Spaces:
Runtime error
Runtime error
Commit
·
d5291cb
1
Parent(s):
b5a9d85
Update app.py
Browse files
app.py
CHANGED
@@ -133,7 +133,9 @@ def tweets_localidad(buscar_localidad):
|
|
133 |
text_list = text[0].tolist()
|
134 |
result = []
|
135 |
for text in text_list:
|
136 |
-
if (text.startswith('RT')):
|
|
|
|
|
137 |
continue
|
138 |
else:
|
139 |
prediction = pipeline_nlp(text)
|
@@ -142,17 +144,18 @@ def tweets_localidad(buscar_localidad):
|
|
142 |
result.append(etiqueta)
|
143 |
df = pd.DataFrame(result)
|
144 |
df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
|
145 |
-
|
146 |
#df['Probabilidad'] = df['Probabilidad'].apply(lambda x: '{:.2f}%'.format(x))
|
147 |
#df.sort_values(by='Probabilidad', ascending=False, inplace=True)
|
148 |
#df = df.sort_values(by=['Probabilidad', 'Prediccion'], ascending=[False, False])
|
149 |
-
|
|
|
150 |
muestra = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
|
151 |
tabla.append(muestra)
|
152 |
|
153 |
resultado=df.groupby('Prediccion')['Probabilidad'].sum()
|
154 |
colores=["#aae977","#EE3555"]
|
155 |
-
fig, ax = plt.subplots(figsize=(
|
156 |
plt.pie(resultado,labels=resultado.index,autopct='%1.1f%%',colors=colores)
|
157 |
ax.set_title("Porcentajes por Categorias", fontsize=8, fontweight="bold")
|
158 |
plt.rcParams.update({'font.size':8, 'font.weight':'bold'})
|
|
|
133 |
text_list = text[0].tolist()
|
134 |
result = []
|
135 |
for text in text_list:
|
136 |
+
if (text.startswith('RT') ):
|
137 |
+
continue
|
138 |
+
elif not text.strip():
|
139 |
continue
|
140 |
else:
|
141 |
prediction = pipeline_nlp(text)
|
|
|
144 |
result.append(etiqueta)
|
145 |
df = pd.DataFrame(result)
|
146 |
df['Prediccion'] = np.where( df['Prediccion'] == 'LABEL_1', 'Sexista', 'No Sexista')
|
147 |
+
df['Tweets'] = df['Tweets'].str.replace('RT|@', '')
|
148 |
#df['Probabilidad'] = df['Probabilidad'].apply(lambda x: '{:.2f}%'.format(x))
|
149 |
#df.sort_values(by='Probabilidad', ascending=False, inplace=True)
|
150 |
#df = df.sort_values(by=['Probabilidad', 'Prediccion'], ascending=[False, False])
|
151 |
+
df=df[df["Prediccion"] == 'Sexista']
|
152 |
+
df=df[df["Probabilidad"] > 0.8]
|
153 |
muestra = st.table(df.reset_index(drop=True).head(30).style.applymap(color_survived, subset=['Prediccion']))
|
154 |
tabla.append(muestra)
|
155 |
|
156 |
resultado=df.groupby('Prediccion')['Probabilidad'].sum()
|
157 |
colores=["#aae977","#EE3555"]
|
158 |
+
fig, ax = plt.subplots(figsize=(4, 4), subplotpars=None)
|
159 |
plt.pie(resultado,labels=resultado.index,autopct='%1.1f%%',colors=colores)
|
160 |
ax.set_title("Porcentajes por Categorias", fontsize=8, fontweight="bold")
|
161 |
plt.rcParams.update({'font.size':8, 'font.weight':'bold'})
|