Spaces:
Runtime error
Runtime error
File size: 6,139 Bytes
65976bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
"""
Module for ingesting data to be used by the RAG tool.
"""
import glob
import os
from typing import List
from multiprocessing import Pool
from tqdm import tqdm
from langchain_community.document_loaders import (
CSVLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredWordDocumentLoader,
UnstructuredPowerPointLoader,
UnstructuredMarkdownLoader,
UnstructuredEPubLoader,
)
from langchain_community.vectorstores.chroma import Chroma
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
import chromadb
from dotenv import (
load_dotenv,
find_dotenv,
)
from fastapi import APIRouter
from constants import CHROMA_SETTINGS
ingestion_router = APIRouter()
if not load_dotenv(find_dotenv()):
print("Could not load `.env` file or it is empty. Please check that it exists \
and is readable by the current user")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
embeddings_model = OpenAIEmbeddings()
# Load environment variables
persist_directory = os.environ.get("PERSIST_DIRECTORY", "chroma_vectorstore")
source_directory = os.environ.get('SOURCE_DIRECTORY', "data")
CHUNK_SIZE = 1000
CHUNK_OVERLAP = 200
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# ".json": (JSONLoader, {"jq_schema": ".", "text_content": False})
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1].lower()
print(file_path)
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(
source_dir: str,
ignored_files: List[str] = []
) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.lower()}"), recursive=True)
)
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext.upper()}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
return None
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP
)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {CHUNK_SIZE} tokens each)")
return texts
def does_vectorstore_exist(
persist_dir: str,
embeddings: OpenAIEmbeddings
) -> bool:
"""
Checks if vectorstore exists
"""
db = Chroma(
persist_directory=persist_dir,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
)
if not db.get()['documents']:
return False
return True
@ingestion_router.post("/ingest-data", summary="For ingesting data for RAG")
def main():
try:
# Create embeddings
embeddings = OpenAIEmbeddings(api_key=OPENAI_API_KEY)
# Chroma client
chroma_client = chromadb.PersistentClient(
settings=CHROMA_SETTINGS,
path=persist_directory
)
if does_vectorstore_exist(persist_directory, embeddings):
# Update and store locally vectorstore
print(f"Appending to existing vectorstore at {persist_directory}")
db = Chroma(
persist_directory=persist_directory,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
client=chroma_client
)
collection = db.get()
texts = process_documents(
[metadata['source'] for metadata in collection['metadatas']]
)
if not texts:
return "No new document to load"
print("Creating embeddings. May take some minutes...")
db.add_documents(texts)
else:
# Create and store locally vectorstore
print("Creating new vectorstore")
texts = process_documents()
if not texts:
return "No new document to load"
print("Creating embeddings. May take some minutes...")
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=persist_directory,
client_settings=CHROMA_SETTINGS,
client=chroma_client
)
db.persist()
db = None
print("Ingestion complete!")
return {
'Status': 'Ingestion complete!',
"responseCode": 200
}
# If an error occurs
except Exception as e:
print(e)
return {
"Status": "An error occurred",
"responseCode": 201
}
|