Spaces:
No application file
No application file
Commit
·
5613506
1
Parent(s):
6d38699
Delete app.py
Browse files
app.py
DELETED
@@ -1,167 +0,0 @@
|
|
1 |
-
import tweepy as tw
|
2 |
-
import streamlit as st
|
3 |
-
import pandas as pd
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
import re
|
7 |
-
|
8 |
-
from pysentimiento.preprocessing import preprocess_tweet
|
9 |
-
|
10 |
-
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
11 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification,AdamW
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021')
|
13 |
-
model = AutoModelForSequenceClassification.from_pretrained("hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
|
14 |
-
|
15 |
-
import torch
|
16 |
-
if torch.cuda.is_available():
|
17 |
-
device = torch.device( "cuda")
|
18 |
-
print('I will use the GPU:', torch.cuda.get_device_name(0))
|
19 |
-
|
20 |
-
else:
|
21 |
-
print('No GPU available, using the CPU instead.')
|
22 |
-
device = torch.device("cpu")
|
23 |
-
|
24 |
-
consumer_key = st.secrets["BjipwQslVG4vBdy4qK318KnoA"]
|
25 |
-
consumer_secret = st.secrets["3fzL70v9faklrPgvTi3zbofw9rwk92fgGdtAslFkFYt8kGmqBJ"]
|
26 |
-
access_token = st.secrets["AAAAAAAAAAAAAAAAAAAAANvrkgEAAAAAv91xx%2Bs%2FfuteNpH7K9nHPvpcjXg%3DHzScJpkiqRvJhHTwuVGJ4apg8Jlica4xtfyC5WhWWu33CX7Y9f"]
|
27 |
-
access_token_secret = st.secrets["AAAAAAAAAAAAAAAAAAAAANvrkgEAAAAAv91xx%2Bs%2FfuteNpH7K9nHPvpcjXg%3DHzScJpkiqRvJhHTwuVGJ4apg8Jlica4xtfyC5WhWWu33CX7Y9f"]
|
28 |
-
auth = tw.OAuthHandler(consumer_key, consumer_secret)
|
29 |
-
auth.set_access_token(access_token, access_token_secret)
|
30 |
-
api = tw.API(auth, wait_on_rate_limit=True)
|
31 |
-
|
32 |
-
def preprocess(text):
|
33 |
-
text=text.lower()
|
34 |
-
# remove hyperlinks
|
35 |
-
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
|
36 |
-
text = re.sub(r'http?:\/\/.*[\r\n]*', '', text)
|
37 |
-
#Replace &, <, > with &,<,> respectively
|
38 |
-
text=text.replace(r'&?',r'and')
|
39 |
-
text=text.replace(r'<',r'<')
|
40 |
-
text=text.replace(r'>',r'>')
|
41 |
-
#remove hashtag sign
|
42 |
-
#text=re.sub(r"#","",text)
|
43 |
-
#remove mentions
|
44 |
-
text = re.sub(r"(?:\@)\w+", '', text)
|
45 |
-
#text=re.sub(r"@","",text)
|
46 |
-
#remove non ascii chars
|
47 |
-
text=text.encode("ascii",errors="ignore").decode()
|
48 |
-
#remove some puncts (except . ! ?)
|
49 |
-
text=re.sub(r'[:"#$%&\*+,-/:;<=>@\\^_`{|}~]+','',text)
|
50 |
-
text=re.sub(r'[!]+','!',text)
|
51 |
-
text=re.sub(r'[?]+','?',text)
|
52 |
-
text=re.sub(r'[.]+','.',text)
|
53 |
-
text=re.sub(r"'","",text)
|
54 |
-
text=re.sub(r"\(","",text)
|
55 |
-
text=re.sub(r"\)","",text)
|
56 |
-
text=" ".join(text.split())
|
57 |
-
return text
|
58 |
-
|
59 |
-
def highlight_survived(s):
|
60 |
-
return ['background-color: red']*len(s) if (s.Sexista == 1) else ['background-color: green']*len(s)
|
61 |
-
|
62 |
-
def color_survived(val):
|
63 |
-
color = 'red' if val=='Sexista' else 'white'
|
64 |
-
return f'background-color: {color}'
|
65 |
-
|
66 |
-
st.set_page_config(layout="wide")
|
67 |
-
st.markdown('<style>body{background-color: Blue;}</style>',unsafe_allow_html=True)
|
68 |
-
|
69 |
-
#background-color: Blue;
|
70 |
-
|
71 |
-
colT1,colT2 = st.columns([2,8])
|
72 |
-
with colT2:
|
73 |
-
#st.title('Analisis de comentarios sexistas en Twitter')
|
74 |
-
st.markdown(""" <style> .font {
|
75 |
-
font-size:40px ; font-family: 'Cooper Black'; color: #FF9633;}
|
76 |
-
</style> """, unsafe_allow_html=True)
|
77 |
-
st.markdown('<p class="font">Análisis de comentarios sexistas en Twitter</p>', unsafe_allow_html=True)
|
78 |
-
|
79 |
-
st.markdown(""" <style> .font1 {
|
80 |
-
font-size:28px ; font-family: 'Times New Roman'; color: #8d33ff;}
|
81 |
-
</style> """, unsafe_allow_html=True)
|
82 |
-
|
83 |
-
st.markdown(""" <style> .font2 {
|
84 |
-
font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;}
|
85 |
-
</style> """, unsafe_allow_html=True)
|
86 |
-
|
87 |
-
def run():
|
88 |
-
with st.form(key='Introduzca Texto'):
|
89 |
-
col,buff1, buff2 = st.columns([2,2,1])
|
90 |
-
#col.text_input('smaller text window:')
|
91 |
-
search_words = col.text_input("Introduzca el termino o usuario para analizar y pulse el check correspondiente")
|
92 |
-
number_of_tweets = col.number_input('Introduzca número de tweets a analizar. Máximo 50', 0,50,10)
|
93 |
-
termino=st.checkbox('Término')
|
94 |
-
usuario=st.checkbox('Usuario')
|
95 |
-
submit_button = col.form_submit_button(label='Analizar')
|
96 |
-
error=False
|
97 |
-
if submit_button:
|
98 |
-
date_since = "2020-09-14"
|
99 |
-
if ( termino == False and usuario == False):
|
100 |
-
st.text('Error no se ha seleccionado ningun check')
|
101 |
-
error=True
|
102 |
-
elif ( termino == True and usuario == True):
|
103 |
-
st.text('Error se han seleccionado los dos check')
|
104 |
-
error=True
|
105 |
-
|
106 |
-
|
107 |
-
if (error == False):
|
108 |
-
if (termino):
|
109 |
-
new_search = search_words + " -filter:retweets"
|
110 |
-
tweets =tw.Cursor(api.search_tweets,q=new_search,lang="es",since=date_since).items(number_of_tweets)
|
111 |
-
elif (usuario):
|
112 |
-
tweets = api.user_timeline(screen_name = search_words,count=number_of_tweets)
|
113 |
-
|
114 |
-
tweet_list = [i.text for i in tweets]
|
115 |
-
#tweet_list = [strip_undesired_chars(i.text) for i in tweets]
|
116 |
-
text= pd.DataFrame(tweet_list)
|
117 |
-
#text[0] = text[0].apply(preprocess)
|
118 |
-
text[0] = text[0].apply(preprocess_tweet)
|
119 |
-
text1=text[0].values
|
120 |
-
indices1=tokenizer.batch_encode_plus(text1.tolist(),
|
121 |
-
max_length=128,
|
122 |
-
add_special_tokens=True,
|
123 |
-
return_attention_mask=True,
|
124 |
-
pad_to_max_length=True,
|
125 |
-
truncation=True)
|
126 |
-
input_ids1=indices1["input_ids"]
|
127 |
-
attention_masks1=indices1["attention_mask"]
|
128 |
-
prediction_inputs1= torch.tensor(input_ids1)
|
129 |
-
prediction_masks1 = torch.tensor(attention_masks1)
|
130 |
-
# Set the batch size.
|
131 |
-
batch_size = 25
|
132 |
-
# Create the DataLoader.
|
133 |
-
prediction_data1 = TensorDataset(prediction_inputs1, prediction_masks1)
|
134 |
-
prediction_sampler1 = SequentialSampler(prediction_data1)
|
135 |
-
prediction_dataloader1 = DataLoader(prediction_data1, sampler=prediction_sampler1, batch_size=batch_size)
|
136 |
-
print('Predicting labels for {:,} test sentences...'.format(len(prediction_inputs1)))
|
137 |
-
# Put model in evaluation mode
|
138 |
-
model.eval()
|
139 |
-
# Tracking variables
|
140 |
-
predictions = []
|
141 |
-
# Predict
|
142 |
-
for batch in prediction_dataloader1:
|
143 |
-
batch = tuple(t.to(device) for t in batch)
|
144 |
-
# Unpack the inputs from our dataloader
|
145 |
-
b_input_ids1, b_input_mask1 = batch
|
146 |
-
# Telling the model not to compute or store gradients, saving memory and # speeding up prediction
|
147 |
-
with torch.no_grad():
|
148 |
-
# Forward pass, calculate logit predictions
|
149 |
-
outputs1 = model(b_input_ids1, token_type_ids=None,attention_mask=b_input_mask1)
|
150 |
-
logits1 = outputs1[0]
|
151 |
-
# Move logits and labels to CPU
|
152 |
-
logits1 = logits1.detach().cpu().numpy()
|
153 |
-
# Store predictions and true labels
|
154 |
-
predictions.append(logits1)
|
155 |
-
flat_predictions = [item for sublist in predictions for item in sublist]
|
156 |
-
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()#p = [i for i in classifier(tweet_list)]
|
157 |
-
df = pd.DataFrame(list(zip(tweet_list, flat_predictions)),columns =['Últimos '+ str(number_of_tweets)+' Tweets'+' de '+search_words, 'Sexista'])
|
158 |
-
df['Sexista']= np.where(df['Sexista']== 0, 'No Sexista', 'Sexista')
|
159 |
-
|
160 |
-
|
161 |
-
st.table(df.reset_index(drop=True).head(20).style.applymap(color_survived, subset=['Sexista']))
|
162 |
-
|
163 |
-
|
164 |
-
#st.dataframe(df.style.apply(highlight_survived, axis=1))
|
165 |
-
#st.table(df)
|
166 |
-
#st.write(df)
|
167 |
-
run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|