Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -388,11 +388,14 @@ def analyze_performance(image, category, user_opinion, frcnn_threshold=0.5, detr
|
|
| 388 |
|
| 389 |
# Convert to HTML with styling
|
| 390 |
html_analysis = f"""
|
| 391 |
-
<div class="{'celebrate' if user_opinion in max_models else ''}">
|
| 392 |
-
<h3 style='color: {"#4CAF50" if user_opinion in max_models else "#f44336"};'>
|
| 393 |
-
{"๐
|
| 394 |
</h3>
|
| 395 |
-
<
|
|
|
|
|
|
|
|
|
|
| 396 |
</div>
|
| 397 |
"""
|
| 398 |
return "Analysis complete!", frcnn_result, detr_result, maskrcnn_result, mask2former_result, html_analysis
|
|
@@ -404,7 +407,7 @@ with gr.Blocks(title="AI Vision Showdown", theme=gr.themes.Default(primary_hue="
|
|
| 404 |
### ๐ค Battle of the algorithms! Upload an image and predict which AI will dominate!
|
| 405 |
""")
|
| 406 |
|
| 407 |
-
#
|
| 408 |
gr.HTML("""
|
| 409 |
<style>
|
| 410 |
@keyframes celebrate {
|
|
@@ -415,15 +418,36 @@ with gr.Blocks(title="AI Vision Showdown", theme=gr.themes.Default(primary_hue="
|
|
| 415 |
100% { transform: rotate(0deg); }
|
| 416 |
}
|
| 417 |
.celebrate { animation: celebrate 0.5s ease-in-out; }
|
| 418 |
-
.
|
| 419 |
-
|
| 420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
</style>
|
| 422 |
""")
|
| 423 |
|
| 424 |
# State variables
|
| 425 |
image_state = gr.State(None)
|
| 426 |
category_state = gr.State(None)
|
|
|
|
| 427 |
|
| 428 |
# Top Section: Inputs
|
| 429 |
with gr.Row(variant="battle-card"):
|
|
@@ -434,16 +458,16 @@ with gr.Blocks(title="AI Vision Showdown", theme=gr.themes.Default(primary_hue="
|
|
| 434 |
|
| 435 |
with gr.Column(scale=1, min_width=300):
|
| 436 |
with gr.Group(visible=False) as prediction_selection:
|
| 437 |
-
gr.Markdown("##
|
| 438 |
category_choice = gr.Radio(
|
| 439 |
choices=["Object Detection", "Object Segmentation"],
|
| 440 |
-
label="โ๏ธ Battle
|
| 441 |
value=None,
|
| 442 |
elem_classes="battle-card"
|
| 443 |
)
|
| 444 |
user_opinion = gr.Radio(
|
| 445 |
choices=[],
|
| 446 |
-
label="
|
| 447 |
value=None,
|
| 448 |
visible=False,
|
| 449 |
elem_classes="battle-card"
|
|
@@ -523,25 +547,36 @@ with gr.Blocks(title="AI Vision Showdown", theme=gr.themes.Default(primary_hue="
|
|
| 523 |
def run_detection(image, category, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold):
|
| 524 |
if not category or not user_opinion:
|
| 525 |
return "Please select a category and prediction.", None, None, None, None, "No analysis available.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
html_analysis
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
detect_button.click(
|
| 542 |
fn=run_detection,
|
| 543 |
inputs=[image_state, category_state, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold],
|
| 544 |
-
outputs=[gr.Textbox(visible=False), frcnn_result, detr_result, maskrcnn_result, mask2former_result,
|
|
|
|
| 545 |
)
|
| 546 |
|
| 547 |
# Restart button click event
|
|
|
|
| 388 |
|
| 389 |
# Convert to HTML with styling
|
| 390 |
html_analysis = f"""
|
| 391 |
+
<div class="{'celebrate' if user_opinion in max_models else ''}" style="margin: 15px 0;">
|
| 392 |
+
<h3 style='color: {"#4CAF50" if user_opinion in max_models else "#f44336"}; margin-bottom: 15px;'>
|
| 393 |
+
{"๐ " + max_models[0] + " Dominates!" if len(max_models) == 1 else "โ๏ธ Tie Battle!"}
|
| 394 |
</h3>
|
| 395 |
+
<div style="background: var(--background-fill-primary); padding: 20px; border-radius: 10px;
|
| 396 |
+
white-space: pre-wrap; overflow-wrap: break-word; color: var(--text-color);">
|
| 397 |
+
{analysis}
|
| 398 |
+
</div>
|
| 399 |
</div>
|
| 400 |
"""
|
| 401 |
return "Analysis complete!", frcnn_result, detr_result, maskrcnn_result, mask2former_result, html_analysis
|
|
|
|
| 407 |
### ๐ค Battle of the algorithms! Upload an image and predict which AI will dominate!
|
| 408 |
""")
|
| 409 |
|
| 410 |
+
# Enhanced CSS
|
| 411 |
gr.HTML("""
|
| 412 |
<style>
|
| 413 |
@keyframes celebrate {
|
|
|
|
| 418 |
100% { transform: rotate(0deg); }
|
| 419 |
}
|
| 420 |
.celebrate { animation: celebrate 0.5s ease-in-out; }
|
| 421 |
+
.battle-card {
|
| 422 |
+
border-radius: 15px;
|
| 423 |
+
padding: 20px;
|
| 424 |
+
margin: 10px 0;
|
| 425 |
+
background: var(--background-fill-primary);
|
| 426 |
+
border: 1px solid var(--border-color-primary);
|
| 427 |
+
}
|
| 428 |
+
.analysis-box {
|
| 429 |
+
background: var(--background-fill-secondary) !important;
|
| 430 |
+
color: var(--text-color) !important;
|
| 431 |
+
padding: 20px;
|
| 432 |
+
border-radius: 10px;
|
| 433 |
+
white-space: pre-wrap;
|
| 434 |
+
overflow-wrap: break-word;
|
| 435 |
+
}
|
| 436 |
+
.loading-status {
|
| 437 |
+
padding: 15px;
|
| 438 |
+
background: var(--background-fill-secondary);
|
| 439 |
+
border-radius: 8px;
|
| 440 |
+
margin: 10px 0;
|
| 441 |
+
text-align: center;
|
| 442 |
+
font-weight: bold;
|
| 443 |
+
}
|
| 444 |
</style>
|
| 445 |
""")
|
| 446 |
|
| 447 |
# State variables
|
| 448 |
image_state = gr.State(None)
|
| 449 |
category_state = gr.State(None)
|
| 450 |
+
loading_status = gr.HTML(visible=False)
|
| 451 |
|
| 452 |
# Top Section: Inputs
|
| 453 |
with gr.Row(variant="battle-card"):
|
|
|
|
| 458 |
|
| 459 |
with gr.Column(scale=1, min_width=300):
|
| 460 |
with gr.Group(visible=False) as prediction_selection:
|
| 461 |
+
gr.Markdown("## ๐ฎ Prediction Arena")
|
| 462 |
category_choice = gr.Radio(
|
| 463 |
choices=["Object Detection", "Object Segmentation"],
|
| 464 |
+
label="โ๏ธ Select Battle Ground",
|
| 465 |
value=None,
|
| 466 |
elem_classes="battle-card"
|
| 467 |
)
|
| 468 |
user_opinion = gr.Radio(
|
| 469 |
choices=[],
|
| 470 |
+
label="๐น Predict the Victor",
|
| 471 |
value=None,
|
| 472 |
visible=False,
|
| 473 |
elem_classes="battle-card"
|
|
|
|
| 547 |
def run_detection(image, category, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold):
|
| 548 |
if not category or not user_opinion:
|
| 549 |
return "Please select a category and prediction.", None, None, None, None, "No analysis available.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
| 550 |
+
|
| 551 |
+
def analyze_with_progress(progress=gr.Progress()):
|
| 552 |
+
progress(0.1, desc="โ๏ธ Models are gearing up...")
|
| 553 |
+
result = analyze_performance(image, category, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold)
|
| 554 |
+
progress(1.0, desc="โ
Battle complete!")
|
| 555 |
+
return result
|
| 556 |
+
|
| 557 |
+
try:
|
| 558 |
+
message, frcnn_result_img, detr_result_img, maskrcnn_result_img, mask2former_result_img, html_analysis = analyze_with_progress()
|
| 559 |
+
return [
|
| 560 |
+
message,
|
| 561 |
+
gr.update(value=frcnn_result_img, visible=category == "Object Detection"),
|
| 562 |
+
gr.update(value=detr_result_img, visible=category == "Object Detection"),
|
| 563 |
+
gr.update(value=maskrcnn_result_img, visible=category == "Object Segmentation"),
|
| 564 |
+
gr.update(value=mask2former_result_img, visible=category == "Object Segmentation"),
|
| 565 |
+
html_analysis,
|
| 566 |
+
gr.update(visible=True),
|
| 567 |
+
gr.update(visible=True),
|
| 568 |
+
gr.update(visible=category == "Object Detection"),
|
| 569 |
+
gr.update(visible=category == "Object Segmentation"),
|
| 570 |
+
gr.update(visible=False)
|
| 571 |
+
]
|
| 572 |
+
except Exception as e:
|
| 573 |
+
return [f"Error: {str(e)}"] + [gr.update()]*9 + [gr.update(visible=False)]
|
| 574 |
|
| 575 |
detect_button.click(
|
| 576 |
fn=run_detection,
|
| 577 |
inputs=[image_state, category_state, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold],
|
| 578 |
+
outputs=[gr.Textbox(visible=False), frcnn_result, detr_result, maskrcnn_result, mask2former_result,
|
| 579 |
+
analysis_output, outputs_panel, results_panel, detection_tab, segmentation_tab, loading_status]
|
| 580 |
)
|
| 581 |
|
| 582 |
# Restart button click event
|