Spaces:
Runtime error
Runtime error
# coding: utf-8 | |
import os.path as osp | |
from dataclasses import dataclass, field | |
from typing import List, Tuple, Union | |
import cv2 | |
import numpy as np | |
cv2.setNumThreads(0) | |
cv2.ocl.setUseOpenCL(False) | |
from ..config.crop_config import CropConfig | |
from .crop import ( | |
average_bbox_lst, | |
crop_image, | |
crop_image_by_bbox, | |
parse_bbox_from_landmark, | |
) | |
from .face_analysis_diy import FaceAnalysisDIY | |
from .io import contiguous | |
from .landmark_runner import LandmarkRunner | |
from .rprint import rlog as log | |
def make_abs_path(fn): | |
return osp.join(osp.dirname(osp.realpath(__file__)), fn) | |
class Trajectory: | |
start: int = -1 # start frame | |
end: int = -1 # end frame | |
lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # lmk list | |
bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) # bbox list | |
frame_rgb_lst: Union[Tuple, List, np.ndarray] = field( | |
default_factory=list | |
) # frame list | |
lmk_crop_lst: Union[Tuple, List, np.ndarray] = field( | |
default_factory=list | |
) # lmk list | |
frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field( | |
default_factory=list | |
) # frame crop list | |
class Cropper(object): | |
def __init__(self, **kwargs) -> None: | |
self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None) | |
device_id = kwargs.get("device_id", 0) | |
flag_force_cpu = kwargs.get("flag_force_cpu", False) | |
if flag_force_cpu: | |
device = "cpu" | |
face_analysis_wrapper_provicer = ["CPUExecutionProvider"] | |
else: | |
device = "cuda" | |
face_analysis_wrapper_provicer = ["CUDAExecutionProvider"] | |
self.landmark_runner = LandmarkRunner( | |
ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path), | |
onnx_provider=device, | |
device_id=device_id, | |
) | |
self.landmark_runner.warmup() | |
self.face_analysis_wrapper = FaceAnalysisDIY( | |
name="buffalo_l", | |
root=make_abs_path(self.crop_cfg.insightface_root), | |
providers=face_analysis_wrapper_provicer, | |
) | |
self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512)) | |
self.face_analysis_wrapper.warmup() | |
def update_config(self, user_args): | |
for k, v in user_args.items(): | |
if hasattr(self.crop_cfg, k): | |
setattr(self.crop_cfg, k, v) | |
def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig): | |
# crop a source image and get neccessary information | |
img_rgb = img_rgb_.copy() # copy it | |
img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR) | |
src_face = self.face_analysis_wrapper.get( | |
img_bgr, | |
flag_do_landmark_2d_106=True, | |
direction=crop_cfg.direction, | |
max_face_num=crop_cfg.max_face_num, | |
) | |
if len(src_face) == 0: | |
log("No face detected in the source image.") | |
return None | |
elif len(src_face) > 1: | |
log( | |
f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}." | |
) | |
# NOTE: temporarily only pick the first face, to support multiple face in the future | |
src_face = src_face[0] | |
lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface | |
# for (x, y) in lmk: | |
# cv2.circle(img_bgr, (int(x), int(y)), 2, (0, 255, 0), -1) | |
# cv2.imwrite("./landmark.png", img_bgr) | |
# crop the face | |
ret_dct = crop_image( | |
img_rgb, # ndarray | |
lmk, # 106x2 or Nx2 | |
dsize=crop_cfg.dsize, | |
scale=crop_cfg.scale, | |
vx_ratio=crop_cfg.vx_ratio, | |
vy_ratio=crop_cfg.vy_ratio, | |
) | |
lmk = self.landmark_runner.run(img_rgb, lmk) | |
ret_dct["lmk_crop"] = lmk | |
# update a 256x256 version for network input | |
ret_dct["img_crop_256x256"] = cv2.resize( | |
ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA | |
) | |
ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize | |
# cv2.imwrite("./resize_image.png", ret_dct["img_crop_256x256"] ) | |
return ret_dct | |
def crop_driving_video(self, driving_rgb_lst, **kwargs): | |
"""Tracking based landmarks/alignment and cropping""" | |
trajectory = Trajectory() | |
direction = kwargs.get("direction", "large-small") | |
for idx, frame_rgb in enumerate(driving_rgb_lst): | |
if idx == 0 or trajectory.start == -1: | |
src_face = self.face_analysis_wrapper.get( | |
contiguous(frame_rgb[..., ::-1]), | |
flag_do_landmark_2d_106=True, | |
direction=direction, | |
) | |
if len(src_face) == 0: | |
log(f"No face detected in the frame #{idx}") | |
continue | |
elif len(src_face) > 1: | |
log( | |
f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}." | |
) | |
src_face = src_face[0] | |
lmk = src_face.landmark_2d_106 | |
lmk = self.landmark_runner.run(frame_rgb, lmk) | |
trajectory.start, trajectory.end = idx, idx | |
# for (x, y) in lmk: | |
# cv2.circle(frame_rgb, (int(x), int(y)), 2, (0, 255, 0), -1) | |
# cv2.imwrite("./landmarks.png", frame_rgb) | |
else: | |
lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1]) | |
trajectory.end = idx | |
trajectory.lmk_lst.append(lmk) | |
ret_bbox = parse_bbox_from_landmark( | |
lmk, | |
scale=self.crop_cfg.scale_crop_video, | |
vx_ratio_crop_video=self.crop_cfg.vx_ratio_crop_video, | |
vy_ratio=self.crop_cfg.vy_ratio_crop_video, | |
)["bbox"] | |
bbox = [ | |
ret_bbox[0, 0], | |
ret_bbox[0, 1], | |
ret_bbox[2, 0], | |
ret_bbox[2, 1], | |
] # 4, | |
trajectory.bbox_lst.append(bbox) # bbox | |
trajectory.frame_rgb_lst.append(frame_rgb) | |
global_bbox = average_bbox_lst(trajectory.bbox_lst) | |
for idx, (frame_rgb, lmk) in enumerate( | |
zip(trajectory.frame_rgb_lst, trajectory.lmk_lst) | |
): | |
ret_dct = crop_image_by_bbox( | |
frame_rgb, | |
global_bbox, | |
lmk=lmk, | |
dsize=kwargs.get("dsize", 512), | |
flag_rot=False, | |
borderValue=(0, 0, 0), | |
) | |
trajectory.frame_rgb_crop_lst.append(ret_dct["img_crop"]) | |
trajectory.lmk_crop_lst.append(ret_dct["lmk_crop"]) | |
return { | |
"frame_crop_lst": trajectory.frame_rgb_crop_lst, | |
"lmk_crop_lst": trajectory.lmk_crop_lst, | |
} | |
def calc_lmks_from_cropped_video(self, driving_rgb_crop_lst, **kwargs): | |
"""Tracking based landmarks/alignment""" | |
trajectory = Trajectory() | |
direction = kwargs.get("direction", "large-small") | |
for idx, frame_rgb_crop in enumerate(driving_rgb_crop_lst): | |
if idx == 0 or trajectory.start == -1: | |
src_face = self.face_analysis_wrapper.get( | |
contiguous(frame_rgb_crop[..., ::-1]), # convert to BGR | |
flag_do_landmark_2d_106=True, | |
direction=direction, | |
) | |
if len(src_face) == 0: | |
log(f"No face detected in the frame #{idx}") | |
raise Exception(f"No face detected in the frame #{idx}") | |
elif len(src_face) > 1: | |
log( | |
f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}." | |
) | |
src_face = src_face[0] | |
lmk = src_face.landmark_2d_106 | |
lmk = self.landmark_runner.run(frame_rgb_crop, lmk) | |
trajectory.start, trajectory.end = idx, idx | |
else: | |
lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1]) | |
trajectory.end = idx | |
trajectory.lmk_lst.append(lmk) | |
return trajectory.lmk_lst | |