Joshua1808 commited on
Commit
dad8f09
·
1 Parent(s): dc1887d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -14
app.py CHANGED
@@ -144,22 +144,23 @@ def tweets_localidad(buscar_localidad):
144
  location = geolocator.geocode(buscar_localidad)
145
  radius = "10km"
146
  tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50, tweet_mode="extended")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  except AttributeError:
148
  st.text("No existe ninguna localidad con ese nombre")
149
-
150
- tweet_list = [i.full_text for i in tweets]
151
- text= pd.DataFrame(tweet_list)
152
- text[0] = text[0].apply(preprocess_tweet)
153
- text_list = text[0].tolist()
154
- result = []
155
- for text in text_list:
156
- if (text.startswith('RT')):
157
- continue
158
- else:
159
- prediction = pipeline_nlp(text)
160
- for predic in prediction:
161
- etiqueta = {'Tweets': text,'Prediccion': predic['label'], 'Probabilidad': predic['score']}
162
- result.append(etiqueta)
163
  df = pd.DataFrame(result)
164
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
165
  #tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
 
144
  location = geolocator.geocode(buscar_localidad)
145
  radius = "10km"
146
  tweets = api.search_tweets(q="",lang="es",geocode=f"{location.latitude},{location.longitude},{radius}", count = 50, tweet_mode="extended")
147
+
148
+ tweet_list = [i.full_text for i in tweets]
149
+ text= pd.DataFrame(tweet_list)
150
+ text[0] = text[0].apply(preprocess)
151
+ text_list = text[0].tolist()
152
+ result = []
153
+ for text in text_list:
154
+ if (text.startswith('RT')):
155
+ continue
156
+ else:
157
+ prediction = pipeline_nlp(text)
158
+ for predic in prediction:
159
+ etiqueta = {'Tweets': text,'Prediccion': predic['label'], 'Probabilidad': predic['score']}
160
+ result.append(etiqueta)
161
  except AttributeError:
162
  st.text("No existe ninguna localidad con ese nombre")
163
+
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  df = pd.DataFrame(result)
165
  df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
166
  #tabla = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))