c
Binary files /dev/null and b/src/utils/dependencies/insightface/app/__pycache__/face_analysis.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/app/common.py b/src/utils/dependencies/insightface/app/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec0b88ff071a8284d7ce33bb9990f52c55087767
--- /dev/null
+++ b/src/utils/dependencies/insightface/app/common.py
@@ -0,0 +1,49 @@
+import numpy as np
+from numpy.linalg import norm as l2norm
+#from easydict import EasyDict
+
+class Face(dict):
+
+ def __init__(self, d=None, **kwargs):
+ if d is None:
+ d = {}
+ if kwargs:
+ d.update(**kwargs)
+ for k, v in d.items():
+ setattr(self, k, v)
+ # Class attributes
+ #for k in self.__class__.__dict__.keys():
+ # if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'):
+ # setattr(self, k, getattr(self, k))
+
+ def __setattr__(self, name, value):
+ if isinstance(value, (list, tuple)):
+ value = [self.__class__(x)
+ if isinstance(x, dict) else x for x in value]
+ elif isinstance(value, dict) and not isinstance(value, self.__class__):
+ value = self.__class__(value)
+ super(Face, self).__setattr__(name, value)
+ super(Face, self).__setitem__(name, value)
+
+ __setitem__ = __setattr__
+
+ def __getattr__(self, name):
+ return None
+
+ @property
+ def embedding_norm(self):
+ if self.embedding is None:
+ return None
+ return l2norm(self.embedding)
+
+ @property
+ def normed_embedding(self):
+ if self.embedding is None:
+ return None
+ return self.embedding / self.embedding_norm
+
+ @property
+ def sex(self):
+ if self.gender is None:
+ return None
+ return 'M' if self.gender==1 else 'F'
diff --git a/src/utils/dependencies/insightface/app/face_analysis.py b/src/utils/dependencies/insightface/app/face_analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c391fbb547db3693af81356ef672c83e3635cc7
--- /dev/null
+++ b/src/utils/dependencies/insightface/app/face_analysis.py
@@ -0,0 +1,110 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+
+from __future__ import division
+
+import glob
+import os.path as osp
+
+import numpy as np
+import onnxruntime
+from numpy.linalg import norm
+
+from ..model_zoo import model_zoo
+from ..utils import ensure_available
+from .common import Face
+
+
+DEFAULT_MP_NAME = 'buffalo_l'
+__all__ = ['FaceAnalysis']
+
+class FaceAnalysis:
+ def __init__(self, name=DEFAULT_MP_NAME, root='~/.insightface', allowed_modules=None, **kwargs):
+ onnxruntime.set_default_logger_severity(3)
+ self.models = {}
+ self.model_dir = ensure_available('models', name, root=root)
+ onnx_files = glob.glob(osp.join(self.model_dir, '*.onnx'))
+ onnx_files = sorted(onnx_files)
+ for onnx_file in onnx_files:
+ model = model_zoo.get_model(onnx_file, **kwargs)
+ if model is None:
+ print('model not recognized:', onnx_file)
+ elif allowed_modules is not None and model.taskname not in allowed_modules:
+ print('model ignore:', onnx_file, model.taskname)
+ del model
+ elif model.taskname not in self.models and (allowed_modules is None or model.taskname in allowed_modules):
+ # print('find model:', onnx_file, model.taskname, model.input_shape, model.input_mean, model.input_std)
+ self.models[model.taskname] = model
+ else:
+ print('duplicated model task type, ignore:', onnx_file, model.taskname)
+ del model
+ assert 'detection' in self.models
+ self.det_model = self.models['detection']
+
+
+ def prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640)):
+ self.det_thresh = det_thresh
+ assert det_size is not None
+ # print('set det-size:', det_size)
+ self.det_size = det_size
+ for taskname, model in self.models.items():
+ if taskname=='detection':
+ model.prepare(ctx_id, input_size=det_size, det_thresh=det_thresh)
+ else:
+ model.prepare(ctx_id)
+
+ def get(self, img, max_num=0):
+ bboxes, kpss = self.det_model.detect(img,
+ max_num=max_num,
+ metric='default')
+ if bboxes.shape[0] == 0:
+ return []
+ ret = []
+ for i in range(bboxes.shape[0]):
+ bbox = bboxes[i, 0:4]
+ det_score = bboxes[i, 4]
+ kps = None
+ if kpss is not None:
+ kps = kpss[i]
+ face = Face(bbox=bbox, kps=kps, det_score=det_score)
+ for taskname, model in self.models.items():
+ if taskname=='detection':
+ continue
+ model.get(img, face)
+ ret.append(face)
+ return ret
+
+ def draw_on(self, img, faces):
+ import cv2
+ dimg = img.copy()
+ for i in range(len(faces)):
+ face = faces[i]
+ box = face.bbox.astype(np.int)
+ color = (0, 0, 255)
+ cv2.rectangle(dimg, (box[0], box[1]), (box[2], box[3]), color, 2)
+ if face.kps is not None:
+ kps = face.kps.astype(np.int)
+ #print(landmark.shape)
+ for l in range(kps.shape[0]):
+ color = (0, 0, 255)
+ if l == 0 or l == 3:
+ color = (0, 255, 0)
+ cv2.circle(dimg, (kps[l][0], kps[l][1]), 1, color,
+ 2)
+ if face.gender is not None and face.age is not None:
+ cv2.putText(dimg,'%s,%d'%(face.sex,face.age), (box[0]-1, box[1]-4),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,255,0),1)
+
+ #for key, value in face.items():
+ # if key.startswith('landmark_3d'):
+ # print(key, value.shape)
+ # print(value[0:10,:])
+ # lmk = np.round(value).astype(np.int)
+ # for l in range(lmk.shape[0]):
+ # color = (255, 0, 0)
+ # cv2.circle(dimg, (lmk[l][0], lmk[l][1]), 1, color,
+ # 2)
+ return dimg
diff --git a/src/utils/dependencies/insightface/data/__init__.py b/src/utils/dependencies/insightface/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8718c2f87c72674793aa2eb43e10e7a86e2daa88
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/__init__.py
@@ -0,0 +1,2 @@
+from .image import get_image
+from .pickle_object import get_object
diff --git a/src/utils/dependencies/insightface/data/__pycache__/__init__.cpython-39.pyc b/src/utils/dependencies/insightface/data/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6b2aef70ace898764283ef19e2e4befdf5405596
Binary files /dev/null and b/src/utils/dependencies/insightface/data/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/data/__pycache__/image.cpython-39.pyc b/src/utils/dependencies/insightface/data/__pycache__/image.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8f10489419c9911193e13db003bf543617d93751
Binary files /dev/null and b/src/utils/dependencies/insightface/data/__pycache__/image.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/data/__pycache__/pickle_object.cpython-39.pyc b/src/utils/dependencies/insightface/data/__pycache__/pickle_object.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f83a2360f696d4fdc4538d0b3f4dbd2771e8933d
Binary files /dev/null and b/src/utils/dependencies/insightface/data/__pycache__/pickle_object.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/data/image.py b/src/utils/dependencies/insightface/data/image.py
new file mode 100644
index 0000000000000000000000000000000000000000..898250793279b8b10c78836d80176dc5cfd16380
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/image.py
@@ -0,0 +1,27 @@
+import cv2
+import os
+import os.path as osp
+from pathlib import Path
+
+class ImageCache:
+ data = {}
+
+def get_image(name, to_rgb=False):
+ key = (name, to_rgb)
+ if key in ImageCache.data:
+ return ImageCache.data[key]
+ images_dir = osp.join(Path(__file__).parent.absolute(), 'images')
+ ext_names = ['.jpg', '.png', '.jpeg']
+ image_file = None
+ for ext_name in ext_names:
+ _image_file = osp.join(images_dir, "%s%s"%(name, ext_name))
+ if osp.exists(_image_file):
+ image_file = _image_file
+ break
+ assert image_file is not None, '%s not found'%name
+ img = cv2.imread(image_file)
+ if to_rgb:
+ img = img[:,:,::-1]
+ ImageCache.data[key] = img
+ return img
+
diff --git a/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png b/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png
new file mode 100644
index 0000000000000000000000000000000000000000..906315d13fa29bb3a5ded3e162592f2c7f041b23
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/Tom_Hanks_54745.png differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_black.jpg b/src/utils/dependencies/insightface/data/images/mask_black.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0eab0df555c23f1e033537fe39f3c0c8303dd369
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_black.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_blue.jpg b/src/utils/dependencies/insightface/data/images/mask_blue.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..f71336b9a0d3038ebd84e6995ebfbe54946fcbb4
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_blue.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_green.jpg b/src/utils/dependencies/insightface/data/images/mask_green.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ac2ad55f4fc580c915dfa4c157ca3bfc84e453f4
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_green.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/mask_white.jpg b/src/utils/dependencies/insightface/data/images/mask_white.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..2148ab2d09fdee6e3f59315470e98ecfc54339e4
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/mask_white.jpg differ
diff --git a/src/utils/dependencies/insightface/data/images/t1.jpg b/src/utils/dependencies/insightface/data/images/t1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..0d1d64a59675c9590fd12429db647eb169cecff8
Binary files /dev/null and b/src/utils/dependencies/insightface/data/images/t1.jpg differ
diff --git a/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl b/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..d5297e9e8ea5574298ddd287b058252e03aa18c1
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/objects/meanshape_68.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:39ffecf84ba73f0d0d7e49380833ba88713c9fcdec51df4f7ac45a48b8f4cc51
+size 974
diff --git a/src/utils/dependencies/insightface/data/pickle_object.py b/src/utils/dependencies/insightface/data/pickle_object.py
new file mode 100644
index 0000000000000000000000000000000000000000..1004281aa02a8b35e44a4cc9793e28ee907f73ad
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/pickle_object.py
@@ -0,0 +1,17 @@
+import cv2
+import os
+import os.path as osp
+from pathlib import Path
+import pickle
+
+def get_object(name):
+ objects_dir = osp.join(Path(__file__).parent.absolute(), 'objects')
+ if not name.endswith('.pkl'):
+ name = name+".pkl"
+ filepath = osp.join(objects_dir, name)
+ if not osp.exists(filepath):
+ return None
+ with open(filepath, 'rb') as f:
+ obj = pickle.load(f)
+ return obj
+
diff --git a/src/utils/dependencies/insightface/data/rec_builder.py b/src/utils/dependencies/insightface/data/rec_builder.py
new file mode 100644
index 0000000000000000000000000000000000000000..d679a4450acc85d5d0e95220a16fb801cc7bfa38
--- /dev/null
+++ b/src/utils/dependencies/insightface/data/rec_builder.py
@@ -0,0 +1,71 @@
+import pickle
+import numpy as np
+import os
+import os.path as osp
+import sys
+import mxnet as mx
+
+
+class RecBuilder():
+ def __init__(self, path, image_size=(112, 112)):
+ self.path = path
+ self.image_size = image_size
+ self.widx = 0
+ self.wlabel = 0
+ self.max_label = -1
+ assert not osp.exists(path), '%s exists' % path
+ os.makedirs(path)
+ self.writer = mx.recordio.MXIndexedRecordIO(os.path.join(path, 'train.idx'),
+ os.path.join(path, 'train.rec'),
+ 'w')
+ self.meta = []
+
+ def add(self, imgs):
+ #!!! img should be BGR!!!!
+ #assert label >= 0
+ #assert label > self.last_label
+ assert len(imgs) > 0
+ label = self.wlabel
+ for img in imgs:
+ idx = self.widx
+ image_meta = {'image_index': idx, 'image_classes': [label]}
+ header = mx.recordio.IRHeader(0, label, idx, 0)
+ if isinstance(img, np.ndarray):
+ s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg')
+ else:
+ s = mx.recordio.pack(header, img)
+ self.writer.write_idx(idx, s)
+ self.meta.append(image_meta)
+ self.widx += 1
+ self.max_label = label
+ self.wlabel += 1
+
+
+ def add_image(self, img, label):
+ #!!! img should be BGR!!!!
+ #assert label >= 0
+ #assert label > self.last_label
+ idx = self.widx
+ header = mx.recordio.IRHeader(0, label, idx, 0)
+ if isinstance(label, list):
+ idlabel = label[0]
+ else:
+ idlabel = label
+ image_meta = {'image_index': idx, 'image_classes': [idlabel]}
+ if isinstance(img, np.ndarray):
+ s = mx.recordio.pack_img(header,img,quality=95,img_fmt='.jpg')
+ else:
+ s = mx.recordio.pack(header, img)
+ self.writer.write_idx(idx, s)
+ self.meta.append(image_meta)
+ self.widx += 1
+ self.max_label = max(self.max_label, idlabel)
+
+ def close(self):
+ with open(osp.join(self.path, 'train.meta'), 'wb') as pfile:
+ pickle.dump(self.meta, pfile, protocol=pickle.HIGHEST_PROTOCOL)
+ print('stat:', self.widx, self.wlabel)
+ with open(os.path.join(self.path, 'property'), 'w') as f:
+ f.write("%d,%d,%d\n" % (self.max_label+1, self.image_size[0], self.image_size[1]))
+ f.write("%d\n" % (self.widx))
+
diff --git a/src/utils/dependencies/insightface/model_zoo/__init__.py b/src/utils/dependencies/insightface/model_zoo/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3d6cdac33c81e48a72bbc5378959e42f013cdc5
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/__init__.py
@@ -0,0 +1,6 @@
+from .model_zoo import get_model
+from .arcface_onnx import ArcFaceONNX
+from .retinaface import RetinaFace
+from .scrfd import SCRFD
+from .landmark import Landmark
+from .attribute import Attribute
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/__init__.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fa1de37bd87a41c6d593dd44cfce88907d833058
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/arcface_onnx.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/arcface_onnx.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1cc1aec3200f536eb00f4c9c4f941bd0ba07fde4
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/arcface_onnx.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/attribute.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/attribute.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..766362f0c6e22d5df4476169a7d71604e4193e18
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/attribute.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/inswapper.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/inswapper.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6cd0ab7d5f9e6c12c6b6676d9c8afadc0da7237f
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/inswapper.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/landmark.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/landmark.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ca5db02428ad69a2f6cb8fdfa19b299235e348d1
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/landmark.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/model_zoo.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/model_zoo.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c645ecb6b4986b798711301fb2deff8f5167e288
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/model_zoo.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/retinaface.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/retinaface.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..01e6f874e255560b56e67b2e65a588f80a8a1526
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/retinaface.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/__pycache__/scrfd.cpython-39.pyc b/src/utils/dependencies/insightface/model_zoo/__pycache__/scrfd.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..11d4f0187515976d3eba1a9b1fbe98f95efbfe84
Binary files /dev/null and b/src/utils/dependencies/insightface/model_zoo/__pycache__/scrfd.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py b/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py
new file mode 100644
index 0000000000000000000000000000000000000000..a0c4fe1e0efa5c64febbf0ff9870c4cc52793f5b
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/arcface_onnx.py
@@ -0,0 +1,92 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+from __future__ import division
+import numpy as np
+import cv2
+import onnx
+import onnxruntime
+from ..utils import face_align
+
+__all__ = [
+ 'ArcFaceONNX',
+]
+
+
+class ArcFaceONNX:
+ def __init__(self, model_file=None, session=None):
+ assert model_file is not None
+ self.model_file = model_file
+ self.session = session
+ self.taskname = 'recognition'
+ find_sub = False
+ find_mul = False
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ for nid, node in enumerate(graph.node[:8]):
+ #print(nid, node.name)
+ if node.name.startswith('Sub') or node.name.startswith('_minus'):
+ find_sub = True
+ if node.name.startswith('Mul') or node.name.startswith('_mul'):
+ find_mul = True
+ if find_sub and find_mul:
+ #mxnet arcface model
+ input_mean = 0.0
+ input_std = 1.0
+ else:
+ input_mean = 127.5
+ input_std = 127.5
+ self.input_mean = input_mean
+ self.input_std = input_std
+ #print('input mean and std:', self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ input_name = input_cfg.name
+ self.input_size = tuple(input_shape[2:4][::-1])
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ self.output_shape = outputs[0].shape
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+
+ def get(self, img, face):
+ aimg = face_align.norm_crop(img, landmark=face.kps, image_size=self.input_size[0])
+ face.embedding = self.get_feat(aimg).flatten()
+ return face.embedding
+
+ def compute_sim(self, feat1, feat2):
+ from numpy.linalg import norm
+ feat1 = feat1.ravel()
+ feat2 = feat2.ravel()
+ sim = np.dot(feat1, feat2) / (norm(feat1) * norm(feat2))
+ return sim
+
+ def get_feat(self, imgs):
+ if not isinstance(imgs, list):
+ imgs = [imgs]
+ input_size = self.input_size
+
+ blob = cv2.dnn.blobFromImages(imgs, 1.0 / self.input_std, input_size,
+ (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
+ return net_out
+
+ def forward(self, batch_data):
+ blob = (batch_data - self.input_mean) / self.input_std
+ net_out = self.session.run(self.output_names, {self.input_name: blob})[0]
+ return net_out
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/attribute.py b/src/utils/dependencies/insightface/model_zoo/attribute.py
new file mode 100644
index 0000000000000000000000000000000000000000..fd99d29e5d9139a133989b874d21b2b0069c722e
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/attribute.py
@@ -0,0 +1,94 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-06-19
+# @Function :
+
+from __future__ import division
+import numpy as np
+import cv2
+import onnx
+import onnxruntime
+from ..utils import face_align
+
+__all__ = [
+ 'Attribute',
+]
+
+
+class Attribute:
+ def __init__(self, model_file=None, session=None):
+ assert model_file is not None
+ self.model_file = model_file
+ self.session = session
+ find_sub = False
+ find_mul = False
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ for nid, node in enumerate(graph.node[:8]):
+ #print(nid, node.name)
+ if node.name.startswith('Sub') or node.name.startswith('_minus'):
+ find_sub = True
+ if node.name.startswith('Mul') or node.name.startswith('_mul'):
+ find_mul = True
+ if nid<3 and node.name=='bn_data':
+ find_sub = True
+ find_mul = True
+ if find_sub and find_mul:
+ #mxnet arcface model
+ input_mean = 0.0
+ input_std = 1.0
+ else:
+ input_mean = 127.5
+ input_std = 128.0
+ self.input_mean = input_mean
+ self.input_std = input_std
+ #print('input mean and std:', model_file, self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ input_name = input_cfg.name
+ self.input_size = tuple(input_shape[2:4][::-1])
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ output_shape = outputs[0].shape
+ #print('init output_shape:', output_shape)
+ if output_shape[1]==3:
+ self.taskname = 'genderage'
+ else:
+ self.taskname = 'attribute_%d'%output_shape[1]
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+
+ def get(self, img, face):
+ bbox = face.bbox
+ w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
+ center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
+ rotate = 0
+ _scale = self.input_size[0] / (max(w, h)*1.5)
+ #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate)
+ aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate)
+ input_size = tuple(aimg.shape[0:2][::-1])
+ #assert input_size==self.input_size
+ blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ pred = self.session.run(self.output_names, {self.input_name : blob})[0][0]
+ if self.taskname=='genderage':
+ assert len(pred)==3
+ gender = np.argmax(pred[:2])
+ age = int(np.round(pred[2]*100))
+ face['gender'] = gender
+ face['age'] = age
+ return gender, age
+ else:
+ return pred
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/inswapper.py b/src/utils/dependencies/insightface/model_zoo/inswapper.py
new file mode 100644
index 0000000000000000000000000000000000000000..f9523bb0abe49c504eff4cee401afe90f01ded20
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/inswapper.py
@@ -0,0 +1,114 @@
+import time
+import numpy as np
+import onnxruntime
+import cv2
+import onnx
+from onnx import numpy_helper
+from ..utils import face_align
+
+
+
+
+class INSwapper():
+ def __init__(self, model_file=None, session=None):
+ self.model_file = model_file
+ self.session = session
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ self.emap = numpy_helper.to_array(graph.initializer[-1])
+ self.input_mean = 0.0
+ self.input_std = 255.0
+ #print('input mean and std:', model_file, self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ inputs = self.session.get_inputs()
+ self.input_names = []
+ for inp in inputs:
+ self.input_names.append(inp.name)
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ output_shape = outputs[0].shape
+ input_cfg = inputs[0]
+ input_shape = input_cfg.shape
+ self.input_shape = input_shape
+ # print('inswapper-shape:', self.input_shape)
+ self.input_size = tuple(input_shape[2:4][::-1])
+
+ def forward(self, img, latent):
+ img = (img - self.input_mean) / self.input_std
+ pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
+ return pred
+
+ def get(self, img, target_face, source_face, paste_back=True):
+ face_mask = np.zeros((img.shape[0], img.shape[1]), np.uint8)
+ cv2.fillPoly(face_mask, np.array([target_face.landmark_2d_106[[1,9,10,11,12,13,14,15,16,2,3,4,5,6,7,8,0,24,23,22,21,20,19,18,32,31,30,29,28,27,26,25,17,101,105,104,103,51,49,48,43]].astype('int64')]), 1)
+ aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0])
+ blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
+ (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ latent = source_face.normed_embedding.reshape((1,-1))
+ latent = np.dot(latent, self.emap)
+ latent /= np.linalg.norm(latent)
+ pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
+ #print(latent.shape, latent.dtype, pred.shape)
+ img_fake = pred.transpose((0,2,3,1))[0]
+ bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:,:,::-1]
+ if not paste_back:
+ return bgr_fake, M
+ else:
+ target_img = img
+ fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
+ fake_diff = np.abs(fake_diff).mean(axis=2)
+ fake_diff[:2,:] = 0
+ fake_diff[-2:,:] = 0
+ fake_diff[:,:2] = 0
+ fake_diff[:,-2:] = 0
+ IM = cv2.invertAffineTransform(M)
+ img_white = np.full((aimg.shape[0],aimg.shape[1]), 255, dtype=np.float32)
+ bgr_fake = cv2.warpAffine(bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
+ img_white = cv2.warpAffine(img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
+ fake_diff = cv2.warpAffine(fake_diff, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0)
+ img_white[img_white>20] = 255
+ fthresh = 10
+ fake_diff[fake_diff=fthresh] = 255
+ img_mask = img_white
+ mask_h_inds, mask_w_inds = np.where(img_mask==255)
+ mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
+ mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
+ mask_size = int(np.sqrt(mask_h*mask_w))
+ k = max(mask_size//10, 10)
+ #k = max(mask_size//20, 6)
+ #k = 6
+ kernel = np.ones((k,k),np.uint8)
+ img_mask = cv2.erode(img_mask,kernel,iterations = 1)
+ kernel = np.ones((2,2),np.uint8)
+ fake_diff = cv2.dilate(fake_diff,kernel,iterations = 1)
+
+ face_mask = cv2.erode(face_mask,np.ones((11,11),np.uint8),iterations = 1)
+ fake_diff[face_mask==1] = 255
+
+ k = max(mask_size//20, 5)
+ #k = 3
+ #k = 3
+ kernel_size = (k, k)
+ blur_size = tuple(2*i+1 for i in kernel_size)
+ img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
+ k = 5
+ kernel_size = (k, k)
+ blur_size = tuple(2*i+1 for i in kernel_size)
+ fake_diff = cv2.blur(fake_diff, (11,11), 0)
+ ##fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
+ # print('blur_size: ', blur_size)
+ # fake_diff = cv2.blur(fake_diff, (21, 21), 0) # blur_size
+ img_mask /= 255
+ fake_diff /= 255
+ # img_mask = fake_diff
+ img_mask = img_mask*fake_diff
+ img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
+ fake_merged = img_mask * bgr_fake + (1-img_mask) * target_img.astype(np.float32)
+ fake_merged = fake_merged.astype(np.uint8)
+ return fake_merged
diff --git a/src/utils/dependencies/insightface/model_zoo/landmark.py b/src/utils/dependencies/insightface/model_zoo/landmark.py
new file mode 100644
index 0000000000000000000000000000000000000000..5100dfe787168114d4b38ca27134470928a70f48
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/landmark.py
@@ -0,0 +1,114 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+from __future__ import division
+import numpy as np
+import cv2
+import onnx
+import onnxruntime
+from ..utils import face_align
+from ..utils import transform
+from ..data import get_object
+
+__all__ = [
+ 'Landmark',
+]
+
+
+class Landmark:
+ def __init__(self, model_file=None, session=None):
+ assert model_file is not None
+ self.model_file = model_file
+ self.session = session
+ find_sub = False
+ find_mul = False
+ model = onnx.load(self.model_file)
+ graph = model.graph
+ for nid, node in enumerate(graph.node[:8]):
+ #print(nid, node.name)
+ if node.name.startswith('Sub') or node.name.startswith('_minus'):
+ find_sub = True
+ if node.name.startswith('Mul') or node.name.startswith('_mul'):
+ find_mul = True
+ if nid<3 and node.name=='bn_data':
+ find_sub = True
+ find_mul = True
+ if find_sub and find_mul:
+ #mxnet arcface model
+ input_mean = 0.0
+ input_std = 1.0
+ else:
+ input_mean = 127.5
+ input_std = 128.0
+ self.input_mean = input_mean
+ self.input_std = input_std
+ #print('input mean and std:', model_file, self.input_mean, self.input_std)
+ if self.session is None:
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ input_name = input_cfg.name
+ self.input_size = tuple(input_shape[2:4][::-1])
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for out in outputs:
+ output_names.append(out.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ assert len(self.output_names)==1
+ output_shape = outputs[0].shape
+ self.require_pose = False
+ #print('init output_shape:', output_shape)
+ if output_shape[1]==3309:
+ self.lmk_dim = 3
+ self.lmk_num = 68
+ self.mean_lmk = get_object('meanshape_68.pkl')
+ self.require_pose = True
+ else:
+ self.lmk_dim = 2
+ self.lmk_num = output_shape[1]//self.lmk_dim
+ self.taskname = 'landmark_%dd_%d'%(self.lmk_dim, self.lmk_num)
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+
+ def get(self, img, face):
+ bbox = face.bbox
+ w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
+ center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
+ rotate = 0
+ _scale = self.input_size[0] / (max(w, h)*1.5)
+ #print('param:', img.shape, bbox, center, self.input_size, _scale, rotate)
+ aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate)
+ input_size = tuple(aimg.shape[0:2][::-1])
+ #assert input_size==self.input_size
+ blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ pred = self.session.run(self.output_names, {self.input_name : blob})[0][0]
+ if pred.shape[0] >= 3000:
+ pred = pred.reshape((-1, 3))
+ else:
+ pred = pred.reshape((-1, 2))
+ if self.lmk_num < pred.shape[0]:
+ pred = pred[self.lmk_num*-1:,:]
+ pred[:, 0:2] += 1
+ pred[:, 0:2] *= (self.input_size[0] // 2)
+ if pred.shape[1] == 3:
+ pred[:, 2] *= (self.input_size[0] // 2)
+
+ IM = cv2.invertAffineTransform(M)
+ pred = face_align.trans_points(pred, IM)
+ face[self.taskname] = pred
+ if self.require_pose:
+ P = transform.estimate_affine_matrix_3d23d(self.mean_lmk, pred)
+ s, R, t = transform.P2sRt(P)
+ rx, ry, rz = transform.matrix2angle(R)
+ pose = np.array( [rx, ry, rz], dtype=np.float32 )
+ face['pose'] = pose #pitch, yaw, roll
+ return pred
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/model_store.py b/src/utils/dependencies/insightface/model_zoo/model_store.py
new file mode 100644
index 0000000000000000000000000000000000000000..e4229a27450e7c9dd511e13aa601b4bfbd7a1b15
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/model_store.py
@@ -0,0 +1,103 @@
+"""
+This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/model_store.py
+"""
+from __future__ import print_function
+
+__all__ = ['get_model_file']
+import os
+import zipfile
+import glob
+
+from ..utils import download, check_sha1
+
+_model_sha1 = {
+ name: checksum
+ for checksum, name in [
+ ('95be21b58e29e9c1237f229dae534bd854009ce0', 'arcface_r100_v1'),
+ ('', 'arcface_mfn_v1'),
+ ('39fd1e087a2a2ed70a154ac01fecaa86c315d01b', 'retinaface_r50_v1'),
+ ('2c9de8116d1f448fd1d4661f90308faae34c990a', 'retinaface_mnet025_v1'),
+ ('0db1d07921d005e6c9a5b38e059452fc5645e5a4', 'retinaface_mnet025_v2'),
+ ('7dd8111652b7aac2490c5dcddeb268e53ac643e6', 'genderage_v1'),
+ ]
+}
+
+base_repo_url = 'https://insightface.ai/files/'
+_url_format = '{repo_url}models/{file_name}.zip'
+
+
+def short_hash(name):
+ if name not in _model_sha1:
+ raise ValueError(
+ 'Pretrained model for {name} is not available.'.format(name=name))
+ return _model_sha1[name][:8]
+
+
+def find_params_file(dir_path):
+ if not os.path.exists(dir_path):
+ return None
+ paths = glob.glob("%s/*.params" % dir_path)
+ if len(paths) == 0:
+ return None
+ paths = sorted(paths)
+ return paths[-1]
+
+
+def get_model_file(name, root=os.path.join('~', '.insightface', 'models')):
+ r"""Return location for the pretrained on local file system.
+
+ This function will download from online model zoo when model cannot be found or has mismatch.
+ The root directory will be created if it doesn't exist.
+
+ Parameters
+ ----------
+ name : str
+ Name of the model.
+ root : str, default '~/.mxnet/models'
+ Location for keeping the model parameters.
+
+ Returns
+ -------
+ file_path
+ Path to the requested pretrained model file.
+ """
+
+ file_name = name
+ root = os.path.expanduser(root)
+ dir_path = os.path.join(root, name)
+ file_path = find_params_file(dir_path)
+ #file_path = os.path.join(root, file_name + '.params')
+ sha1_hash = _model_sha1[name]
+ if file_path is not None:
+ if check_sha1(file_path, sha1_hash):
+ return file_path
+ else:
+ print(
+ 'Mismatch in the content of model file detected. Downloading again.'
+ )
+ else:
+ print('Model file is not found. Downloading.')
+
+ if not os.path.exists(root):
+ os.makedirs(root)
+ if not os.path.exists(dir_path):
+ os.makedirs(dir_path)
+
+ zip_file_path = os.path.join(root, file_name + '.zip')
+ repo_url = base_repo_url
+ if repo_url[-1] != '/':
+ repo_url = repo_url + '/'
+ download(_url_format.format(repo_url=repo_url, file_name=file_name),
+ path=zip_file_path,
+ overwrite=True)
+ with zipfile.ZipFile(zip_file_path) as zf:
+ zf.extractall(dir_path)
+ os.remove(zip_file_path)
+ file_path = find_params_file(dir_path)
+
+ if check_sha1(file_path, sha1_hash):
+ return file_path
+ else:
+ raise ValueError(
+ 'Downloaded file has different hash. Please try again.')
+
diff --git a/src/utils/dependencies/insightface/model_zoo/model_zoo.py b/src/utils/dependencies/insightface/model_zoo/model_zoo.py
new file mode 100644
index 0000000000000000000000000000000000000000..43dcac490bbdea7e030612db75c45e686cff65c7
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/model_zoo.py
@@ -0,0 +1,97 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+import os
+import os.path as osp
+import glob
+import onnxruntime
+from .arcface_onnx import *
+from .retinaface import *
+#from .scrfd import *
+from .landmark import *
+from .attribute import Attribute
+from .inswapper import INSwapper
+from ..utils import download_onnx
+
+__all__ = ['get_model']
+
+
+class PickableInferenceSession(onnxruntime.InferenceSession):
+ # This is a wrapper to make the current InferenceSession class pickable.
+ def __init__(self, model_path, **kwargs):
+ super().__init__(model_path, **kwargs)
+ self.model_path = model_path
+
+ def __getstate__(self):
+ return {'model_path': self.model_path}
+
+ def __setstate__(self, values):
+ model_path = values['model_path']
+ self.__init__(model_path)
+
+class ModelRouter:
+ def __init__(self, onnx_file):
+ self.onnx_file = onnx_file
+
+ def get_model(self, **kwargs):
+ session = PickableInferenceSession(self.onnx_file, **kwargs)
+ # print(f'Applied providers: {session._providers}, with options: {session._provider_options}')
+ inputs = session.get_inputs()
+ input_cfg = inputs[0]
+ input_shape = input_cfg.shape
+ outputs = session.get_outputs()
+
+ if len(outputs)>=5:
+ return RetinaFace(model_file=self.onnx_file, session=session)
+ elif input_shape[2]==192 and input_shape[3]==192:
+ return Landmark(model_file=self.onnx_file, session=session)
+ elif input_shape[2]==96 and input_shape[3]==96:
+ return Attribute(model_file=self.onnx_file, session=session)
+ elif len(inputs)==2 and input_shape[2]==128 and input_shape[3]==128:
+ return INSwapper(model_file=self.onnx_file, session=session)
+ elif input_shape[2]==input_shape[3] and input_shape[2]>=112 and input_shape[2]%16==0:
+ return ArcFaceONNX(model_file=self.onnx_file, session=session)
+ else:
+ #raise RuntimeError('error on model routing')
+ return None
+
+def find_onnx_file(dir_path):
+ if not os.path.exists(dir_path):
+ return None
+ paths = glob.glob("%s/*.onnx" % dir_path)
+ if len(paths) == 0:
+ return None
+ paths = sorted(paths)
+ return paths[-1]
+
+def get_default_providers():
+ return ['CUDAExecutionProvider', 'CPUExecutionProvider']
+
+def get_default_provider_options():
+ return None
+
+def get_model(name, **kwargs):
+ root = kwargs.get('root', '~/.insightface')
+ root = os.path.expanduser(root)
+ model_root = osp.join(root, 'models')
+ allow_download = kwargs.get('download', False)
+ download_zip = kwargs.get('download_zip', False)
+ if not name.endswith('.onnx'):
+ model_dir = os.path.join(model_root, name)
+ model_file = find_onnx_file(model_dir)
+ if model_file is None:
+ return None
+ else:
+ model_file = name
+ if not osp.exists(model_file) and allow_download:
+ model_file = download_onnx('models', model_file, root=root, download_zip=download_zip)
+ assert osp.exists(model_file), 'model_file %s should exist'%model_file
+ assert osp.isfile(model_file), 'model_file %s should be a file'%model_file
+ router = ModelRouter(model_file)
+ providers = kwargs.get('providers', get_default_providers())
+ provider_options = kwargs.get('provider_options', get_default_provider_options())
+ model = router.get_model(providers=providers, provider_options=provider_options)
+ return model
diff --git a/src/utils/dependencies/insightface/model_zoo/retinaface.py b/src/utils/dependencies/insightface/model_zoo/retinaface.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae027f2eaf58e2fb4f6e7cdc2f726a0ea41d180d
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/retinaface.py
@@ -0,0 +1,301 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-09-18
+# @Function :
+
+from __future__ import division
+import datetime
+import numpy as np
+import onnx
+import onnxruntime
+import os
+import os.path as osp
+import cv2
+import sys
+
+def softmax(z):
+ assert len(z.shape) == 2
+ s = np.max(z, axis=1)
+ s = s[:, np.newaxis] # necessary step to do broadcasting
+ e_x = np.exp(z - s)
+ div = np.sum(e_x, axis=1)
+ div = div[:, np.newaxis] # dito
+ return e_x / div
+
+def distance2bbox(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ x1 = points[:, 0] - distance[:, 0]
+ y1 = points[:, 1] - distance[:, 1]
+ x2 = points[:, 0] + distance[:, 2]
+ y2 = points[:, 1] + distance[:, 3]
+ if max_shape is not None:
+ x1 = x1.clamp(min=0, max=max_shape[1])
+ y1 = y1.clamp(min=0, max=max_shape[0])
+ x2 = x2.clamp(min=0, max=max_shape[1])
+ y2 = y2.clamp(min=0, max=max_shape[0])
+ return np.stack([x1, y1, x2, y2], axis=-1)
+
+def distance2kps(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ preds = []
+ for i in range(0, distance.shape[1], 2):
+ px = points[:, i%2] + distance[:, i]
+ py = points[:, i%2+1] + distance[:, i+1]
+ if max_shape is not None:
+ px = px.clamp(min=0, max=max_shape[1])
+ py = py.clamp(min=0, max=max_shape[0])
+ preds.append(px)
+ preds.append(py)
+ return np.stack(preds, axis=-1)
+
+class RetinaFace:
+ def __init__(self, model_file=None, session=None):
+ import onnxruntime
+ self.model_file = model_file
+ self.session = session
+ self.taskname = 'detection'
+ if self.session is None:
+ assert self.model_file is not None
+ assert osp.exists(self.model_file)
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ self.center_cache = {}
+ self.nms_thresh = 0.4
+ self.det_thresh = 0.5
+ self._init_vars()
+
+ def _init_vars(self):
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ #print(input_shape)
+ if isinstance(input_shape[2], str):
+ self.input_size = None
+ else:
+ self.input_size = tuple(input_shape[2:4][::-1])
+ #print('image_size:', self.image_size)
+ input_name = input_cfg.name
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ output_names = []
+ for o in outputs:
+ output_names.append(o.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ self.input_mean = 127.5
+ self.input_std = 128.0
+ #print(self.output_names)
+ #assert len(outputs)==10 or len(outputs)==15
+ self.use_kps = False
+ self._anchor_ratio = 1.0
+ self._num_anchors = 1
+ if len(outputs)==6:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ elif len(outputs)==9:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ self.use_kps = True
+ elif len(outputs)==10:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ elif len(outputs)==15:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ self.use_kps = True
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+ nms_thresh = kwargs.get('nms_thresh', None)
+ if nms_thresh is not None:
+ self.nms_thresh = nms_thresh
+ det_thresh = kwargs.get('det_thresh', None)
+ if det_thresh is not None:
+ self.det_thresh = det_thresh
+ input_size = kwargs.get('input_size', None)
+ if input_size is not None:
+ if self.input_size is not None:
+ print('warning: det_size is already set in detection model, ignore')
+ else:
+ self.input_size = input_size
+
+ def forward(self, img, threshold):
+ scores_list = []
+ bboxes_list = []
+ kpss_list = []
+ input_size = tuple(img.shape[0:2][::-1])
+ blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ net_outs = self.session.run(self.output_names, {self.input_name : blob})
+
+ input_height = blob.shape[2]
+ input_width = blob.shape[3]
+ fmc = self.fmc
+ for idx, stride in enumerate(self._feat_stride_fpn):
+ scores = net_outs[idx]
+ bbox_preds = net_outs[idx+fmc]
+ bbox_preds = bbox_preds * stride
+ if self.use_kps:
+ kps_preds = net_outs[idx+fmc*2] * stride
+ height = input_height // stride
+ width = input_width // stride
+ K = height * width
+ key = (height, width, stride)
+ if key in self.center_cache:
+ anchor_centers = self.center_cache[key]
+ else:
+ #solution-1, c style:
+ #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
+ #for i in range(height):
+ # anchor_centers[i, :, 1] = i
+ #for i in range(width):
+ # anchor_centers[:, i, 0] = i
+
+ #solution-2:
+ #ax = np.arange(width, dtype=np.float32)
+ #ay = np.arange(height, dtype=np.float32)
+ #xv, yv = np.meshgrid(np.arange(width), np.arange(height))
+ #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
+
+ #solution-3:
+ anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
+ #print(anchor_centers.shape)
+
+ anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
+ if self._num_anchors>1:
+ anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
+ if len(self.center_cache)<100:
+ self.center_cache[key] = anchor_centers
+
+ pos_inds = np.where(scores>=threshold)[0]
+ bboxes = distance2bbox(anchor_centers, bbox_preds)
+ pos_scores = scores[pos_inds]
+ pos_bboxes = bboxes[pos_inds]
+ scores_list.append(pos_scores)
+ bboxes_list.append(pos_bboxes)
+ if self.use_kps:
+ kpss = distance2kps(anchor_centers, kps_preds)
+ #kpss = kps_preds
+ kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
+ pos_kpss = kpss[pos_inds]
+ kpss_list.append(pos_kpss)
+ return scores_list, bboxes_list, kpss_list
+
+ def detect(self, img, input_size = None, max_num=0, metric='default'):
+ assert input_size is not None or self.input_size is not None
+ input_size = self.input_size if input_size is None else input_size
+
+ im_ratio = float(img.shape[0]) / img.shape[1]
+ model_ratio = float(input_size[1]) / input_size[0]
+ if im_ratio>model_ratio:
+ new_height = input_size[1]
+ new_width = int(new_height / im_ratio)
+ else:
+ new_width = input_size[0]
+ new_height = int(new_width * im_ratio)
+ det_scale = float(new_height) / img.shape[0]
+ resized_img = cv2.resize(img, (new_width, new_height))
+ det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
+ det_img[:new_height, :new_width, :] = resized_img
+
+ scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh)
+
+ scores = np.vstack(scores_list)
+ scores_ravel = scores.ravel()
+ order = scores_ravel.argsort()[::-1]
+ bboxes = np.vstack(bboxes_list) / det_scale
+ if self.use_kps:
+ kpss = np.vstack(kpss_list) / det_scale
+ pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
+ pre_det = pre_det[order, :]
+ keep = self.nms(pre_det)
+ det = pre_det[keep, :]
+ if self.use_kps:
+ kpss = kpss[order,:,:]
+ kpss = kpss[keep,:,:]
+ else:
+ kpss = None
+ if max_num > 0 and det.shape[0] > max_num:
+ area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
+ det[:, 1])
+ img_center = img.shape[0] // 2, img.shape[1] // 2
+ offsets = np.vstack([
+ (det[:, 0] + det[:, 2]) / 2 - img_center[1],
+ (det[:, 1] + det[:, 3]) / 2 - img_center[0]
+ ])
+ offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
+ if metric=='max':
+ values = area
+ else:
+ values = area - offset_dist_squared * 2.0 # some extra weight on the centering
+ bindex = np.argsort(
+ values)[::-1] # some extra weight on the centering
+ bindex = bindex[0:max_num]
+ det = det[bindex, :]
+ if kpss is not None:
+ kpss = kpss[bindex, :]
+ return det, kpss
+
+ def nms(self, dets):
+ thresh = self.nms_thresh
+ x1 = dets[:, 0]
+ y1 = dets[:, 1]
+ x2 = dets[:, 2]
+ y2 = dets[:, 3]
+ scores = dets[:, 4]
+
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ order = scores.argsort()[::-1]
+
+ keep = []
+ while order.size > 0:
+ i = order[0]
+ keep.append(i)
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+
+ inds = np.where(ovr <= thresh)[0]
+ order = order[inds + 1]
+
+ return keep
+
+def get_retinaface(name, download=False, root='~/.insightface/models', **kwargs):
+ if not download:
+ assert os.path.exists(name)
+ return RetinaFace(name)
+ else:
+ from .model_store import get_model_file
+ _file = get_model_file("retinaface_%s" % name, root=root)
+ return retinaface(_file)
+
+
diff --git a/src/utils/dependencies/insightface/model_zoo/scrfd.py b/src/utils/dependencies/insightface/model_zoo/scrfd.py
new file mode 100644
index 0000000000000000000000000000000000000000..5be86593fe3ce74bcfa61df0b620de7c2ee2118f
--- /dev/null
+++ b/src/utils/dependencies/insightface/model_zoo/scrfd.py
@@ -0,0 +1,348 @@
+# -*- coding: utf-8 -*-
+# @Organization : insightface.ai
+# @Author : Jia Guo
+# @Time : 2021-05-04
+# @Function :
+
+from __future__ import division
+import datetime
+import numpy as np
+import onnx
+import onnxruntime
+import os
+import os.path as osp
+import cv2
+import sys
+
+def softmax(z):
+ assert len(z.shape) == 2
+ s = np.max(z, axis=1)
+ s = s[:, np.newaxis] # necessary step to do broadcasting
+ e_x = np.exp(z - s)
+ div = np.sum(e_x, axis=1)
+ div = div[:, np.newaxis] # dito
+ return e_x / div
+
+def distance2bbox(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ x1 = points[:, 0] - distance[:, 0]
+ y1 = points[:, 1] - distance[:, 1]
+ x2 = points[:, 0] + distance[:, 2]
+ y2 = points[:, 1] + distance[:, 3]
+ if max_shape is not None:
+ x1 = x1.clamp(min=0, max=max_shape[1])
+ y1 = y1.clamp(min=0, max=max_shape[0])
+ x2 = x2.clamp(min=0, max=max_shape[1])
+ y2 = y2.clamp(min=0, max=max_shape[0])
+ return np.stack([x1, y1, x2, y2], axis=-1)
+
+def distance2kps(points, distance, max_shape=None):
+ """Decode distance prediction to bounding box.
+
+ Args:
+ points (Tensor): Shape (n, 2), [x, y].
+ distance (Tensor): Distance from the given point to 4
+ boundaries (left, top, right, bottom).
+ max_shape (tuple): Shape of the image.
+
+ Returns:
+ Tensor: Decoded bboxes.
+ """
+ preds = []
+ for i in range(0, distance.shape[1], 2):
+ px = points[:, i%2] + distance[:, i]
+ py = points[:, i%2+1] + distance[:, i+1]
+ if max_shape is not None:
+ px = px.clamp(min=0, max=max_shape[1])
+ py = py.clamp(min=0, max=max_shape[0])
+ preds.append(px)
+ preds.append(py)
+ return np.stack(preds, axis=-1)
+
+class SCRFD:
+ def __init__(self, model_file=None, session=None):
+ import onnxruntime
+ self.model_file = model_file
+ self.session = session
+ self.taskname = 'detection'
+ self.batched = False
+ if self.session is None:
+ assert self.model_file is not None
+ assert osp.exists(self.model_file)
+ self.session = onnxruntime.InferenceSession(self.model_file, None)
+ self.center_cache = {}
+ self.nms_thresh = 0.4
+ self.det_thresh = 0.5
+ self._init_vars()
+
+ def _init_vars(self):
+ input_cfg = self.session.get_inputs()[0]
+ input_shape = input_cfg.shape
+ #print(input_shape)
+ if isinstance(input_shape[2], str):
+ self.input_size = None
+ else:
+ self.input_size = tuple(input_shape[2:4][::-1])
+ #print('image_size:', self.image_size)
+ input_name = input_cfg.name
+ self.input_shape = input_shape
+ outputs = self.session.get_outputs()
+ if len(outputs[0].shape) == 3:
+ self.batched = True
+ output_names = []
+ for o in outputs:
+ output_names.append(o.name)
+ self.input_name = input_name
+ self.output_names = output_names
+ self.input_mean = 127.5
+ self.input_std = 128.0
+ #print(self.output_names)
+ #assert len(outputs)==10 or len(outputs)==15
+ self.use_kps = False
+ self._anchor_ratio = 1.0
+ self._num_anchors = 1
+ if len(outputs)==6:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ elif len(outputs)==9:
+ self.fmc = 3
+ self._feat_stride_fpn = [8, 16, 32]
+ self._num_anchors = 2
+ self.use_kps = True
+ elif len(outputs)==10:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ elif len(outputs)==15:
+ self.fmc = 5
+ self._feat_stride_fpn = [8, 16, 32, 64, 128]
+ self._num_anchors = 1
+ self.use_kps = True
+
+ def prepare(self, ctx_id, **kwargs):
+ if ctx_id<0:
+ self.session.set_providers(['CPUExecutionProvider'])
+ nms_thresh = kwargs.get('nms_thresh', None)
+ if nms_thresh is not None:
+ self.nms_thresh = nms_thresh
+ det_thresh = kwargs.get('det_thresh', None)
+ if det_thresh is not None:
+ self.det_thresh = det_thresh
+ input_size = kwargs.get('input_size', None)
+ if input_size is not None:
+ if self.input_size is not None:
+ print('warning: det_size is already set in scrfd model, ignore')
+ else:
+ self.input_size = input_size
+
+ def forward(self, img, threshold):
+ scores_list = []
+ bboxes_list = []
+ kpss_list = []
+ input_size = tuple(img.shape[0:2][::-1])
+ blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
+ net_outs = self.session.run(self.output_names, {self.input_name : blob})
+
+ input_height = blob.shape[2]
+ input_width = blob.shape[3]
+ fmc = self.fmc
+ for idx, stride in enumerate(self._feat_stride_fpn):
+ # If model support batch dim, take first output
+ if self.batched:
+ scores = net_outs[idx][0]
+ bbox_preds = net_outs[idx + fmc][0]
+ bbox_preds = bbox_preds * stride
+ if self.use_kps:
+ kps_preds = net_outs[idx + fmc * 2][0] * stride
+ # If model doesn't support batching take output as is
+ else:
+ scores = net_outs[idx]
+ bbox_preds = net_outs[idx + fmc]
+ bbox_preds = bbox_preds * stride
+ if self.use_kps:
+ kps_preds = net_outs[idx + fmc * 2] * stride
+
+ height = input_height // stride
+ width = input_width // stride
+ K = height * width
+ key = (height, width, stride)
+ if key in self.center_cache:
+ anchor_centers = self.center_cache[key]
+ else:
+ #solution-1, c style:
+ #anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
+ #for i in range(height):
+ # anchor_centers[i, :, 1] = i
+ #for i in range(width):
+ # anchor_centers[:, i, 0] = i
+
+ #solution-2:
+ #ax = np.arange(width, dtype=np.float32)
+ #ay = np.arange(height, dtype=np.float32)
+ #xv, yv = np.meshgrid(np.arange(width), np.arange(height))
+ #anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
+
+ #solution-3:
+ anchor_centers = np.stack(np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
+ #print(anchor_centers.shape)
+
+ anchor_centers = (anchor_centers * stride).reshape( (-1, 2) )
+ if self._num_anchors>1:
+ anchor_centers = np.stack([anchor_centers]*self._num_anchors, axis=1).reshape( (-1,2) )
+ if len(self.center_cache)<100:
+ self.center_cache[key] = anchor_centers
+
+ pos_inds = np.where(scores>=threshold)[0]
+ bboxes = distance2bbox(anchor_centers, bbox_preds)
+ pos_scores = scores[pos_inds]
+ pos_bboxes = bboxes[pos_inds]
+ scores_list.append(pos_scores)
+ bboxes_list.append(pos_bboxes)
+ if self.use_kps:
+ kpss = distance2kps(anchor_centers, kps_preds)
+ #kpss = kps_preds
+ kpss = kpss.reshape( (kpss.shape[0], -1, 2) )
+ pos_kpss = kpss[pos_inds]
+ kpss_list.append(pos_kpss)
+ return scores_list, bboxes_list, kpss_list
+
+ def detect(self, img, input_size = None, max_num=0, metric='default'):
+ assert input_size is not None or self.input_size is not None
+ input_size = self.input_size if input_size is None else input_size
+
+ im_ratio = float(img.shape[0]) / img.shape[1]
+ model_ratio = float(input_size[1]) / input_size[0]
+ if im_ratio>model_ratio:
+ new_height = input_size[1]
+ new_width = int(new_height / im_ratio)
+ else:
+ new_width = input_size[0]
+ new_height = int(new_width * im_ratio)
+ det_scale = float(new_height) / img.shape[0]
+ resized_img = cv2.resize(img, (new_width, new_height))
+ det_img = np.zeros( (input_size[1], input_size[0], 3), dtype=np.uint8 )
+ det_img[:new_height, :new_width, :] = resized_img
+
+ scores_list, bboxes_list, kpss_list = self.forward(det_img, self.det_thresh)
+
+ scores = np.vstack(scores_list)
+ scores_ravel = scores.ravel()
+ order = scores_ravel.argsort()[::-1]
+ bboxes = np.vstack(bboxes_list) / det_scale
+ if self.use_kps:
+ kpss = np.vstack(kpss_list) / det_scale
+ pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
+ pre_det = pre_det[order, :]
+ keep = self.nms(pre_det)
+ det = pre_det[keep, :]
+ if self.use_kps:
+ kpss = kpss[order,:,:]
+ kpss = kpss[keep,:,:]
+ else:
+ kpss = None
+ if max_num > 0 and det.shape[0] > max_num:
+ area = (det[:, 2] - det[:, 0]) * (det[:, 3] -
+ det[:, 1])
+ img_center = img.shape[0] // 2, img.shape[1] // 2
+ offsets = np.vstack([
+ (det[:, 0] + det[:, 2]) / 2 - img_center[1],
+ (det[:, 1] + det[:, 3]) / 2 - img_center[0]
+ ])
+ offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
+ if metric=='max':
+ values = area
+ else:
+ values = area - offset_dist_squared * 2.0 # some extra weight on the centering
+ bindex = np.argsort(
+ values)[::-1] # some extra weight on the centering
+ bindex = bindex[0:max_num]
+ det = det[bindex, :]
+ if kpss is not None:
+ kpss = kpss[bindex, :]
+ return det, kpss
+
+ def nms(self, dets):
+ thresh = self.nms_thresh
+ x1 = dets[:, 0]
+ y1 = dets[:, 1]
+ x2 = dets[:, 2]
+ y2 = dets[:, 3]
+ scores = dets[:, 4]
+
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ order = scores.argsort()[::-1]
+
+ keep = []
+ while order.size > 0:
+ i = order[0]
+ keep.append(i)
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+
+ inds = np.where(ovr <= thresh)[0]
+ order = order[inds + 1]
+
+ return keep
+
+def get_scrfd(name, download=False, root='~/.insightface/models', **kwargs):
+ if not download:
+ assert os.path.exists(name)
+ return SCRFD(name)
+ else:
+ from .model_store import get_model_file
+ _file = get_model_file("scrfd_%s" % name, root=root)
+ return SCRFD(_file)
+
+
+def scrfd_2p5gkps(**kwargs):
+ return get_scrfd("2p5gkps", download=True, **kwargs)
+
+
+if __name__ == '__main__':
+ import glob
+ detector = SCRFD(model_file='./det.onnx')
+ detector.prepare(-1)
+ img_paths = ['tests/data/t1.jpg']
+ for img_path in img_paths:
+ img = cv2.imread(img_path)
+
+ for _ in range(1):
+ ta = datetime.datetime.now()
+ #bboxes, kpss = detector.detect(img, 0.5, input_size = (640, 640))
+ bboxes, kpss = detector.detect(img, 0.5)
+ tb = datetime.datetime.now()
+ print('all cost:', (tb-ta).total_seconds()*1000)
+ print(img_path, bboxes.shape)
+ if kpss is not None:
+ print(kpss.shape)
+ for i in range(bboxes.shape[0]):
+ bbox = bboxes[i]
+ x1,y1,x2,y2,score = bbox.astype(np.int)
+ cv2.rectangle(img, (x1,y1) , (x2,y2) , (255,0,0) , 2)
+ if kpss is not None:
+ kps = kpss[i]
+ for kp in kps:
+ kp = kp.astype(np.int)
+ cv2.circle(img, tuple(kp) , 1, (0,0,255) , 2)
+ filename = img_path.split('/')[-1]
+ print('output:', filename)
+ cv2.imwrite('./outputs/%s'%filename, img)
+
diff --git a/src/utils/dependencies/insightface/utils/__init__.py b/src/utils/dependencies/insightface/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac4816c1b5c015b1920f877a1fb051e73666eeab
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/__init__.py
@@ -0,0 +1,6 @@
+from __future__ import absolute_import
+
+from .storage import download, ensure_available, download_onnx
+from .filesystem import get_model_dir
+from .filesystem import makedirs, try_import_dali
+from .constant import *
diff --git a/src/utils/dependencies/insightface/utils/__pycache__/__init__.cpython-39.pyc b/src/utils/dependencies/insightface/utils/__pycache__/__init__.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..200d45e1487af0219500cb037446c6f1875a50c2
Binary files /dev/null and b/src/utils/dependencies/insightface/utils/__pycache__/__init__.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/utils/__pycache__/constant.cpython-39.pyc b/src/utils/dependencies/insightface/utils/__pycache__/constant.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..24973ac45d765a72d7fcc53dcaae0c68cde7c4ab
Binary files /dev/null and b/src/utils/dependencies/insightface/utils/__pycache__/constant.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/utils/__pycache__/download.cpython-39.pyc b/src/utils/dependencies/insightface/utils/__pycache__/download.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..16929cb332493e3f711e08db4a061e3d4892ff45
Binary files /dev/null and b/src/utils/dependencies/insightface/utils/__pycache__/download.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/utils/__pycache__/face_align.cpython-39.pyc b/src/utils/dependencies/insightface/utils/__pycache__/face_align.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..45750fb2a62fedfc8bbd835b21f86586feb65a43
Binary files /dev/null and b/src/utils/dependencies/insightface/utils/__pycache__/face_align.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/utils/__pycache__/filesystem.cpython-39.pyc b/src/utils/dependencies/insightface/utils/__pycache__/filesystem.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..34253f5aa4ecd9d9aabe01168493bddfaee3e954
Binary files /dev/null and b/src/utils/dependencies/insightface/utils/__pycache__/filesystem.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/utils/__pycache__/storage.cpython-39.pyc b/src/utils/dependencies/insightface/utils/__pycache__/storage.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..26f6d7fb9be331d6161628817be59e89717cc12a
Binary files /dev/null and b/src/utils/dependencies/insightface/utils/__pycache__/storage.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/utils/__pycache__/transform.cpython-39.pyc b/src/utils/dependencies/insightface/utils/__pycache__/transform.cpython-39.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..063acc69316c7f7c280a58e42a773ad2779611b7
Binary files /dev/null and b/src/utils/dependencies/insightface/utils/__pycache__/transform.cpython-39.pyc differ
diff --git a/src/utils/dependencies/insightface/utils/constant.py b/src/utils/dependencies/insightface/utils/constant.py
new file mode 100644
index 0000000000000000000000000000000000000000..dad2481d46ef1418cba06a3b59d1e5ce93844f95
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/constant.py
@@ -0,0 +1,3 @@
+
+DEFAULT_MP_NAME = 'buffalo_l'
+
diff --git a/src/utils/dependencies/insightface/utils/download.py b/src/utils/dependencies/insightface/utils/download.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3d1eb082287d2e08829c97a481c6871d57579f5
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/download.py
@@ -0,0 +1,95 @@
+"""
+This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/utils/download.py
+"""
+import os
+import hashlib
+import requests
+from tqdm import tqdm
+
+
+def check_sha1(filename, sha1_hash):
+ """Check whether the sha1 hash of the file content matches the expected hash.
+ Parameters
+ ----------
+ filename : str
+ Path to the file.
+ sha1_hash : str
+ Expected sha1 hash in hexadecimal digits.
+ Returns
+ -------
+ bool
+ Whether the file content matches the expected hash.
+ """
+ sha1 = hashlib.sha1()
+ with open(filename, 'rb') as f:
+ while True:
+ data = f.read(1048576)
+ if not data:
+ break
+ sha1.update(data)
+
+ sha1_file = sha1.hexdigest()
+ l = min(len(sha1_file), len(sha1_hash))
+ return sha1.hexdigest()[0:l] == sha1_hash[0:l]
+
+
+def download_file(url, path=None, overwrite=False, sha1_hash=None):
+ """Download an given URL
+ Parameters
+ ----------
+ url : str
+ URL to download
+ path : str, optional
+ Destination path to store downloaded file. By default stores to the
+ current directory with same name as in url.
+ overwrite : bool, optional
+ Whether to overwrite destination file if already exists.
+ sha1_hash : str, optional
+ Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified
+ but doesn't match.
+ Returns
+ -------
+ str
+ The file path of the downloaded file.
+ """
+ if path is None:
+ fname = url.split('/')[-1]
+ else:
+ path = os.path.expanduser(path)
+ if os.path.isdir(path):
+ fname = os.path.join(path, url.split('/')[-1])
+ else:
+ fname = path
+
+ if overwrite or not os.path.exists(fname) or (
+ sha1_hash and not check_sha1(fname, sha1_hash)):
+ dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname)))
+ if not os.path.exists(dirname):
+ os.makedirs(dirname)
+
+ print('Downloading %s from %s...' % (fname, url))
+ r = requests.get(url, stream=True)
+ if r.status_code != 200:
+ raise RuntimeError("Failed downloading url %s" % url)
+ total_length = r.headers.get('content-length')
+ with open(fname, 'wb') as f:
+ if total_length is None: # no content length header
+ for chunk in r.iter_content(chunk_size=1024):
+ if chunk: # filter out keep-alive new chunks
+ f.write(chunk)
+ else:
+ total_length = int(total_length)
+ for chunk in tqdm(r.iter_content(chunk_size=1024),
+ total=int(total_length / 1024. + 0.5),
+ unit='KB',
+ unit_scale=False,
+ dynamic_ncols=True):
+ f.write(chunk)
+
+ if sha1_hash and not check_sha1(fname, sha1_hash):
+ raise UserWarning('File {} is downloaded but the content hash does not match. ' \
+ 'The repo may be outdated or download may be incomplete. ' \
+ 'If the "repo_url" is overridden, consider switching to ' \
+ 'the default repo.'.format(fname))
+
+ return fname
diff --git a/src/utils/dependencies/insightface/utils/face_align.py b/src/utils/dependencies/insightface/utils/face_align.py
new file mode 100644
index 0000000000000000000000000000000000000000..0c04a77d486f280705a1383647e929992a6b73b4
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/face_align.py
@@ -0,0 +1,103 @@
+import cv2
+import numpy as np
+from skimage import transform as trans
+
+
+arcface_dst = np.array(
+ [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
+ [41.5493, 92.3655], [70.7299, 92.2041]],
+ dtype=np.float32)
+
+def estimate_norm(lmk, image_size=112,mode='arcface'):
+ assert lmk.shape == (5, 2)
+ assert image_size%112==0 or image_size%128==0
+ if image_size%112==0:
+ ratio = float(image_size)/112.0
+ diff_x = 0
+ else:
+ ratio = float(image_size)/128.0
+ diff_x = 8.0*ratio
+ dst = arcface_dst * ratio
+ dst[:,0] += diff_x
+ tform = trans.SimilarityTransform()
+ tform.estimate(lmk, dst)
+ M = tform.params[0:2, :]
+ return M
+
+def norm_crop(img, landmark, image_size=112, mode='arcface'):
+ M = estimate_norm(landmark, image_size, mode)
+ warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
+ return warped
+
+def norm_crop2(img, landmark, image_size=112, mode='arcface'):
+ M = estimate_norm(landmark, image_size, mode)
+ warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
+ return warped, M
+
+def square_crop(im, S):
+ if im.shape[0] > im.shape[1]:
+ height = S
+ width = int(float(im.shape[1]) / im.shape[0] * S)
+ scale = float(S) / im.shape[0]
+ else:
+ width = S
+ height = int(float(im.shape[0]) / im.shape[1] * S)
+ scale = float(S) / im.shape[1]
+ resized_im = cv2.resize(im, (width, height))
+ det_im = np.zeros((S, S, 3), dtype=np.uint8)
+ det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
+ return det_im, scale
+
+
+def transform(data, center, output_size, scale, rotation):
+ scale_ratio = scale
+ rot = float(rotation) * np.pi / 180.0
+ #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
+ t1 = trans.SimilarityTransform(scale=scale_ratio)
+ cx = center[0] * scale_ratio
+ cy = center[1] * scale_ratio
+ t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
+ t3 = trans.SimilarityTransform(rotation=rot)
+ t4 = trans.SimilarityTransform(translation=(output_size / 2,
+ output_size / 2))
+ t = t1 + t2 + t3 + t4
+ M = t.params[0:2]
+ cropped = cv2.warpAffine(data,
+ M, (output_size, output_size),
+ borderValue=0.0)
+ return cropped, M
+
+
+def trans_points2d(pts, M):
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i] = new_pt[0:2]
+
+ return new_pts
+
+
+def trans_points3d(pts, M):
+ scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
+ #print(scale)
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i][0:2] = new_pt[0:2]
+ new_pts[i][2] = pts[i][2] * scale
+
+ return new_pts
+
+
+def trans_points(pts, M):
+ if pts.shape[1] == 2:
+ return trans_points2d(pts, M)
+ else:
+ return trans_points3d(pts, M)
+
diff --git a/src/utils/dependencies/insightface/utils/filesystem.py b/src/utils/dependencies/insightface/utils/filesystem.py
new file mode 100644
index 0000000000000000000000000000000000000000..c45b429b02febd90e9e07fadbed01da147d4afb0
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/filesystem.py
@@ -0,0 +1,157 @@
+"""
+This code file mainly comes from https://github.com/dmlc/gluon-cv/blob/master/gluoncv/utils/filesystem.py
+"""
+import os
+import os.path as osp
+import errno
+
+
+def get_model_dir(name, root='~/.insightface'):
+ root = os.path.expanduser(root)
+ model_dir = osp.join(root, 'models', name)
+ return model_dir
+
+def makedirs(path):
+ """Create directory recursively if not exists.
+ Similar to `makedir -p`, you can skip checking existence before this function.
+
+ Parameters
+ ----------
+ path : str
+ Path of the desired dir
+ """
+ try:
+ os.makedirs(path)
+ except OSError as exc:
+ if exc.errno != errno.EEXIST:
+ raise
+
+
+def try_import(package, message=None):
+ """Try import specified package, with custom message support.
+
+ Parameters
+ ----------
+ package : str
+ The name of the targeting package.
+ message : str, default is None
+ If not None, this function will raise customized error message when import error is found.
+
+
+ Returns
+ -------
+ module if found, raise ImportError otherwise
+
+ """
+ try:
+ return __import__(package)
+ except ImportError as e:
+ if not message:
+ raise e
+ raise ImportError(message)
+
+
+def try_import_cv2():
+ """Try import cv2 at runtime.
+
+ Returns
+ -------
+ cv2 module if found. Raise ImportError otherwise
+
+ """
+ msg = "cv2 is required, you can install by package manager, e.g. 'apt-get', \
+ or `pip install opencv-python --user` (note that this is unofficial PYPI package)."
+
+ return try_import('cv2', msg)
+
+
+def try_import_mmcv():
+ """Try import mmcv at runtime.
+
+ Returns
+ -------
+ mmcv module if found. Raise ImportError otherwise
+
+ """
+ msg = "mmcv is required, you can install by first `pip install Cython --user` \
+ and then `pip install mmcv --user` (note that this is unofficial PYPI package)."
+
+ return try_import('mmcv', msg)
+
+
+def try_import_rarfile():
+ """Try import rarfile at runtime.
+
+ Returns
+ -------
+ rarfile module if found. Raise ImportError otherwise
+
+ """
+ msg = "rarfile is required, you can install by first `sudo apt-get install unrar` \
+ and then `pip install rarfile --user` (note that this is unofficial PYPI package)."
+
+ return try_import('rarfile', msg)
+
+
+def import_try_install(package, extern_url=None):
+ """Try import the specified package.
+ If the package not installed, try use pip to install and import if success.
+
+ Parameters
+ ----------
+ package : str
+ The name of the package trying to import.
+ extern_url : str or None, optional
+ The external url if package is not hosted on PyPI.
+ For example, you can install a package using:
+ "pip install git+http://github.com/user/repo/tarball/master/egginfo=xxx".
+ In this case, you can pass the url to the extern_url.
+
+ Returns
+ -------
+
+ The imported python module.
+
+ """
+ try:
+ return __import__(package)
+ except ImportError:
+ try:
+ from pip import main as pipmain
+ except ImportError:
+ from pip._internal import main as pipmain
+
+ # trying to install package
+ url = package if extern_url is None else extern_url
+ pipmain(['install', '--user',
+ url]) # will raise SystemExit Error if fails
+
+ # trying to load again
+ try:
+ return __import__(package)
+ except ImportError:
+ import sys
+ import site
+ user_site = site.getusersitepackages()
+ if user_site not in sys.path:
+ sys.path.append(user_site)
+ return __import__(package)
+ return __import__(package)
+
+
+def try_import_dali():
+ """Try import NVIDIA DALI at runtime.
+ """
+ try:
+ dali = __import__('nvidia.dali', fromlist=['pipeline', 'ops', 'types'])
+ dali.Pipeline = dali.pipeline.Pipeline
+ except ImportError:
+
+ class dali:
+ class Pipeline:
+ def __init__(self):
+ raise NotImplementedError(
+ "DALI not found, please check if you installed it correctly."
+ )
+
+ return dali
diff --git a/src/utils/dependencies/insightface/utils/storage.py b/src/utils/dependencies/insightface/utils/storage.py
new file mode 100644
index 0000000000000000000000000000000000000000..38ebf3834391f6af4a46f865a7e43b4e5eeda081
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/storage.py
@@ -0,0 +1,52 @@
+
+import os
+import os.path as osp
+import zipfile
+from .download import download_file
+
+BASE_REPO_URL = 'https://github.com/deepinsight/insightface/releases/download/v0.7'
+
+def download(sub_dir, name, force=False, root='~/.insightface'):
+ _root = os.path.expanduser(root)
+ dir_path = os.path.join(_root, sub_dir, name)
+ if osp.exists(dir_path) and not force:
+ return dir_path
+ print('download_path:', dir_path)
+ zip_file_path = os.path.join(_root, sub_dir, name + '.zip')
+ model_url = "%s/%s.zip"%(BASE_REPO_URL, name)
+ download_file(model_url,
+ path=zip_file_path,
+ overwrite=True)
+ if not os.path.exists(dir_path):
+ os.makedirs(dir_path)
+ with zipfile.ZipFile(zip_file_path) as zf:
+ zf.extractall(dir_path)
+ #os.remove(zip_file_path)
+ return dir_path
+
+def ensure_available(sub_dir, name, root='~/.insightface'):
+ return download(sub_dir, name, force=False, root=root)
+
+def download_onnx(sub_dir, model_file, force=False, root='~/.insightface', download_zip=False):
+ _root = os.path.expanduser(root)
+ model_root = osp.join(_root, sub_dir)
+ new_model_file = osp.join(model_root, model_file)
+ if osp.exists(new_model_file) and not force:
+ return new_model_file
+ if not osp.exists(model_root):
+ os.makedirs(model_root)
+ print('download_path:', new_model_file)
+ if not download_zip:
+ model_url = "%s/%s"%(BASE_REPO_URL, model_file)
+ download_file(model_url,
+ path=new_model_file,
+ overwrite=True)
+ else:
+ model_url = "%s/%s.zip"%(BASE_REPO_URL, model_file)
+ zip_file_path = new_model_file+".zip"
+ download_file(model_url,
+ path=zip_file_path,
+ overwrite=True)
+ with zipfile.ZipFile(zip_file_path) as zf:
+ zf.extractall(model_root)
+ return new_model_file
diff --git a/src/utils/dependencies/insightface/utils/transform.py b/src/utils/dependencies/insightface/utils/transform.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac884eeb52d8440b217c3387eb9785734950a92b
--- /dev/null
+++ b/src/utils/dependencies/insightface/utils/transform.py
@@ -0,0 +1,116 @@
+import cv2
+import math
+import numpy as np
+from skimage import transform as trans
+
+
+def transform(data, center, output_size, scale, rotation):
+ scale_ratio = scale
+ rot = float(rotation) * np.pi / 180.0
+ #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
+ t1 = trans.SimilarityTransform(scale=scale_ratio)
+ cx = center[0] * scale_ratio
+ cy = center[1] * scale_ratio
+ t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
+ t3 = trans.SimilarityTransform(rotation=rot)
+ t4 = trans.SimilarityTransform(translation=(output_size / 2,
+ output_size / 2))
+ t = t1 + t2 + t3 + t4
+ M = t.params[0:2]
+ cropped = cv2.warpAffine(data,
+ M, (output_size, output_size),
+ borderValue=0.0)
+ return cropped, M
+
+
+def trans_points2d(pts, M):
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i] = new_pt[0:2]
+
+ return new_pts
+
+
+def trans_points3d(pts, M):
+ scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
+ #print(scale)
+ new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
+ for i in range(pts.shape[0]):
+ pt = pts[i]
+ new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
+ new_pt = np.dot(M, new_pt)
+ #print('new_pt', new_pt.shape, new_pt)
+ new_pts[i][0:2] = new_pt[0:2]
+ new_pts[i][2] = pts[i][2] * scale
+
+ return new_pts
+
+
+def trans_points(pts, M):
+ if pts.shape[1] == 2:
+ return trans_points2d(pts, M)
+ else:
+ return trans_points3d(pts, M)
+
+def estimate_affine_matrix_3d23d(X, Y):
+ ''' Using least-squares solution
+ Args:
+ X: [n, 3]. 3d points(fixed)
+ Y: [n, 3]. corresponding 3d points(moving). Y = PX
+ Returns:
+ P_Affine: (3, 4). Affine camera matrix (the third row is [0, 0, 0, 1]).
+ '''
+ X_homo = np.hstack((X, np.ones([X.shape[0],1]))) #n x 4
+ P = np.linalg.lstsq(X_homo, Y)[0].T # Affine matrix. 3 x 4
+ return P
+
+def P2sRt(P):
+ ''' decompositing camera matrix P
+ Args:
+ P: (3, 4). Affine Camera Matrix.
+ Returns:
+ s: scale factor.
+ R: (3, 3). rotation matrix.
+ t: (3,). translation.
+ '''
+ t = P[:, 3]
+ R1 = P[0:1, :3]
+ R2 = P[1:2, :3]
+ s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2.0
+ r1 = R1/np.linalg.norm(R1)
+ r2 = R2/np.linalg.norm(R2)
+ r3 = np.cross(r1, r2)
+
+ R = np.concatenate((r1, r2, r3), 0)
+ return s, R, t
+
+def matrix2angle(R):
+ ''' get three Euler angles from Rotation Matrix
+ Args:
+ R: (3,3). rotation matrix
+ Returns:
+ x: pitch
+ y: yaw
+ z: roll
+ '''
+ sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
+
+ singular = sy < 1e-6
+
+ if not singular :
+ x = math.atan2(R[2,1] , R[2,2])
+ y = math.atan2(-R[2,0], sy)
+ z = math.atan2(R[1,0], R[0,0])
+ else :
+ x = math.atan2(-R[1,2], R[1,1])
+ y = math.atan2(-R[2,0], sy)
+ z = 0
+
+ # rx, ry, rz = np.rad2deg(x), np.rad2deg(y), np.rad2deg(z)
+ rx, ry, rz = x*180/np.pi, y*180/np.pi, z*180/np.pi
+ return rx, ry, rz
+
diff --git a/src/utils/face_analysis_diy.py b/src/utils/face_analysis_diy.py
new file mode 100644
index 0000000000000000000000000000000000000000..359ac17f0a12ea0180b2e7938e0c07b2a9a176e3
--- /dev/null
+++ b/src/utils/face_analysis_diy.py
@@ -0,0 +1,79 @@
+# coding: utf-8
+
+"""
+face detectoin and alignment using InsightFace
+"""
+
+import numpy as np
+from .rprint import rlog as log
+from .dependencies.insightface.app import FaceAnalysis
+from .dependencies.insightface.app.common import Face
+from .timer import Timer
+
+
+def sort_by_direction(faces, direction: str = 'large-small', face_center=None):
+ if len(faces) <= 0:
+ return faces
+
+ if direction == 'left-right':
+ return sorted(faces, key=lambda face: face['bbox'][0])
+ if direction == 'right-left':
+ return sorted(faces, key=lambda face: face['bbox'][0], reverse=True)
+ if direction == 'top-bottom':
+ return sorted(faces, key=lambda face: face['bbox'][1])
+ if direction == 'bottom-top':
+ return sorted(faces, key=lambda face: face['bbox'][1], reverse=True)
+ if direction == 'small-large':
+ return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]))
+ if direction == 'large-small':
+ return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse=True)
+ if direction == 'distance-from-retarget-face':
+ return sorted(faces, key=lambda face: (((face['bbox'][2]+face['bbox'][0])/2-face_center[0])**2+((face['bbox'][3]+face['bbox'][1])/2-face_center[1])**2)**0.5)
+ return faces
+
+
+class FaceAnalysisDIY(FaceAnalysis):
+ def __init__(self, name='buffalo_l', root='~/.insightface', allowed_modules=None, **kwargs):
+ super().__init__(name=name, root=root, allowed_modules=allowed_modules, **kwargs)
+
+ self.timer = Timer()
+
+ def get(self, img_bgr, **kwargs):
+ max_num = kwargs.get('max_face_num', 0) # the number of the detected faces, 0 means no limit
+ flag_do_landmark_2d_106 = kwargs.get('flag_do_landmark_2d_106', True) # whether to do 106-point detection
+ direction = kwargs.get('direction', 'large-small') # sorting direction
+ face_center = None
+
+ bboxes, kpss = self.det_model.detect(img_bgr, max_num=max_num, metric='default')
+ if bboxes.shape[0] == 0:
+ return []
+ ret = []
+ for i in range(bboxes.shape[0]):
+ bbox = bboxes[i, 0:4]
+ det_score = bboxes[i, 4]
+ kps = None
+ if kpss is not None:
+ kps = kpss[i]
+ face = Face(bbox=bbox, kps=kps, det_score=det_score)
+ for taskname, model in self.models.items():
+ if taskname == 'detection':
+ continue
+
+ if (not flag_do_landmark_2d_106) and taskname == 'landmark_2d_106':
+ continue
+
+ # print(f'taskname: {taskname}')
+ model.get(img_bgr, face)
+ ret.append(face)
+
+ ret = sort_by_direction(ret, direction, face_center)
+ return ret
+
+ def warmup(self):
+ self.timer.tic()
+
+ img_bgr = np.zeros((512, 512, 3), dtype=np.uint8)
+ self.get(img_bgr)
+
+ elapse = self.timer.toc()
+ log(f'FaceAnalysisDIY warmup time: {elapse:.3f}s')
diff --git a/src/utils/helper.py b/src/utils/helper.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7f622598194fd21f78d8819f23cfb62ea229190
--- /dev/null
+++ b/src/utils/helper.py
@@ -0,0 +1,145 @@
+# coding: utf-8
+
+"""
+utility functions and classes to handle feature extraction and model loading
+"""
+
+import os
+import os.path as osp
+import torch
+from collections import OrderedDict
+
+from ..modules.spade_generator import SPADEDecoder
+from ..modules.warping_network import WarpingNetwork
+from ..modules.motion_extractor import MotionExtractor
+from ..modules.appearance_feature_extractor import AppearanceFeatureExtractor
+from ..modules.stitching_retargeting_network import StitchingRetargetingNetwork
+
+
+def suffix(filename):
+ """a.jpg -> jpg"""
+ pos = filename.rfind(".")
+ if pos == -1:
+ return ""
+ return filename[pos + 1:]
+
+
+def prefix(filename):
+ """a.jpg -> a"""
+ pos = filename.rfind(".")
+ if pos == -1:
+ return filename
+ return filename[:pos]
+
+
+def basename(filename):
+ """a/b/c.jpg -> c"""
+ return prefix(osp.basename(filename))
+
+
+def remove_suffix(filepath):
+ """a/b/c.jpg -> a/b/c"""
+ return osp.join(osp.dirname(filepath), basename(filepath))
+
+
+def is_video(file_path):
+ if file_path.lower().endswith((".mp4", ".mov", ".avi", ".webm")) or osp.isdir(file_path):
+ return True
+ return False
+
+
+def is_template(file_path):
+ if file_path.endswith(".pkl"):
+ return True
+ return False
+
+
+def mkdir(d, log=False):
+ # return self-assined `d`, for one line code
+ if not osp.exists(d):
+ os.makedirs(d, exist_ok=True)
+ if log:
+ print(f"Make dir: {d}")
+ return d
+
+
+def squeeze_tensor_to_numpy(tensor):
+ out = tensor.data.squeeze(0).cpu().numpy()
+ return out
+
+
+def dct2device(dct: dict, device):
+ for key in dct:
+ dct[key] = torch.tensor(dct[key]).to(device)
+ return dct
+
+
+def concat_feat(kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
+ """
+ kp_source: (bs, k, 3)
+ kp_driving: (bs, k, 3)
+ Return: (bs, 2k*3)
+ """
+ bs_src = kp_source.shape[0]
+ bs_dri = kp_driving.shape[0]
+ assert bs_src == bs_dri, 'batch size must be equal'
+
+ feat = torch.cat([kp_source.view(bs_src, -1), kp_driving.view(bs_dri, -1)], dim=1)
+ return feat
+
+
+def remove_ddp_dumplicate_key(state_dict):
+ state_dict_new = OrderedDict()
+ for key in state_dict.keys():
+ state_dict_new[key.replace('module.', '')] = state_dict[key]
+ return state_dict_new
+
+
+def load_model(ckpt_path, model_config, device, model_type):
+ model_params = model_config['model_params'][f'{model_type}_params']
+
+ if model_type == 'appearance_feature_extractor':
+ model = AppearanceFeatureExtractor(**model_params).to(device)
+ elif model_type == 'motion_extractor':
+ model = MotionExtractor(**model_params).to(device)
+ elif model_type == 'warping_module':
+ model = WarpingNetwork(**model_params).to(device)
+ elif model_type == 'spade_generator':
+ model = SPADEDecoder(**model_params).to(device)
+ elif model_type == 'stitching_retargeting_module':
+ # Special handling for stitching and retargeting module
+ config = model_config['model_params']['stitching_retargeting_module_params']
+ checkpoint = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
+
+ stitcher = StitchingRetargetingNetwork(**config.get('stitching'))
+ stitcher.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_shoulder']))
+ stitcher = stitcher.to(device)
+ stitcher.eval()
+
+ retargetor_lip = StitchingRetargetingNetwork(**config.get('lip'))
+ retargetor_lip.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_mouth']))
+ retargetor_lip = retargetor_lip.to(device)
+ retargetor_lip.eval()
+
+ retargetor_eye = StitchingRetargetingNetwork(**config.get('eye'))
+ retargetor_eye.load_state_dict(remove_ddp_dumplicate_key(checkpoint['retarget_eye']))
+ retargetor_eye = retargetor_eye.to(device)
+ retargetor_eye.eval()
+
+ return {
+ 'stitching': stitcher,
+ 'lip': retargetor_lip,
+ 'eye': retargetor_eye
+ }
+ else:
+ raise ValueError(f"Unknown model type: {model_type}")
+
+ model.load_state_dict(torch.load(ckpt_path, map_location=lambda storage, loc: storage))
+ model.eval()
+ return model
+
+
+def load_description(fp):
+ with open(fp, 'r', encoding='utf-8') as f:
+ content = f.read()
+ return content
diff --git a/src/utils/io.py b/src/utils/io.py
new file mode 100644
index 0000000000000000000000000000000000000000..be4ee7bd641c301a31fab79b1afacb66efc8a42c
--- /dev/null
+++ b/src/utils/io.py
@@ -0,0 +1,125 @@
+# coding: utf-8
+
+import os
+from glob import glob
+import os.path as osp
+import imageio
+import numpy as np
+import pickle
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+
+from .helper import mkdir, suffix
+
+
+def load_image_rgb(image_path: str):
+ if not osp.exists(image_path):
+ raise FileNotFoundError(f"Image not found: {image_path}")
+ img = cv2.imread(image_path, cv2.IMREAD_COLOR)
+ return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+
+
+def load_driving_info(driving_info):
+ driving_video_ori = []
+
+ def load_images_from_directory(directory):
+ image_paths = sorted(glob(osp.join(directory, '*.png')) + glob(osp.join(directory, '*.jpg')))
+ return [load_image_rgb(im_path) for im_path in image_paths]
+
+ def load_images_from_video(file_path):
+ reader = imageio.get_reader(file_path, "ffmpeg")
+ return [image for _, image in enumerate(reader)]
+
+ if osp.isdir(driving_info):
+ driving_video_ori = load_images_from_directory(driving_info)
+ elif osp.isfile(driving_info):
+ driving_video_ori = load_images_from_video(driving_info)
+
+ return driving_video_ori
+
+
+def contiguous(obj):
+ if not obj.flags.c_contiguous:
+ obj = obj.copy(order="C")
+ return obj
+
+
+def resize_to_limit(img: np.ndarray, max_dim=1920, division=2):
+ """
+ ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n.
+ :param img: the image to be processed.
+ :param max_dim: the maximum dimension constraint.
+ :param n: the number that needs to be multiples of.
+ :return: the adjusted image.
+ """
+ h, w = img.shape[:2]
+
+ # ajust the size of the image according to the maximum dimension
+ if max_dim > 0 and max(h, w) > max_dim:
+ if h > w:
+ new_h = max_dim
+ new_w = int(w * (max_dim / h))
+ else:
+ new_w = max_dim
+ new_h = int(h * (max_dim / w))
+ img = cv2.resize(img, (new_w, new_h))
+
+ # ensure that the image dimensions are multiples of n
+ division = max(division, 1)
+ new_h = img.shape[0] - (img.shape[0] % division)
+ new_w = img.shape[1] - (img.shape[1] % division)
+
+ if new_h == 0 or new_w == 0:
+ # when the width or height is less than n, no need to process
+ return img
+
+ if new_h != img.shape[0] or new_w != img.shape[1]:
+ img = img[:new_h, :new_w]
+
+ return img
+
+
+def load_img_online(obj, mode="bgr", **kwargs):
+ max_dim = kwargs.get("max_dim", 1920)
+ n = kwargs.get("n", 2)
+ if isinstance(obj, str):
+ if mode.lower() == "gray":
+ img = cv2.imread(obj, cv2.IMREAD_GRAYSCALE)
+ else:
+ img = cv2.imread(obj, cv2.IMREAD_COLOR)
+ else:
+ img = obj
+
+ # Resize image to satisfy constraints
+ img = resize_to_limit(img, max_dim=max_dim, division=n)
+
+ if mode.lower() == "bgr":
+ return contiguous(img)
+ elif mode.lower() == "rgb":
+ return contiguous(img[..., ::-1])
+ else:
+ raise Exception(f"Unknown mode {mode}")
+
+
+def load(fp):
+ suffix_ = suffix(fp)
+
+ if suffix_ == "npy":
+ return np.load(fp)
+ elif suffix_ == "pkl":
+ return pickle.load(open(fp, "rb"))
+ else:
+ raise Exception(f"Unknown type: {suffix}")
+
+
+def dump(wfp, obj):
+ wd = osp.split(wfp)[0]
+ if wd != "" and not osp.exists(wd):
+ mkdir(wd)
+
+ _suffix = suffix(wfp)
+ if _suffix == "npy":
+ np.save(wfp, obj)
+ elif _suffix == "pkl":
+ pickle.dump(obj, open(wfp, "wb"))
+ else:
+ raise Exception("Unknown type: {}".format(_suffix))
diff --git a/src/utils/landmark_runner.py b/src/utils/landmark_runner.py
new file mode 100644
index 0000000000000000000000000000000000000000..bae720f8f4c13891de50d67ff6a9436cae0a96bd
--- /dev/null
+++ b/src/utils/landmark_runner.py
@@ -0,0 +1,89 @@
+# coding: utf-8
+
+import os.path as osp
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+import torch
+import numpy as np
+import onnxruntime
+from .timer import Timer
+from .rprint import rlog
+from .crop import crop_image, _transform_pts
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+
+def to_ndarray(obj):
+ if isinstance(obj, torch.Tensor):
+ return obj.cpu().numpy()
+ elif isinstance(obj, np.ndarray):
+ return obj
+ else:
+ return np.array(obj)
+
+
+class LandmarkRunner(object):
+ """landmark runner"""
+
+ def __init__(self, **kwargs):
+ ckpt_path = kwargs.get('ckpt_path')
+ onnx_provider = kwargs.get('onnx_provider', 'cuda') # ้ป่ฎค็จcuda
+ device_id = kwargs.get('device_id', 0)
+ self.dsize = kwargs.get('dsize', 224)
+ self.timer = Timer()
+
+ if onnx_provider.lower() == 'cuda':
+ self.session = onnxruntime.InferenceSession(
+ ckpt_path, providers=[
+ ('CUDAExecutionProvider', {'device_id': device_id})
+ ]
+ )
+ else:
+ opts = onnxruntime.SessionOptions()
+ opts.intra_op_num_threads = 4 # ้ป่ฎค็บฟ็จๆฐไธบ 4
+ self.session = onnxruntime.InferenceSession(
+ ckpt_path, providers=['CPUExecutionProvider'],
+ sess_options=opts
+ )
+
+ def _run(self, inp):
+ out = self.session.run(None, {'input': inp})
+ return out
+
+ def run(self, img_rgb: np.ndarray, lmk=None):
+ if lmk is not None:
+ crop_dct = crop_image(img_rgb, lmk, dsize=self.dsize, scale=1.5, vy_ratio=-0.1)
+ img_crop_rgb = crop_dct['img_crop']
+ else:
+ # NOTE: force resize to 224x224, NOT RECOMMEND!
+ img_crop_rgb = cv2.resize(img_rgb, (self.dsize, self.dsize))
+ scale = max(img_rgb.shape[:2]) / self.dsize
+ crop_dct = {
+ 'M_c2o': np.array([
+ [scale, 0., 0.],
+ [0., scale, 0.],
+ [0., 0., 1.],
+ ], dtype=np.float32),
+ }
+
+ inp = (img_crop_rgb.astype(np.float32) / 255.).transpose(2, 0, 1)[None, ...] # HxWx3 (BGR) -> 1x3xHxW (RGB!)
+
+ out_lst = self._run(inp)
+ out_pts = out_lst[2]
+
+ # 2d landmarks 203 points
+ lmk = to_ndarray(out_pts[0]).reshape(-1, 2) * self.dsize # scale to 0-224
+ lmk = _transform_pts(lmk, M=crop_dct['M_c2o'])
+
+ return lmk
+
+ def warmup(self):
+ self.timer.tic()
+
+ dummy_image = np.zeros((1, 3, self.dsize, self.dsize), dtype=np.float32)
+
+ _ = self._run(dummy_image)
+
+ elapse = self.timer.toc()
+ rlog(f'LandmarkRunner warmup time: {elapse:.3f}s')
diff --git a/src/utils/resources/mask_template.png b/src/utils/resources/mask_template.png
new file mode 100644
index 0000000000000000000000000000000000000000..bca6ca5977ba820d0d2c05b3793c6231cc82e715
Binary files /dev/null and b/src/utils/resources/mask_template.png differ
diff --git a/src/utils/retargeting_utils.py b/src/utils/retargeting_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..cbe9d1c7a768065b46b6d8a62a7b52871e3dee47
--- /dev/null
+++ b/src/utils/retargeting_utils.py
@@ -0,0 +1,24 @@
+
+"""
+Functions to compute distance ratios between specific pairs of facial landmarks
+"""
+
+import numpy as np
+
+
+def calculate_distance_ratio(lmk: np.ndarray, idx1: int, idx2: int, idx3: int, idx4: int, eps: float = 1e-6) -> np.ndarray:
+ return (np.linalg.norm(lmk[:, idx1] - lmk[:, idx2], axis=1, keepdims=True) /
+ (np.linalg.norm(lmk[:, idx3] - lmk[:, idx4], axis=1, keepdims=True) + eps))
+
+
+def calc_eye_close_ratio(lmk: np.ndarray, target_eye_ratio: np.ndarray = None) -> np.ndarray:
+ lefteye_close_ratio = calculate_distance_ratio(lmk, 6, 18, 0, 12)
+ righteye_close_ratio = calculate_distance_ratio(lmk, 30, 42, 24, 36)
+ if target_eye_ratio is not None:
+ return np.concatenate([lefteye_close_ratio, righteye_close_ratio, target_eye_ratio], axis=1)
+ else:
+ return np.concatenate([lefteye_close_ratio, righteye_close_ratio], axis=1)
+
+
+def calc_lip_close_ratio(lmk: np.ndarray) -> np.ndarray:
+ return calculate_distance_ratio(lmk, 90, 102, 48, 66)
diff --git a/src/utils/rprint.py b/src/utils/rprint.py
new file mode 100644
index 0000000000000000000000000000000000000000..18614e86d3b7e11552dd4f82b92712d56324ff07
--- /dev/null
+++ b/src/utils/rprint.py
@@ -0,0 +1,16 @@
+# coding: utf-8
+
+"""
+custom print and log functions
+"""
+
+__all__ = ['rprint', 'rlog']
+
+try:
+ from rich.console import Console
+ console = Console()
+ rprint = console.print
+ rlog = console.log
+except:
+ rprint = print
+ rlog = print
diff --git a/src/utils/timer.py b/src/utils/timer.py
new file mode 100644
index 0000000000000000000000000000000000000000..792af243ad59ee7eb7768b40a7370c9d68bcff7c
--- /dev/null
+++ b/src/utils/timer.py
@@ -0,0 +1,29 @@
+# coding: utf-8
+
+"""
+tools to measure elapsed time
+"""
+
+import time
+
+class Timer(object):
+ """A simple timer."""
+
+ def __init__(self):
+ self.total_time = 0.
+ self.calls = 0
+ self.start_time = 0.
+ self.diff = 0.
+
+ def tic(self):
+ # using time.time instead of time.clock because time time.clock
+ # does not normalize for multithreading
+ self.start_time = time.time()
+
+ def toc(self, average=True):
+ self.diff = time.time() - self.start_time
+ return self.diff
+
+ def clear(self):
+ self.start_time = 0.
+ self.diff = 0.
diff --git a/src/utils/video.py b/src/utils/video.py
new file mode 100644
index 0000000000000000000000000000000000000000..de9c823648574507c0f41d39dfd76fe10febe018
--- /dev/null
+++ b/src/utils/video.py
@@ -0,0 +1,230 @@
+# coding: utf-8
+
+"""
+Functions for processing video
+
+ATTENTION: you need to install ffmpeg and ffprobe in your env!
+"""
+
+import os.path as osp
+import numpy as np
+import subprocess
+import imageio
+import cv2
+from rich.progress import track
+
+from .rprint import rlog as log
+from .rprint import rprint as print
+from .helper import prefix
+
+
+def exec_cmd(cmd):
+ return subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
+
+
+def images2video(images, wfp, **kwargs):
+ fps = kwargs.get('fps', 30)
+ video_format = kwargs.get('format', 'mp4') # default is mp4 format
+ codec = kwargs.get('codec', 'libx264') # default is libx264 encoding
+ quality = kwargs.get('quality') # video quality
+ pixelformat = kwargs.get('pixelformat', 'yuv420p') # video pixel format
+ image_mode = kwargs.get('image_mode', 'rgb')
+ macro_block_size = kwargs.get('macro_block_size', 2)
+ ffmpeg_params = ['-crf', str(kwargs.get('crf', 18))]
+
+ writer = imageio.get_writer(
+ wfp, fps=fps, format=video_format,
+ codec=codec, quality=quality, ffmpeg_params=ffmpeg_params, pixelformat=pixelformat, macro_block_size=macro_block_size
+ )
+
+ n = len(images)
+ for i in track(range(n), description='Writing', transient=True):
+ if image_mode.lower() == 'bgr':
+ writer.append_data(images[i][..., ::-1])
+ else:
+ writer.append_data(images[i])
+
+ writer.close()
+
+
+def video2gif(video_fp, fps=30, size=256):
+ if osp.exists(video_fp):
+ d = osp.split(video_fp)[0]
+ fn = prefix(osp.basename(video_fp))
+ palette_wfp = osp.join(d, 'palette.png')
+ gif_wfp = osp.join(d, f'{fn}.gif')
+ # generate the palette
+ cmd = f'ffmpeg -i "{video_fp}" -vf "fps={fps},scale={size}:-1:flags=lanczos,palettegen" "{palette_wfp}" -y'
+ exec_cmd(cmd)
+ # use the palette to generate the gif
+ cmd = f'ffmpeg -i "{video_fp}" -i "{palette_wfp}" -filter_complex "fps={fps},scale={size}:-1:flags=lanczos[x];[x][1:v]paletteuse" "{gif_wfp}" -y'
+ exec_cmd(cmd)
+ else:
+ print(f'video_fp: {video_fp} not exists!')
+
+
+def merge_audio_video(video_fp, audio_fp, wfp):
+ if osp.exists(video_fp) and osp.exists(audio_fp):
+ cmd = f'ffmpeg -i "{video_fp}" -i "{audio_fp}" -c:v copy -c:a aac "{wfp}" -y'
+ exec_cmd(cmd)
+ print(f'merge {video_fp} and {audio_fp} to {wfp}')
+ else:
+ print(f'video_fp: {video_fp} or audio_fp: {audio_fp} not exists!')
+
+
+def blend(img: np.ndarray, mask: np.ndarray, background_color=(255, 255, 255)):
+ mask_float = mask.astype(np.float32) / 255.
+ background_color = np.array(background_color).reshape([1, 1, 3])
+ bg = np.ones_like(img) * background_color
+ img = np.clip(mask_float * img + (1 - mask_float) * bg, 0, 255).astype(np.uint8)
+ return img
+
+def concat_frame(driving_image_lst, source_image, I_p_lst):
+ # TODO: add more concat style, e.g., left-down corner driving
+ out_lst = []
+ h, w, _ = I_p_lst[0].shape
+
+ for idx, _ in track(enumerate(I_p_lst), total=len(I_p_lst), description='Concatenating result...'):
+ I_p = I_p_lst[idx]
+ source_image_resized = cv2.resize(source_image, (w, h))
+
+ if driving_image_lst is None:
+ out = np.hstack((source_image_resized, I_p))
+ else:
+ driving_image = driving_image_lst[idx]
+ driving_image_resized = cv2.resize(driving_image, (w, h))
+ out = np.hstack((driving_image_resized, source_image_resized, I_p))
+
+ out_lst.append(out)
+ return out_lst
+
+
+def concat_frames(driving_image_lst, source_image, I_p_lst):
+ # TODO: add more concat style, e.g., left-down corner driving
+ out_lst = []
+ h, w, _ = I_p_lst[0].shape
+
+ for idx, _ in track(enumerate(I_p_lst), total=len(I_p_lst), description='Concatenating result...'):
+ I_p = I_p_lst[idx]
+ source_image_resized = cv2.resize(source_image[idx], (w, h))
+
+ if driving_image_lst is None:
+ out = np.hstack((source_image_resized, I_p))
+ else:
+ driving_image = driving_image_lst[idx]
+ driving_image_resized = cv2.resize(driving_image, (w, h))
+ out = np.hstack((driving_image_resized, source_image_resized, I_p))
+
+ out_lst.append(out)
+ return out_lst
+
+
+class VideoWriter:
+ def __init__(self, **kwargs):
+ self.fps = kwargs.get('fps', 30)
+ self.wfp = kwargs.get('wfp', 'video.mp4')
+ self.video_format = kwargs.get('format', 'mp4')
+ self.codec = kwargs.get('codec', 'libx264')
+ self.quality = kwargs.get('quality')
+ self.pixelformat = kwargs.get('pixelformat', 'yuv420p')
+ self.image_mode = kwargs.get('image_mode', 'rgb')
+ self.ffmpeg_params = kwargs.get('ffmpeg_params')
+
+ self.writer = imageio.get_writer(
+ self.wfp, fps=self.fps, format=self.video_format,
+ codec=self.codec, quality=self.quality,
+ ffmpeg_params=self.ffmpeg_params, pixelformat=self.pixelformat
+ )
+
+ def write(self, image):
+ if self.image_mode.lower() == 'bgr':
+ self.writer.append_data(image[..., ::-1])
+ else:
+ self.writer.append_data(image)
+
+ def close(self):
+ if self.writer is not None:
+ self.writer.close()
+
+
+def change_video_fps(input_file, output_file, fps=20, codec='libx264', crf=12):
+ cmd = f'ffmpeg -i "{input_file}" -c:v {codec} -crf {crf} -r {fps} "{output_file}" -y'
+ exec_cmd(cmd)
+
+
+def get_fps(filepath, default_fps=25):
+ try:
+ fps = cv2.VideoCapture(filepath).get(cv2.CAP_PROP_FPS)
+
+ if fps in (0, None):
+ fps = default_fps
+ except Exception as e:
+ log(e)
+ fps = default_fps
+
+ return fps
+
+
+def has_audio_stream(video_path: str) -> bool:
+ """
+ Check if the video file contains an audio stream.
+
+ :param video_path: Path to the video file
+ :return: True if the video contains an audio stream, False otherwise
+ """
+ if osp.isdir(video_path):
+ return False
+
+ cmd = [
+ 'ffprobe',
+ '-v', 'error',
+ '-select_streams', 'a',
+ '-show_entries', 'stream=codec_type',
+ '-of', 'default=noprint_wrappers=1:nokey=1',
+ f'"{video_path}"'
+ ]
+
+ try:
+ # result = subprocess.run(cmd, capture_output=True, text=True)
+ result = exec_cmd(' '.join(cmd))
+ if result.returncode != 0:
+ log(f"Error occurred while probing video: {result.stderr}")
+ return False
+
+ # Check if there is any output from ffprobe command
+ return bool(result.stdout.strip())
+ except Exception as e:
+ log(f"Error occurred while probing video: {video_path}, you may need to install ffprobe! Now set audio to false!", style="bold red")
+ return False
+
+
+def add_audio_to_video(silent_video_path: str, audio_video_path: str, output_video_path: str):
+ cmd = [
+ 'ffmpeg',
+ '-y',
+ '-i', f'"{silent_video_path}"',
+ '-i', f'"{audio_video_path}"',
+ '-map', '0:v',
+ '-map', '1:a',
+ '-c:v', 'copy',
+ '-shortest',
+ f'"{output_video_path}"'
+ ]
+
+ try:
+ exec_cmd(' '.join(cmd))
+ log(f"Video with audio generated successfully: {output_video_path}")
+ except subprocess.CalledProcessError as e:
+ log(f"Error occurred: {e}")
+
+
+def bb_intersection_over_union(boxA, boxB):
+ xA = max(boxA[0], boxB[0])
+ yA = max(boxA[1], boxB[1])
+ xB = min(boxA[2], boxB[2])
+ yB = min(boxA[3], boxB[3])
+ interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
+ boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
+ boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
+ iou = interArea / float(boxAArea + boxBArea - interArea)
+ return iou
diff --git a/src/utils/viz.py b/src/utils/viz.py
new file mode 100644
index 0000000000000000000000000000000000000000..59b35d2702536e135eb1b16caf0f6b96a23dbea0
--- /dev/null
+++ b/src/utils/viz.py
@@ -0,0 +1,19 @@
+# coding: utf-8
+
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+
+
+def viz_lmk(img_, vps, **kwargs):
+ """ๅฏ่งๅ็น"""
+ lineType = kwargs.get("lineType", cv2.LINE_8) # cv2.LINE_AA
+ img_for_viz = img_.copy()
+ for pt in vps:
+ cv2.circle(
+ img_for_viz,
+ (int(pt[0]), int(pt[1])),
+ radius=kwargs.get("radius", 1),
+ color=(0, 255, 0),
+ thickness=kwargs.get("thickness", 1),
+ lineType=lineType,
+ )
+ return img_for_viz