Upload 2 files
Browse files- app.py +7 -1
- convert_url_to_diffusers_sdxl_gr.py +47 -53
app.py
CHANGED
|
@@ -11,6 +11,10 @@ vaes = [
|
|
| 11 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_e7.safetensors",
|
| 12 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_f1.safetensors",
|
| 13 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
loras = [
|
| 15 |
"",
|
| 16 |
"https://huggingface.co/SPO-Diffusion-Models/SPO-SDXL_4k-p_10ep_LoRA/blob/main/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors",
|
|
@@ -87,11 +91,13 @@ It saves you the trouble of typing them in.<br>
|
|
| 87 |
with gr.Row():
|
| 88 |
is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False)
|
| 89 |
is_private = gr.Checkbox(label="Create private repo", value=True)
|
|
|
|
| 90 |
presets = gr.Radio(label="Presets", choices=list(preset_dict.keys()), value="Default")
|
| 91 |
with gr.Accordion("Advanced settings", open=False):
|
| 92 |
is_half = gr.Checkbox(label="Half precision", value=True)
|
| 93 |
with gr.Row():
|
| 94 |
vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
|
|
|
|
| 95 |
scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
|
| 96 |
with gr.Row():
|
| 97 |
with gr.Column():
|
|
@@ -117,7 +123,7 @@ It saves you the trouble of typing them in.<br>
|
|
| 117 |
gr.on(
|
| 118 |
triggers=[run_button.click],
|
| 119 |
fn=convert_url_to_diffusers_repo,
|
| 120 |
-
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_upload_sf, repo_urls, is_half, vae, scheduler,
|
| 121 |
lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s],
|
| 122 |
outputs=[repo_urls, output_md],
|
| 123 |
)
|
|
|
|
| 11 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_e7.safetensors",
|
| 12 |
"https://huggingface.co/John6666/safetensors_converting_test/blob/main/xlVAEC_f1.safetensors",
|
| 13 |
]
|
| 14 |
+
clips = [
|
| 15 |
+
"",
|
| 16 |
+
"openai/clip-vit-large-patch14",
|
| 17 |
+
]
|
| 18 |
loras = [
|
| 19 |
"",
|
| 20 |
"https://huggingface.co/SPO-Diffusion-Models/SPO-SDXL_4k-p_10ep_LoRA/blob/main/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors",
|
|
|
|
| 91 |
with gr.Row():
|
| 92 |
is_upload_sf = gr.Checkbox(label="Upload single safetensors file into new repo", value=False)
|
| 93 |
is_private = gr.Checkbox(label="Create private repo", value=True)
|
| 94 |
+
is_overwrite = gr.Checkbox(label="Overwrite repo", value=False)
|
| 95 |
presets = gr.Radio(label="Presets", choices=list(preset_dict.keys()), value="Default")
|
| 96 |
with gr.Accordion("Advanced settings", open=False):
|
| 97 |
is_half = gr.Checkbox(label="Half precision", value=True)
|
| 98 |
with gr.Row():
|
| 99 |
vae = gr.Dropdown(label="VAE", choices=vaes, value="", allow_custom_value=True)
|
| 100 |
+
clip = gr.Dropdown(label="CLIP", choices=clips, value=clips[1], allow_custom_value=True)
|
| 101 |
scheduler = gr.Dropdown(label="Scheduler (Sampler)", choices=schedulers, value="Euler a")
|
| 102 |
with gr.Row():
|
| 103 |
with gr.Column():
|
|
|
|
| 123 |
gr.on(
|
| 124 |
triggers=[run_button.click],
|
| 125 |
fn=convert_url_to_diffusers_repo,
|
| 126 |
+
inputs=[dl_url, hf_user, hf_repo, hf_token, civitai_key, is_private, is_overwrite, is_upload_sf, repo_urls, is_half, vae, clip, scheduler,
|
| 127 |
lora1, lora1s, lora2, lora2s, lora3, lora3s, lora4, lora4s, lora5, lora5s],
|
| 128 |
outputs=[repo_urls, output_md],
|
| 129 |
)
|
convert_url_to_diffusers_sdxl_gr.py
CHANGED
|
@@ -3,7 +3,13 @@ from pathlib import Path
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
|
|
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
| 8 |
|
| 9 |
|
|
@@ -12,15 +18,12 @@ def list_sub(a, b):
|
|
| 12 |
|
| 13 |
|
| 14 |
def is_repo_name(s):
|
| 15 |
-
import re
|
| 16 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
| 17 |
|
| 18 |
|
| 19 |
def split_hf_url(url: str):
|
| 20 |
-
import re
|
| 21 |
-
import urllib.parse
|
| 22 |
try:
|
| 23 |
-
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(
|
| 24 |
if len(s) < 4: return "", "", "", ""
|
| 25 |
repo_id = s[1]
|
| 26 |
repo_type = "dataset" if s[0] == "datasets" else "model"
|
|
@@ -32,7 +35,6 @@ def split_hf_url(url: str):
|
|
| 32 |
|
| 33 |
|
| 34 |
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
| 35 |
-
from huggingface_hub import hf_hub_download
|
| 36 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 37 |
try:
|
| 38 |
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
@@ -245,7 +247,7 @@ def fuse_loras(pipe, lora_dict={}, temp_dir=".", civitai_key="", hf_token=""):
|
|
| 245 |
|
| 246 |
|
| 247 |
def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf=False, half=True, vae=None,
|
| 248 |
-
scheduler="Euler a", lora_dict={}, is_local=True, progress=gr.Progress(track_tqdm=True)):
|
| 249 |
progress(0, desc="Start converting...")
|
| 250 |
temp_dir = "."
|
| 251 |
new_file = get_download_file(temp_dir, url, civitai_key, hf_token)
|
|
@@ -254,72 +256,63 @@ def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf
|
|
| 254 |
return ""
|
| 255 |
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
| 261 |
-
else:
|
| 262 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True)
|
| 263 |
-
else:
|
| 264 |
-
if half:
|
| 265 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, torch_dtype=torch.float16)
|
| 266 |
-
else:
|
| 267 |
-
pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True)
|
| 268 |
|
| 269 |
new_vae_file = ""
|
| 270 |
if vae:
|
| 271 |
-
if is_repo_name(vae):
|
| 272 |
-
if half:
|
| 273 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae, torch_dtype=torch.float16)
|
| 274 |
-
else:
|
| 275 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae)
|
| 276 |
else:
|
| 277 |
new_vae_file = get_download_file(temp_dir, vae, civitai_key, hf_token)
|
| 278 |
-
if new_vae_file
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key, hf_token)
|
| 284 |
|
| 285 |
sconf = get_scheduler_config(scheduler)
|
| 286 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
| 287 |
|
| 288 |
-
|
| 289 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
| 290 |
-
else:
|
| 291 |
-
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
| 292 |
|
| 293 |
-
if Path(new_repo_name).exists():
|
| 294 |
-
save_readme_md(new_repo_name, url)
|
| 295 |
|
| 296 |
-
if not
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
|
|
|
|
|
|
| 300 |
|
| 301 |
progress(1, desc="Converted.")
|
| 302 |
return new_repo_name
|
| 303 |
|
| 304 |
|
| 305 |
def is_repo_exists(repo_id, hf_token):
|
| 306 |
-
from huggingface_hub import HfApi
|
| 307 |
api = HfApi(token=hf_token)
|
| 308 |
try:
|
| 309 |
if api.repo_exists(repo_id=repo_id): return True
|
| 310 |
else: return False
|
| 311 |
except Exception as e:
|
| 312 |
-
print(e)
|
| 313 |
-
print(f"Error: Failed to connect {repo_id}.")
|
| 314 |
return True # for safe
|
| 315 |
|
| 316 |
|
| 317 |
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
| 318 |
-
from huggingface_hub import HfApi
|
| 319 |
api = HfApi(token=hf_token)
|
| 320 |
try:
|
| 321 |
progress(0, desc="Start uploading...")
|
| 322 |
-
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private)
|
| 323 |
for path in Path(diffusers_folder).glob("*"):
|
| 324 |
if path.is_dir():
|
| 325 |
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
|
@@ -328,39 +321,40 @@ def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, p
|
|
| 328 |
progress(1, desc="Uploaded.")
|
| 329 |
url = f"https://huggingface.co/{new_repo_id}"
|
| 330 |
except Exception as e:
|
| 331 |
-
print(f"Error: Failed to upload to {new_repo_id}.")
|
| 332 |
-
print(e)
|
| 333 |
return ""
|
| 334 |
return url
|
| 335 |
|
| 336 |
|
| 337 |
-
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True,
|
| 338 |
-
|
|
|
|
| 339 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
| 340 |
-
|
|
|
|
|
|
|
| 341 |
if not hf_user:
|
| 342 |
print(f"Invalid user name: {hf_user}")
|
| 343 |
progress(1, desc=f"Invalid user name: {hf_user}")
|
| 344 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
| 345 |
-
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY")
|
| 346 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
| 347 |
-
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, hf_token, is_upload_sf, half, vae, scheduler, lora_dict, False)
|
| 348 |
if not new_path: return ""
|
| 349 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
| 350 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
| 351 |
if not is_repo_name(new_repo_id):
|
| 352 |
print(f"Invalid repo name: {new_repo_id}")
|
| 353 |
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
| 354 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
| 355 |
-
if is_repo_exists(new_repo_id, hf_token):
|
| 356 |
print(f"Repo already exists: {new_repo_id}")
|
| 357 |
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
| 358 |
-
return gr.update(value=repo_urls, choices=repo_urls), gr.update(
|
| 359 |
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
| 360 |
shutil.rmtree(new_path)
|
| 361 |
if not repo_urls: repo_urls = []
|
| 362 |
repo_urls.append(repo_url)
|
| 363 |
-
md = "Your new repo
|
| 364 |
for u in repo_urls:
|
| 365 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
| 366 |
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|
|
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
| 6 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
| 7 |
import gradio as gr
|
| 8 |
+
from huggingface_hub import hf_hub_download, HfApi
|
| 9 |
+
import urllib.parse
|
| 10 |
+
import re
|
| 11 |
+
import shutil
|
| 12 |
+
import gc
|
| 13 |
# also requires aria, gdown, peft, huggingface_hub, safetensors, transformers, accelerate, pytorch_lightning
|
| 14 |
|
| 15 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def is_repo_name(s):
|
|
|
|
| 21 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
| 22 |
|
| 23 |
|
| 24 |
def split_hf_url(url: str):
|
|
|
|
|
|
|
| 25 |
try:
|
| 26 |
+
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
|
| 27 |
if len(s) < 4: return "", "", "", ""
|
| 28 |
repo_id = s[1]
|
| 29 |
repo_type = "dataset" if s[0] == "datasets" else "model"
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
def download_hf_file(directory, url, hf_token="", progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 38 |
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 39 |
try:
|
| 40 |
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
|
|
|
| 247 |
|
| 248 |
|
| 249 |
def convert_url_to_diffusers_sdxl(url, civitai_key="", hf_token="", is_upload_sf=False, half=True, vae=None,
|
| 250 |
+
scheduler="Euler a", lora_dict={}, is_local=True, clip="", progress=gr.Progress(track_tqdm=True)):
|
| 251 |
progress(0, desc="Start converting...")
|
| 252 |
temp_dir = "."
|
| 253 |
new_file = get_download_file(temp_dir, url, civitai_key, hf_token)
|
|
|
|
| 256 |
return ""
|
| 257 |
new_repo_name = Path(new_file).stem.replace(" ", "_").replace(",", "_").replace(".", "_") #
|
| 258 |
|
| 259 |
+
type_kwargs = {}
|
| 260 |
+
kwargs = {}
|
| 261 |
+
if half: type_kwargs["torch_dtype"] = torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
new_vae_file = ""
|
| 264 |
if vae:
|
| 265 |
+
if is_repo_name(vae): my_vae = AutoencoderKL.from_pretrained(vae, **type_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
else:
|
| 267 |
new_vae_file = get_download_file(temp_dir, vae, civitai_key, hf_token)
|
| 268 |
+
if new_vae_file: my_vae = AutoencoderKL.from_single_file(new_vae_file, **type_kwargs)
|
| 269 |
+
kwargs["vae"] = my_vae
|
| 270 |
+
|
| 271 |
+
if clip:
|
| 272 |
+
my_tokenizer = CLIPTokenizer.from_pretrained(clip)
|
| 273 |
+
my_text_encoder = CLIPTextModel.from_pretrained(clip, **type_kwargs)
|
| 274 |
+
kwargs["tokenizer"] = my_tokenizer
|
| 275 |
+
kwargs["text_encoder"] = my_text_encoder
|
| 276 |
+
|
| 277 |
+
pipe = None
|
| 278 |
+
if is_repo_name(url): pipe = StableDiffusionXLPipeline.from_pretrained(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
| 279 |
+
else: pipe = StableDiffusionXLPipeline.from_single_file(new_file, use_safetensors=True, **kwargs, **type_kwargs)
|
| 280 |
|
| 281 |
pipe = fuse_loras(pipe, lora_dict, temp_dir, civitai_key, hf_token)
|
| 282 |
|
| 283 |
sconf = get_scheduler_config(scheduler)
|
| 284 |
pipe.scheduler = sconf[0].from_config(pipe.scheduler.config, **sconf[1])
|
| 285 |
|
| 286 |
+
pipe.save_pretrained(new_repo_name, safe_serialization=True, use_safetensors=True)
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
+
if Path(new_repo_name).exists(): save_readme_md(new_repo_name, url)
|
|
|
|
| 289 |
|
| 290 |
+
if not is_local:
|
| 291 |
+
if not is_repo_name(new_file) and is_upload_sf: shutil.move(str(Path(new_file).resolve()), str(Path(new_repo_name, Path(new_file).name).resolve()))
|
| 292 |
+
else: os.remove(new_file)
|
| 293 |
+
del pipe
|
| 294 |
+
torch.cuda.empty_cache()
|
| 295 |
+
gc.collect()
|
| 296 |
|
| 297 |
progress(1, desc="Converted.")
|
| 298 |
return new_repo_name
|
| 299 |
|
| 300 |
|
| 301 |
def is_repo_exists(repo_id, hf_token):
|
|
|
|
| 302 |
api = HfApi(token=hf_token)
|
| 303 |
try:
|
| 304 |
if api.repo_exists(repo_id=repo_id): return True
|
| 305 |
else: return False
|
| 306 |
except Exception as e:
|
| 307 |
+
print(f"Error: Failed to connect {repo_id}. {e}")
|
|
|
|
| 308 |
return True # for safe
|
| 309 |
|
| 310 |
|
| 311 |
def create_diffusers_repo(new_repo_id, diffusers_folder, is_private, hf_token, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 312 |
api = HfApi(token=hf_token)
|
| 313 |
try:
|
| 314 |
progress(0, desc="Start uploading...")
|
| 315 |
+
api.create_repo(repo_id=new_repo_id, token=hf_token, private=is_private, exist_ok=True)
|
| 316 |
for path in Path(diffusers_folder).glob("*"):
|
| 317 |
if path.is_dir():
|
| 318 |
api.upload_folder(repo_id=new_repo_id, folder_path=str(path), path_in_repo=path.name, token=hf_token)
|
|
|
|
| 321 |
progress(1, desc="Uploaded.")
|
| 322 |
url = f"https://huggingface.co/{new_repo_id}"
|
| 323 |
except Exception as e:
|
| 324 |
+
print(f"Error: Failed to upload to {new_repo_id}. {e}")
|
|
|
|
| 325 |
return ""
|
| 326 |
return url
|
| 327 |
|
| 328 |
|
| 329 |
+
def convert_url_to_diffusers_repo(dl_url, hf_user, hf_repo, hf_token, civitai_key="", is_private=True, is_overwrite=False, is_upload_sf=False,
|
| 330 |
+
repo_urls=[], half=True, vae=None, clip="", scheduler="Euler a",
|
| 331 |
+
lora1=None, lora1s=1.0, lora2=None, lora2s=1.0, lora3=None, lora3s=1.0,
|
| 332 |
lora4=None, lora4s=1.0, lora5=None, lora5s=1.0, progress=gr.Progress(track_tqdm=True)):
|
| 333 |
+
if not civitai_key and os.environ.get("CIVITAI_API_KEY"): civitai_key = os.environ.get("CIVITAI_API_KEY") # default Civitai API key
|
| 334 |
+
if not hf_token and os.environ.get("HF_TOKEN"): hf_token = os.environ.get("HF_TOKEN") # default HF write token
|
| 335 |
+
if not hf_user and os.environ.get("HF_USER"): hf_user = os.environ.get("HF_USER") # default username
|
| 336 |
if not hf_user:
|
| 337 |
print(f"Invalid user name: {hf_user}")
|
| 338 |
progress(1, desc=f"Invalid user name: {hf_user}")
|
| 339 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
|
|
|
| 340 |
lora_dict = {lora1: lora1s, lora2: lora2s, lora3: lora3s, lora4: lora4s, lora5: lora5s}
|
| 341 |
+
new_path = convert_url_to_diffusers_sdxl(dl_url, civitai_key, hf_token, is_upload_sf, half, vae, scheduler, lora_dict, False, clip)
|
| 342 |
if not new_path: return ""
|
| 343 |
new_repo_id = f"{hf_user}/{Path(new_path).stem}"
|
| 344 |
if hf_repo != "": new_repo_id = f"{hf_user}/{hf_repo}"
|
| 345 |
if not is_repo_name(new_repo_id):
|
| 346 |
print(f"Invalid repo name: {new_repo_id}")
|
| 347 |
progress(1, desc=f"Invalid repo name: {new_repo_id}")
|
| 348 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
| 349 |
+
if not is_overwrite and is_repo_exists(new_repo_id, hf_token):
|
| 350 |
print(f"Repo already exists: {new_repo_id}")
|
| 351 |
progress(1, desc=f"Repo already exists: {new_repo_id}")
|
| 352 |
+
return gr.update(value=repo_urls, choices=repo_urls), gr.update(visible=True)
|
| 353 |
repo_url = create_diffusers_repo(new_repo_id, new_path, is_private, hf_token)
|
| 354 |
shutil.rmtree(new_path)
|
| 355 |
if not repo_urls: repo_urls = []
|
| 356 |
repo_urls.append(repo_url)
|
| 357 |
+
md = "### Your new repo:\n"
|
| 358 |
for u in repo_urls:
|
| 359 |
md += f"[{str(u).split('/')[-2]}/{str(u).split('/')[-1]}]({str(u)})<br>"
|
| 360 |
return gr.update(value=repo_urls, choices=repo_urls), gr.update(value=md)
|