Spaces:
Paused
Paused
Sync from GitHub repo
Browse filesThis Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there
- Dockerfile +5 -2
- src/f5_tts/train/README.md +3 -0
- src/f5_tts/train/datasets/prepare_libritts.py +92 -0
Dockerfile
CHANGED
|
@@ -10,14 +10,17 @@ RUN set -x \
|
|
| 10 |
&& apt-get update \
|
| 11 |
&& apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
|
| 12 |
&& apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
|
|
|
|
| 13 |
&& rm -rf /var/lib/apt/lists/* \
|
| 14 |
&& apt-get clean
|
| 15 |
-
|
| 16 |
WORKDIR /workspace
|
| 17 |
|
| 18 |
RUN git clone https://github.com/SWivid/F5-TTS.git \
|
| 19 |
&& cd F5-TTS \
|
| 20 |
-
&&
|
|
|
|
|
|
|
| 21 |
|
| 22 |
ENV SHELL=/bin/bash
|
| 23 |
|
|
|
|
| 10 |
&& apt-get update \
|
| 11 |
&& apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
|
| 12 |
&& apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
|
| 13 |
+
&& apt-get install librdmacm1 libibumad3 librdmacm-dev libibverbs1 libibverbs-dev ibverbs-utils ibverbs-providers \
|
| 14 |
&& rm -rf /var/lib/apt/lists/* \
|
| 15 |
&& apt-get clean
|
| 16 |
+
|
| 17 |
WORKDIR /workspace
|
| 18 |
|
| 19 |
RUN git clone https://github.com/SWivid/F5-TTS.git \
|
| 20 |
&& cd F5-TTS \
|
| 21 |
+
&& git submodule update --init --recursive \
|
| 22 |
+
&& sed -i '7iimport sys\nsys.path.append(os.path.dirname(os.path.abspath(__file__)))' src/third_party/BigVGAN/bigvgan.py \
|
| 23 |
+
&& pip install -e . --no-cache-dir
|
| 24 |
|
| 25 |
ENV SHELL=/bin/bash
|
| 26 |
|
src/f5_tts/train/README.md
CHANGED
|
@@ -13,6 +13,9 @@ python src/f5_tts/train/datasets/prepare_emilia.py
|
|
| 13 |
|
| 14 |
# Prepare the Wenetspeech4TTS dataset
|
| 15 |
python src/f5_tts/train/datasets/prepare_wenetspeech4tts.py
|
|
|
|
|
|
|
|
|
|
| 16 |
```
|
| 17 |
|
| 18 |
### 2. Create custom dataset with metadata.csv
|
|
|
|
| 13 |
|
| 14 |
# Prepare the Wenetspeech4TTS dataset
|
| 15 |
python src/f5_tts/train/datasets/prepare_wenetspeech4tts.py
|
| 16 |
+
|
| 17 |
+
# Prepare the LibriTTS dataset
|
| 18 |
+
python src/f5_tts/train/datasets/prepare_libritts.py
|
| 19 |
```
|
| 20 |
|
| 21 |
### 2. Create custom dataset with metadata.csv
|
src/f5_tts/train/datasets/prepare_libritts.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
sys.path.append(os.getcwd())
|
| 5 |
+
|
| 6 |
+
import json
|
| 7 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 8 |
+
from importlib.resources import files
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
from datasets.arrow_writer import ArrowWriter
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def deal_with_audio_dir(audio_dir):
|
| 16 |
+
sub_result, durations = [], []
|
| 17 |
+
vocab_set = set()
|
| 18 |
+
audio_lists = list(audio_dir.rglob("*.wav"))
|
| 19 |
+
|
| 20 |
+
for line in audio_lists:
|
| 21 |
+
text_path = line.with_suffix(".normalized.txt")
|
| 22 |
+
text = open(text_path, "r").read().strip()
|
| 23 |
+
duration = sf.info(line).duration
|
| 24 |
+
if duration < 0.4 or duration > 30:
|
| 25 |
+
continue
|
| 26 |
+
sub_result.append({"audio_path": str(line), "text": text, "duration": duration})
|
| 27 |
+
durations.append(duration)
|
| 28 |
+
vocab_set.update(list(text))
|
| 29 |
+
return sub_result, durations, vocab_set
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def main():
|
| 33 |
+
result = []
|
| 34 |
+
duration_list = []
|
| 35 |
+
text_vocab_set = set()
|
| 36 |
+
|
| 37 |
+
# process raw data
|
| 38 |
+
executor = ProcessPoolExecutor(max_workers=max_workers)
|
| 39 |
+
futures = []
|
| 40 |
+
|
| 41 |
+
for subset in tqdm(SUB_SET):
|
| 42 |
+
dataset_path = Path(os.path.join(dataset_dir, subset))
|
| 43 |
+
[
|
| 44 |
+
futures.append(executor.submit(deal_with_audio_dir, audio_dir))
|
| 45 |
+
for audio_dir in dataset_path.iterdir()
|
| 46 |
+
if audio_dir.is_dir()
|
| 47 |
+
]
|
| 48 |
+
for future in tqdm(futures, total=len(futures)):
|
| 49 |
+
sub_result, durations, vocab_set = future.result()
|
| 50 |
+
result.extend(sub_result)
|
| 51 |
+
duration_list.extend(durations)
|
| 52 |
+
text_vocab_set.update(vocab_set)
|
| 53 |
+
executor.shutdown()
|
| 54 |
+
|
| 55 |
+
# save preprocessed dataset to disk
|
| 56 |
+
if not os.path.exists(f"{save_dir}"):
|
| 57 |
+
os.makedirs(f"{save_dir}")
|
| 58 |
+
print(f"\nSaving to {save_dir} ...")
|
| 59 |
+
|
| 60 |
+
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
| 61 |
+
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
| 62 |
+
writer.write(line)
|
| 63 |
+
|
| 64 |
+
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
| 65 |
+
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
| 66 |
+
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
| 67 |
+
|
| 68 |
+
# vocab map, i.e. tokenizer
|
| 69 |
+
with open(f"{save_dir}/vocab.txt", "w") as f:
|
| 70 |
+
for vocab in sorted(text_vocab_set):
|
| 71 |
+
f.write(vocab + "\n")
|
| 72 |
+
|
| 73 |
+
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
| 74 |
+
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
| 75 |
+
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
max_workers = 36
|
| 80 |
+
|
| 81 |
+
tokenizer = "char" # "pinyin" | "char"
|
| 82 |
+
|
| 83 |
+
SUB_SET = ["train-clean-100", "train-clean-360", "train-other-500"]
|
| 84 |
+
dataset_dir = "<SOME_PATH>/LibriTTS"
|
| 85 |
+
dataset_name = f"LibriTTS_{'_'.join(SUB_SET)}_{tokenizer}".replace("train-clean-", "").replace("train-other-", "")
|
| 86 |
+
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
| 87 |
+
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
| 88 |
+
main()
|
| 89 |
+
|
| 90 |
+
# For LibriTTS_100_360_500_char, sample count: 354218
|
| 91 |
+
# For LibriTTS_100_360_500_char, vocab size is: 78
|
| 92 |
+
# For LibriTTS_100_360_500_char, total 554.09 hours
|