Spaces:
Sleeping
Sleeping
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
src/f5_tts/infer/speech_edit.py
CHANGED
|
@@ -9,6 +9,7 @@ import torch.nn.functional as F
|
|
| 9 |
import torchaudio
|
| 10 |
from hydra.utils import get_class
|
| 11 |
from omegaconf import OmegaConf
|
|
|
|
| 12 |
|
| 13 |
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
|
| 14 |
from f5_tts.model import CFM
|
|
@@ -55,7 +56,8 @@ win_length = model_cfg.model.mel_spec.win_length
|
|
| 55 |
n_fft = model_cfg.model.mel_spec.n_fft
|
| 56 |
|
| 57 |
|
| 58 |
-
ckpt_path = str(files("f5_tts").joinpath("../../")) + f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
|
|
|
| 59 |
output_dir = "tests"
|
| 60 |
|
| 61 |
|
|
|
|
| 9 |
import torchaudio
|
| 10 |
from hydra.utils import get_class
|
| 11 |
from omegaconf import OmegaConf
|
| 12 |
+
from cached_path import cached_path
|
| 13 |
|
| 14 |
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
|
| 15 |
from f5_tts.model import CFM
|
|
|
|
| 56 |
n_fft = model_cfg.model.mel_spec.n_fft
|
| 57 |
|
| 58 |
|
| 59 |
+
# ckpt_path = str(files("f5_tts").joinpath("../../")) + f"/ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
| 60 |
+
ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.safetensors"))
|
| 61 |
output_dir = "tests"
|
| 62 |
|
| 63 |
|
src/f5_tts/train/datasets/prepare_emilia_v2.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# put in src/f5_tts/train/datasets/prepare_emilia_v2.py
|
| 2 |
+
# prepares Emilia dataset with the new format w/ Emilia-YODAS
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
from datasets.arrow_writer import ArrowWriter
|
| 10 |
+
from importlib.resources import files
|
| 11 |
+
|
| 12 |
+
from f5_tts.model.utils import (
|
| 13 |
+
repetition_found,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Define filters for exclusion
|
| 17 |
+
out_en = set()
|
| 18 |
+
en_filters = ["ا", "い", "て"]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def process_audio_directory(audio_dir):
|
| 22 |
+
sub_result, durations, vocab_set = [], [], set()
|
| 23 |
+
bad_case_en = 0
|
| 24 |
+
|
| 25 |
+
for file in audio_dir.iterdir():
|
| 26 |
+
if file.suffix == ".json":
|
| 27 |
+
with open(file, "r") as f:
|
| 28 |
+
obj = json.load(f)
|
| 29 |
+
text = obj["text"]
|
| 30 |
+
if any(f in text for f in en_filters) or repetition_found(text, length=4):
|
| 31 |
+
bad_case_en += 1
|
| 32 |
+
continue
|
| 33 |
+
|
| 34 |
+
duration = obj["duration"]
|
| 35 |
+
audio_file = file.with_suffix(".mp3")
|
| 36 |
+
if audio_file.exists():
|
| 37 |
+
sub_result.append({"audio_path": str(audio_file), "text": text, "duration": duration})
|
| 38 |
+
durations.append(duration)
|
| 39 |
+
vocab_set.update(list(text))
|
| 40 |
+
|
| 41 |
+
return sub_result, durations, vocab_set, bad_case_en
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def main():
|
| 45 |
+
assert tokenizer in ["pinyin", "char"]
|
| 46 |
+
result, duration_list, text_vocab_set = [], [], set()
|
| 47 |
+
total_bad_case_en = 0
|
| 48 |
+
|
| 49 |
+
executor = ProcessPoolExecutor(max_workers=max_workers)
|
| 50 |
+
futures = []
|
| 51 |
+
dataset_path = Path(dataset_dir)
|
| 52 |
+
for sub_dir in dataset_path.iterdir():
|
| 53 |
+
if sub_dir.is_dir():
|
| 54 |
+
futures.append(executor.submit(process_audio_directory, sub_dir))
|
| 55 |
+
|
| 56 |
+
for future in tqdm(futures, total=len(futures)):
|
| 57 |
+
sub_result, durations, vocab_set, bad_case_en = future.result()
|
| 58 |
+
result.extend(sub_result)
|
| 59 |
+
duration_list.extend(durations)
|
| 60 |
+
text_vocab_set.update(vocab_set)
|
| 61 |
+
total_bad_case_en += bad_case_en
|
| 62 |
+
|
| 63 |
+
executor.shutdown()
|
| 64 |
+
|
| 65 |
+
if not os.path.exists(f"{save_dir}"):
|
| 66 |
+
os.makedirs(f"{save_dir}")
|
| 67 |
+
|
| 68 |
+
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
| 69 |
+
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
| 70 |
+
writer.write(line)
|
| 71 |
+
|
| 72 |
+
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
| 73 |
+
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
| 74 |
+
|
| 75 |
+
with open(f"{save_dir}/vocab.txt", "w") as f:
|
| 76 |
+
for vocab in sorted(text_vocab_set):
|
| 77 |
+
f.write(vocab + "\n")
|
| 78 |
+
|
| 79 |
+
print(f"For {dataset_name}, sample count: {len(result)}")
|
| 80 |
+
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
| 81 |
+
print(f"For {dataset_name}, total {sum(duration_list) / 3600:.2f} hours")
|
| 82 |
+
print(f"Bad en transcription case: {total_bad_case_en}\n")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
if __name__ == "__main__":
|
| 86 |
+
max_workers = 32
|
| 87 |
+
tokenizer = "char"
|
| 88 |
+
dataset_dir = "/home/ubuntu/emilia-dataset/Emilia-YODAS/EN"
|
| 89 |
+
dataset_name = f"Emilia_EN_{tokenizer}"
|
| 90 |
+
# save_dir = os.path.expanduser(f"~/F5-TTS/data/{dataset_name}")
|
| 91 |
+
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
| 92 |
+
|
| 93 |
+
print(f"Prepare for {dataset_name}, will save to {save_dir}\n")
|
| 94 |
+
main()
|