Joshua1808 commited on
Commit
bfaf0da
1 Parent(s): dfcadc4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -11
app.py CHANGED
@@ -54,7 +54,7 @@ def preprocess(text):
54
  text=" ".join(text.split())
55
  return text
56
 
57
- def clean_tweet(tweet):
58
  # Eliminar emojis
59
  tweet = re.sub(r'[\U0001F600-\U0001F64F]', '', tweet)
60
  tweet = re.sub(r'[\U0001F300-\U0001F5FF]', '', tweet)
@@ -98,14 +98,13 @@ with colT2:
98
  font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;}
99
  </style> """, unsafe_allow_html=True)
100
 
101
- def analizar_tweets(search_words, number_of_tweets):
102
  tabla = []
103
- if(number_of_tweets > 0 and search_words != "" ):
104
  try:
105
  # Buscar la informaci贸n del perfil de usuario
106
- user = api.get_user(screen_name=search_words)
107
- #st.text(f"La cuenta {search_words} existe.")
108
- tweets = api.user_timeline(screen_name = search_words,tweet_mode="extended", count= number_of_tweets)
109
  result = []
110
  for tweet in tweets:
111
  if (tweet.full_text.startswith('RT')):
@@ -115,7 +114,7 @@ def analizar_tweets(search_words, number_of_tweets):
115
  try:
116
  language = detect(text)
117
  if language == 'es':
118
- datos=clean_tweet(text)
119
  if datos == "":
120
  continue
121
  else:
@@ -140,8 +139,7 @@ def analizar_tweets(search_words, number_of_tweets):
140
  tabla.append(muestra)
141
  else:
142
  muestra= st.text("Ingrese los parametros correspondientes")
143
- tabla.append(muestra)
144
-
145
  return tabla
146
 
147
  def tweets_localidad(buscar_localidad):
@@ -158,7 +156,7 @@ def tweets_localidad(buscar_localidad):
158
  elif not tweet.full_text.strip():
159
  continue
160
  else:
161
- datos = preprocess(tweet.full_text)
162
  prediction = pipeline_nlp(datos)
163
  for predic in prediction:
164
  etiqueta = {'Tweets': datos,'Prediccion': predic['label'], 'Probabilidad': predic['score']}
@@ -254,7 +252,7 @@ def run():
254
  analizar_frase(search_words)
255
 
256
  elif (usuario):
257
- analizar_tweets(search_words,number_of_tweets)
258
  elif (localidad):
259
  tweets_localidad(search_words)
260
 
 
54
  text=" ".join(text.split())
55
  return text
56
 
57
+ def limpieza_datos(tweet):
58
  # Eliminar emojis
59
  tweet = re.sub(r'[\U0001F600-\U0001F64F]', '', tweet)
60
  tweet = re.sub(r'[\U0001F300-\U0001F5FF]', '', tweet)
 
98
  font-size:16px ; font-family: 'Times New Roman'; color: #3358ff;}
99
  </style> """, unsafe_allow_html=True)
100
 
101
+ def tweets_usuario(usuario, cant_de_tweets):
102
  tabla = []
103
+ if(cant_de_tweets > 0 and usuario != "" ):
104
  try:
105
  # Buscar la informaci贸n del perfil de usuario
106
+ user = api.get_user(screen_name=usuario)
107
+ tweets = api.user_timeline(screen_name = usuario,tweet_mode="extended", count= cant_de_tweets)
 
108
  result = []
109
  for tweet in tweets:
110
  if (tweet.full_text.startswith('RT')):
 
114
  try:
115
  language = detect(text)
116
  if language == 'es':
117
+ datos=limpieza_datos(text)
118
  if datos == "":
119
  continue
120
  else:
 
139
  tabla.append(muestra)
140
  else:
141
  muestra= st.text("Ingrese los parametros correspondientes")
142
+ tabla.append(muestra)
 
143
  return tabla
144
 
145
  def tweets_localidad(buscar_localidad):
 
156
  elif not tweet.full_text.strip():
157
  continue
158
  else:
159
+ datos = limpieza_datos(tweet.full_text)
160
  prediction = pipeline_nlp(datos)
161
  for predic in prediction:
162
  etiqueta = {'Tweets': datos,'Prediccion': predic['label'], 'Probabilidad': predic['score']}
 
252
  analizar_frase(search_words)
253
 
254
  elif (usuario):
255
+ tweets_usuario(search_words,number_of_tweets)
256
  elif (localidad):
257
  tweets_localidad(search_words)
258