Spaces:
Sleeping
Sleeping
feat: combine working model loading with comparison features
Browse files
app.py
CHANGED
@@ -2,37 +2,56 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
|
|
5 |
|
6 |
# Model configurations
|
7 |
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
|
8 |
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
|
9 |
|
|
|
|
|
|
|
10 |
print("Loading tokenizer...")
|
11 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
|
14 |
print("Loading base model...")
|
15 |
-
|
16 |
BASE_MODEL,
|
17 |
device_map="auto",
|
18 |
torch_dtype=torch.float16
|
19 |
)
|
20 |
|
21 |
-
print("Loading
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
def format_prompt(
|
26 |
"""Format input prompt for the model"""
|
27 |
-
|
|
|
28 |
|
29 |
-
Function: {
|
30 |
The derivative of this function is:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Tokenize
|
38 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
@@ -41,79 +60,128 @@ def generate_derivative(function: str, max_length: int = 200) -> str:
|
|
41 |
with torch.no_grad():
|
42 |
outputs = model.generate(
|
43 |
**inputs,
|
44 |
-
max_length=
|
45 |
num_return_sequences=1,
|
46 |
temperature=0.1,
|
47 |
do_sample=True,
|
48 |
pad_token_id=tokenizer.eos_token_id
|
49 |
)
|
50 |
|
51 |
-
# Decode and extract
|
52 |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
53 |
-
|
54 |
|
55 |
-
return
|
56 |
|
57 |
-
def
|
58 |
-
"""Solve
|
59 |
-
if not
|
60 |
-
return "Please enter a
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
64 |
|
65 |
-
# Format
|
66 |
-
|
67 |
|
68 |
Let's verify this step by step:
|
69 |
-
1. Starting with f(x) = {
|
70 |
2. Applying differentiation rules
|
71 |
-
3. We get f'(x) = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# Create Gradio interface
|
76 |
-
with gr.Blocks(title="Mathematics
|
77 |
-
gr.Markdown("# Mathematics
|
78 |
-
gr.Markdown("
|
79 |
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
)
|
86 |
-
solve_btn = gr.Button("
|
87 |
|
88 |
with gr.Row():
|
89 |
-
|
90 |
-
|
91 |
-
lines=
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
# Example
|
95 |
gr.Examples(
|
96 |
examples=[
|
97 |
-
["x^2"],
|
98 |
-
["
|
99 |
-
["
|
100 |
-
["\\
|
101 |
-
["x
|
102 |
-
["\\
|
103 |
-
["
|
104 |
-
["x
|
105 |
],
|
106 |
-
inputs=
|
107 |
-
outputs=
|
108 |
-
fn=
|
109 |
cache_examples=True,
|
110 |
)
|
111 |
|
112 |
# Connect the interface
|
113 |
solve_btn.click(
|
114 |
-
fn=
|
115 |
-
inputs=[
|
116 |
-
outputs=[
|
117 |
)
|
118 |
|
119 |
if __name__ == "__main__":
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
+
from monitoring import PerformanceMonitor, measure_time
|
6 |
|
7 |
# Model configurations
|
8 |
BASE_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct" # Base model
|
9 |
ADAPTER_MODEL = "Joash2024/Math-SmolLM2-1.7B" # Our LoRA adapter
|
10 |
|
11 |
+
# Initialize performance monitor
|
12 |
+
monitor = PerformanceMonitor()
|
13 |
+
|
14 |
print("Loading tokenizer...")
|
15 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
16 |
tokenizer.pad_token = tokenizer.eos_token
|
17 |
|
18 |
print("Loading base model...")
|
19 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
20 |
BASE_MODEL,
|
21 |
device_map="auto",
|
22 |
torch_dtype=torch.float16
|
23 |
)
|
24 |
|
25 |
+
print("Loading fine-tuned model...")
|
26 |
+
finetuned_model = PeftModel.from_pretrained(base_model, ADAPTER_MODEL)
|
27 |
+
|
28 |
+
# Set models to eval mode
|
29 |
+
base_model.eval()
|
30 |
+
finetuned_model.eval()
|
31 |
|
32 |
+
def format_prompt(problem: str, problem_type: str) -> str:
|
33 |
"""Format input prompt for the model"""
|
34 |
+
if problem_type == "Derivative":
|
35 |
+
return f"""Given a mathematical function, find its derivative.
|
36 |
|
37 |
+
Function: {problem}
|
38 |
The derivative of this function is:"""
|
39 |
+
elif problem_type == "Addition":
|
40 |
+
return f"""Solve this addition problem.
|
41 |
+
|
42 |
+
Problem: {problem}
|
43 |
+
The solution is:"""
|
44 |
+
else: # Roots or Custom
|
45 |
+
return f"""Find the derivative of this function.
|
46 |
|
47 |
+
Function: {problem}
|
48 |
+
The derivative is:"""
|
49 |
+
|
50 |
+
@measure_time
|
51 |
+
def get_model_response(problem: str, problem_type: str, model) -> str:
|
52 |
+
"""Generate response from a specific model"""
|
53 |
+
# Format prompt
|
54 |
+
prompt = format_prompt(problem, problem_type)
|
55 |
|
56 |
# Tokenize
|
57 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
60 |
with torch.no_grad():
|
61 |
outputs = model.generate(
|
62 |
**inputs,
|
63 |
+
max_length=100,
|
64 |
num_return_sequences=1,
|
65 |
temperature=0.1,
|
66 |
do_sample=True,
|
67 |
pad_token_id=tokenizer.eos_token_id
|
68 |
)
|
69 |
|
70 |
+
# Decode and extract response
|
71 |
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
72 |
+
response = generated[len(prompt):].strip()
|
73 |
|
74 |
+
return response
|
75 |
|
76 |
+
def solve_problem(problem: str, problem_type: str) -> tuple:
|
77 |
+
"""Solve a math problem using both models"""
|
78 |
+
if not problem:
|
79 |
+
return "Please enter a problem", "Please enter a problem", None
|
80 |
+
|
81 |
+
# Record problem type
|
82 |
+
monitor.record_problem_type(problem_type)
|
83 |
|
84 |
+
# Get responses from both models with timing
|
85 |
+
base_response, base_time = get_model_response(problem, problem_type, base_model)
|
86 |
+
finetuned_response, finetuned_time = get_model_response(problem, problem_type, finetuned_model)
|
87 |
|
88 |
+
# Format responses with steps
|
89 |
+
base_output = f"""Solution: {base_response}
|
90 |
|
91 |
Let's verify this step by step:
|
92 |
+
1. Starting with f(x) = {problem}
|
93 |
2. Applying differentiation rules
|
94 |
+
3. We get f'(x) = {base_response}"""
|
95 |
+
|
96 |
+
finetuned_output = f"""Solution: {finetuned_response}
|
97 |
+
|
98 |
+
Let's verify this step by step:
|
99 |
+
1. Starting with f(x) = {problem}
|
100 |
+
2. Applying differentiation rules
|
101 |
+
3. We get f'(x) = {finetuned_response}"""
|
102 |
+
|
103 |
+
# Record metrics
|
104 |
+
monitor.record_response_time("base", base_time)
|
105 |
+
monitor.record_response_time("finetuned", finetuned_time)
|
106 |
+
monitor.record_success("base", not base_response.startswith("Error"))
|
107 |
+
monitor.record_success("finetuned", not finetuned_response.startswith("Error"))
|
108 |
+
|
109 |
+
# Get updated statistics
|
110 |
+
stats = monitor.get_statistics()
|
111 |
|
112 |
+
# Format statistics for display
|
113 |
+
stats_display = f"""
|
114 |
+
### Performance Metrics
|
115 |
+
|
116 |
+
#### Response Times (seconds)
|
117 |
+
- Base Model: {stats.get('base_avg_response_time', 0):.2f} avg
|
118 |
+
- Fine-tuned Model: {stats.get('finetuned_avg_response_time', 0):.2f} avg
|
119 |
+
|
120 |
+
#### Success Rates
|
121 |
+
- Base Model: {stats.get('base_success_rate', 0):.1f}%
|
122 |
+
- Fine-tuned Model: {stats.get('finetuned_success_rate', 0):.1f}%
|
123 |
+
|
124 |
+
#### Problem Types Used
|
125 |
+
"""
|
126 |
+
for ptype, percentage in stats.get('problem_type_distribution', {}).items():
|
127 |
+
stats_display += f"- {ptype}: {percentage:.1f}%\n"
|
128 |
+
|
129 |
+
return base_output, finetuned_output, stats_display
|
130 |
|
131 |
# Create Gradio interface
|
132 |
+
with gr.Blocks(title="Mathematics Problem Solver") as demo:
|
133 |
+
gr.Markdown("# Mathematics Problem Solver")
|
134 |
+
gr.Markdown("Compare solutions between base and fine-tuned models")
|
135 |
|
136 |
with gr.Row():
|
137 |
with gr.Column():
|
138 |
+
problem_type = gr.Dropdown(
|
139 |
+
choices=["Addition", "Root Finding", "Derivative", "Custom"],
|
140 |
+
value="Derivative",
|
141 |
+
label="Problem Type"
|
142 |
+
)
|
143 |
+
problem_input = gr.Textbox(
|
144 |
+
label="Enter your math problem",
|
145 |
+
placeholder="Example: x^2 + 3x"
|
146 |
)
|
147 |
+
solve_btn = gr.Button("Solve", variant="primary")
|
148 |
|
149 |
with gr.Row():
|
150 |
+
with gr.Column():
|
151 |
+
gr.Markdown("### Base Model")
|
152 |
+
base_output = gr.Textbox(label="Base Model Solution", lines=5)
|
153 |
+
|
154 |
+
with gr.Column():
|
155 |
+
gr.Markdown("### Fine-tuned Model")
|
156 |
+
finetuned_output = gr.Textbox(label="Fine-tuned Model Solution", lines=5)
|
157 |
+
|
158 |
+
# Performance metrics display
|
159 |
+
with gr.Row():
|
160 |
+
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*")
|
161 |
|
162 |
+
# Example problems
|
163 |
gr.Examples(
|
164 |
examples=[
|
165 |
+
["x^2 + 3x", "Derivative"],
|
166 |
+
["144", "Root Finding"],
|
167 |
+
["235 + 567", "Addition"],
|
168 |
+
["\\sin{\\left(x\\right)}", "Derivative"],
|
169 |
+
["e^x", "Derivative"],
|
170 |
+
["\\frac{1}{x}", "Derivative"],
|
171 |
+
["x^3 + 2x", "Derivative"],
|
172 |
+
["\\cos{\\left(x^2\\right)}", "Derivative"]
|
173 |
],
|
174 |
+
inputs=[problem_input, problem_type],
|
175 |
+
outputs=[base_output, finetuned_output, metrics_display],
|
176 |
+
fn=solve_problem,
|
177 |
cache_examples=True,
|
178 |
)
|
179 |
|
180 |
# Connect the interface
|
181 |
solve_btn.click(
|
182 |
+
fn=solve_problem,
|
183 |
+
inputs=[problem_input, problem_type],
|
184 |
+
outputs=[base_output, finetuned_output, metrics_display]
|
185 |
)
|
186 |
|
187 |
if __name__ == "__main__":
|