Spaces:
Sleeping
Sleeping
import os | |
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from huggingface_hub import HfApi | |
import time | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
MODELS = ["Qwen/Qwen2.5-Coder-0.5B", "Qwen/Qwen2.5-Coder-1.5B"] | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id = MODELS[0] | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def load_model(repo_id: str, progress = gr.Progress(track_tqdm=True)): | |
global model, tokenizer | |
api = HfApi(token=HF_TOKEN) | |
if not api.repo_exists(repo_id=repo_id, token=HF_TOKEN): raise gr.Error(f"Model not found: {repo_id}") | |
model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype="auto", device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
gr.Info(f"Model loaded {repo_id}") | |
return repo_id | |
def infer(message: str, sysprompt: str, tokens: int=30): | |
messages = [ | |
{"role": "system", "content": sysprompt}, | |
{"role": "user", "content": message} | |
] | |
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer(text=[input_text], return_tensors="pt").to(model.device) | |
start = time.time() | |
generated_ids = model.generate(**inputs, max_new_tokens=tokens) | |
end = time.time() | |
elapsed_sec = end - start | |
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)] | |
output_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
print(f"Input: {message}") | |
print(f"Output: {output_str}") | |
print(f"Elapsed time: {elapsed_sec} sec.") | |
output_md = f"### {output_str}" | |
info_md = f"### Elapsed time: {elapsed_sec} sec." | |
return output_md, info_md | |
with gr.Blocks() as demo: | |
model_name = gr.Dropdown(label="Model", choices=MODELS, value=MODELS[0], allow_custom_value=True) | |
with gr.Row(): | |
message = gr.Textbox(label="Message", value="", lines=1) | |
sysprompt = gr.Textbox(label="System prompt", value="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", lines=4) | |
tokens = gr.Slider(label="Max tokens", value=30, minimum=1, maximum=2048, step=1) | |
run_button = gr.Button("Run", variant="primary") | |
output_md = gr.Markdown("<br><br>") | |
info_md = gr.Markdown("<br><br>") | |
gr.on(triggers=[run_button.click, message.submit], fn=infer, inputs=[message, sysprompt, tokens], outputs=[output_md, info_md]) | |
#run_button.click(infer, [message, sysprompt, tokens], [output_md, info_md]) | |
model_name.change(load_model, [model_name], [model_name]) | |
demo.launch() | |