John6666 commited on
Commit
64e19e9
·
verified ·
1 Parent(s): f23e293

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -4
app.py CHANGED
@@ -9,7 +9,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
9
  #model_name = "RickyDeSkywalker/TheoremLlama"
10
  #model_name = "unsloth/Llama-3.2-1B-Instruct"
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
- model_name = "internlm/internlm2-math-plus-7b"
 
13
  HF_TOKEN = os.environ.get("HF_TOKEN")
14
  #login(HF_TOKEN)
15
 
@@ -17,6 +18,10 @@ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
17
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
18
  model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).eval().to(device)
19
  model = model.eval()
 
 
 
 
20
 
21
  #generator = pipeline('text-generation', model=model_name, trust_remote_code=True, token=HF_TOKEN)
22
 
@@ -25,9 +30,13 @@ model = model.eval()
25
  def generate_lean4_code(prompt):
26
  #result = generator(prompt, max_length=1000, num_return_sequences=1)
27
  #return result[0]['generated_text']
28
- response, history = model.chat(tokenizer, prompt, history=[], meta_instruction="")
29
- print(response, history)
30
- return response
 
 
 
 
31
 
32
  # Gradio Interface
33
  title = "Lean 4 Code Generation with TheoremLlama"
 
9
  #model_name = "RickyDeSkywalker/TheoremLlama"
10
  #model_name = "unsloth/Llama-3.2-1B-Instruct"
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ #model_name = "internlm/internlm2-math-plus-7b"
13
+ model_name = "deepseek-ai/DeepSeek-Prover-V1.5-RL"
14
  HF_TOKEN = os.environ.get("HF_TOKEN")
15
  #login(HF_TOKEN)
16
 
 
18
  # Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
19
  model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16).eval().to(device)
20
  model = model.eval()
21
+ terminators = [tokenizer.eos_token_id,
22
+ tokenizer.convert_tokens_to_ids("<|eot_id|>"),
23
+ tokenizer.convert_tokens_to_ids("<|reserved_special_token_26|>")]
24
+
25
 
26
  #generator = pipeline('text-generation', model=model_name, trust_remote_code=True, token=HF_TOKEN)
27
 
 
30
  def generate_lean4_code(prompt):
31
  #result = generator(prompt, max_length=1000, num_return_sequences=1)
32
  #return result[0]['generated_text']
33
+ #response, history = model.chat(tokenizer, prompt, history=[], meta_instruction="")
34
+ #print(response, history)
35
+ #return response
36
+ input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(device)
37
+ results = model.generate(input_ids, max_new_tokens=1024, eos_token_id=terminators, do_sample=True, temperature=0.85, top_p=0.9)
38
+ result_str = tokenizer.decode(results[0], skip_special_tokens=True)
39
+ return result_str
40
 
41
  # Gradio Interface
42
  title = "Lean 4 Code Generation with TheoremLlama"