Spaces:
Runtime error
Runtime error
Update index.py
Browse files
index.py
CHANGED
@@ -1,24 +1,75 @@
|
|
1 |
import transformers
|
2 |
from flask import Flask, request, jsonify
|
3 |
from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
# Load model and tokenizer once at app startup
|
8 |
tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
|
9 |
model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoROBERTa")
|
10 |
emotion = pipeline("sentiment-analysis", model="arpanghoshal/EmoROBERTa")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
app.run(debug=True) # Set debug=False in production
|
|
|
1 |
import transformers
|
2 |
from flask import Flask, request, jsonify
|
3 |
from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import io
|
9 |
+
from io import BytesIO # Import BytesIO for image generation
|
10 |
|
11 |
+
# Load model and tokenizer
|
|
|
|
|
12 |
tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
|
13 |
model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoROBERTa")
|
14 |
emotion = pipeline("sentiment-analysis", model="arpanghoshal/EmoROBERTa")
|
15 |
|
16 |
+
def analyze_csv(file):
|
17 |
+
try:
|
18 |
+
# Print file content for debugging
|
19 |
+
file_content = file.read()
|
20 |
+
print("File content:", file_content)
|
21 |
+
|
22 |
+
# Reset file position to the beginning
|
23 |
+
file.seek(0)
|
24 |
+
|
25 |
+
# Read the CSV file into a DataFrame
|
26 |
+
df = pd.read_csv(io.BytesIO(file_content))``
|
27 |
+
print("DataFrame shape:", df.shape) # Print DataFrame shape for debugging
|
28 |
+
print("DataFrame columns:", df.columns) # Print DataFrame columns for debugging
|
29 |
+
|
30 |
+
# Check if the DataFrame is empty
|
31 |
+
if df.empty:
|
32 |
+
return "Empty file. Please upload a CSV file with data.", None
|
33 |
+
|
34 |
+
# Check if the expected column "phrase" is present in the DataFrame
|
35 |
+
if "phrase" not in df.columns:
|
36 |
+
return "Column 'phrase' not found in the CSV file. Please check the file format.", None
|
37 |
+
|
38 |
+
phrases = df["phrase"]
|
39 |
+
|
40 |
+
# Analyze sentiment for each phrase
|
41 |
+
emotion_labels = emotion(phrases)
|
42 |
+
|
43 |
+
# Create summary statistics
|
44 |
+
summary_df = pd.DataFrame(emotion_labels).describe()
|
45 |
+
|
46 |
+
# Create a bar chart of emotion distribution
|
47 |
+
plt.figure()
|
48 |
+
emotion_counts = emotion_labels.get("labels").value_counts()
|
49 |
+
emotion_counts.plot(kind="bar")
|
50 |
+
plt.title("Emotion Distribution")
|
51 |
+
plt.xlabel("Emotion")
|
52 |
+
plt.ylabel("Count")
|
53 |
+
|
54 |
+
# Generate PNG image of the chart
|
55 |
+
chart_img = BytesIO()
|
56 |
+
plt.savefig(chart_img, format="png")
|
57 |
+
chart_img.seek(0)
|
58 |
+
|
59 |
+
return summary_df.to_json(), chart_img.read()
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
error_message = f"Error processing the CSV file: {str(e)}"
|
63 |
+
print(error_message) # Print the error message for debugging
|
64 |
+
return error_message, None
|
65 |
+
|
66 |
|
67 |
+
iface = gr.Interface(
|
68 |
+
fn=analyze_csv,
|
69 |
+
inputs=[gr.File(label="Upload CSV File")],
|
70 |
+
outputs=["dataframe", "image"],
|
71 |
+
title="Emotion Analyzer with CSV",
|
72 |
+
description="Analyzes sentiment and creates charts/tables from a CSV file.",
|
73 |
+
)
|
74 |
|
75 |
+
iface.launch()
|
|