Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- .gitattributes +1 -0
- README.md +12 -12
- app.py +103 -0
- requirements.txt +0 -0
- vectorstore/db_faiss/index.faiss +3 -0
- vectorstore/db_faiss/index.pkl +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
vectorstore/db_faiss/index.faiss filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Flint FinanceBot
|
| 3 |
-
emoji: 🐢
|
| 4 |
-
colorFrom: indigo
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 4.40.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Flint FinanceBot
|
| 3 |
+
emoji: 🐢
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.40.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
#chatbot
|
| 5 |
+
from langchain.llms import HuggingFacePipeline
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
|
| 7 |
+
|
| 8 |
+
from langchain.vectorstores import FAISS
|
| 9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
+
|
| 11 |
+
from langchain.prompts import PromptTemplate
|
| 12 |
+
from langchain.chains import RetrievalQA
|
| 13 |
+
|
| 14 |
+
from textwrap import fill
|
| 15 |
+
|
| 16 |
+
DATA_PATH='data/'
|
| 17 |
+
DB_FAISS_PATH='vectorstore/db_faiss'
|
| 18 |
+
|
| 19 |
+
#Call of the model
|
| 20 |
+
model_name = "TheBloke/Llama-2-13b-Chat-GPTQ"
|
| 21 |
+
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
| 23 |
+
device_map="auto",
|
| 24 |
+
trust_remote_code=True)
|
| 25 |
+
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
| 27 |
+
|
| 28 |
+
gen_cfg = GenerationConfig.from_pretrained(model_name)
|
| 29 |
+
gen_cfg.max_new_tokens=512
|
| 30 |
+
gen_cfg.temperature=0.0000001 # 0.0
|
| 31 |
+
gen_cfg.return_full_text=True
|
| 32 |
+
gen_cfg.do_sample=True
|
| 33 |
+
gen_cfg.repetition_penalty=1.11
|
| 34 |
+
|
| 35 |
+
pipe=pipeline(
|
| 36 |
+
task="text-generation",
|
| 37 |
+
model=model,
|
| 38 |
+
tokenizer=tokenizer,
|
| 39 |
+
generation_config=gen_cfg
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
if gr.NO_RELOAD:
|
| 44 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 45 |
+
embeddings = HuggingFaceEmbeddings()
|
| 46 |
+
db = FAISS.load_local(DB_FAISS_PATH, embeddings)
|
| 47 |
+
print('todo ok')
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
#st.title('🦜🔗 Flint, your FinanceBot')
|
| 51 |
+
Description="""
|
| 52 |
+
## Finance Bot: Get instant insights from Finance
|
| 53 |
+
|
| 54 |
+
This chatbot is built using the Retrieval-Augmented Generation (RAG) framework
|
| 55 |
+
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
#DB_FAISS_PATH = os.path.join(local_path, 'vectorstore_docs/db_faiss')
|
| 60 |
+
|
| 61 |
+
prompt_template = """Use the following pieces of information to answer the user's question.
|
| 62 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 63 |
+
|
| 64 |
+
Context: {context}
|
| 65 |
+
Question: {question}
|
| 66 |
+
|
| 67 |
+
Only return the helpful answer below and nothing else. Try to make it short. Maximum of 500 words.
|
| 68 |
+
Helpful answer:
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 73 |
+
Chain_pdf = RetrievalQA.from_chain_type(
|
| 74 |
+
llm=llm,
|
| 75 |
+
chain_type="stuff",
|
| 76 |
+
# retriever=db.as_retriever(search_type="similarity_score_threshold", search_kwargs={'k': 5, 'score_threshold': 0.8})
|
| 77 |
+
# Similarity Search is the default way to retrieve documents relevant to a query, but we can use MMR by setting search_type = "mmr"
|
| 78 |
+
# k defines how many documents are returned; defaults to 4.
|
| 79 |
+
# score_threshold allows to set a minimum relevance for documents returned by the retriever, if we are using the "similarity_score_threshold" search type.
|
| 80 |
+
# return_source_documents=True, # Optional parameter, returns the source documents used to answer the question
|
| 81 |
+
retriever=db.as_retriever(), # (search_kwargs={'k': 5, 'score_threshold': 0.8}),
|
| 82 |
+
chain_type_kwargs={"prompt": prompt},
|
| 83 |
+
)
|
| 84 |
+
#query = "When was the solar system formed?"
|
| 85 |
+
#result = Chain_pdf.invoke(query)
|
| 86 |
+
#print(fill(result['result'].strip(), width=100))
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@spaces.GPU()
|
| 90 |
+
def final_result(query,history, Chain_pdf):
|
| 91 |
+
result = Chain_pdf.invoke(query)
|
| 92 |
+
print(fill(result['result'].strip(), width=100))
|
| 93 |
+
return result
|
| 94 |
+
|
| 95 |
+
with gr.Blocks() as demo:
|
| 96 |
+
system_prompt = gr.Textbox("You are helpful AI.", label="System Prompt")
|
| 97 |
+
slider = gr.Slider(10, 100, render=False)
|
| 98 |
+
|
| 99 |
+
gr.ChatInterface(
|
| 100 |
+
final_result, additional_inputs=[Chain_pdf]
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
demo.launch()
|
requirements.txt
ADDED
|
Binary file (5.67 kB). View file
|
|
|
vectorstore/db_faiss/index.faiss
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77fc19bf4803c3a8fc2f4a40f914431d612361d838464b3e6cb35bdc0b7c26a9
|
| 3 |
+
size 9008685
|
vectorstore/db_faiss/index.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:afe89076f2d8815f9bf4135cf61398589134f3454d964c5e99b672721c40d6fc
|
| 3 |
+
size 3155250
|