Spaces:
Sleeping
Sleeping
Joash
commited on
Commit
·
7819eb3
1
Parent(s):
be43bdd
Add code review assistant
Browse files- README.md +51 -10
- app.py +423 -0
- requirements.txt +28 -0
README.md
CHANGED
@@ -1,13 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.9.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# Code Review Assistant V3
|
2 |
+
|
3 |
+
This Space provides an automated code review system powered by Gemma-2b-it. It analyzes code and provides suggestions for improvements in multiple categories including issues, improvements, best practices, and security considerations.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- 🔍 Automated code review for multiple programming languages
|
8 |
+
- 💡 Detailed suggestions for code improvements
|
9 |
+
- 🔒 Security considerations and best practices
|
10 |
+
- 📊 Review history and performance metrics
|
11 |
+
- ⚡ GPU-accelerated inference
|
12 |
+
- 🎨 Clean and intuitive interface
|
13 |
+
|
14 |
+
## Supported Languages
|
15 |
+
|
16 |
+
- Python
|
17 |
+
- JavaScript
|
18 |
+
- Java
|
19 |
+
- C++
|
20 |
+
- TypeScript
|
21 |
+
- Go
|
22 |
+
- Rust
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
|
26 |
+
1. Select the programming language from the dropdown
|
27 |
+
2. Paste your code in the input box
|
28 |
+
3. Click "Submit for Review"
|
29 |
+
4. View the detailed review suggestions
|
30 |
+
5. Check the History tab to see previous reviews
|
31 |
+
6. Monitor performance in the Metrics tab
|
32 |
+
|
33 |
+
## Technical Details
|
34 |
+
|
35 |
+
- Model: google/gemma-2b-it
|
36 |
+
- Framework: Gradio
|
37 |
+
- Inference: GPU-accelerated with PyTorch
|
38 |
+
- Persistent storage for review history and metrics
|
39 |
+
|
40 |
+
## Environment Setup
|
41 |
+
|
42 |
+
The Space requires the following environment variables:
|
43 |
+
- `HUGGING_FACE_TOKEN`: Your Hugging Face token for model access
|
44 |
+
- `MODEL_NAME`: Defaults to "google/gemma-2b-it"
|
45 |
+
|
46 |
+
## License
|
47 |
+
|
48 |
+
MIT License
|
49 |
+
|
50 |
---
|
51 |
+
|
52 |
+
sdk_version: 4.19.1
|
|
|
|
|
|
|
|
|
53 |
app_file: app.py
|
54 |
pinned: false
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
from huggingface_hub import login
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
from datetime import datetime
|
8 |
+
import json
|
9 |
+
from typing import List, Dict
|
10 |
+
import warnings
|
11 |
+
import spaces
|
12 |
+
|
13 |
+
# Filter out warnings
|
14 |
+
warnings.filterwarnings('ignore')
|
15 |
+
|
16 |
+
# Configure logging
|
17 |
+
logging.basicConfig(level=logging.INFO)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# Environment variables
|
21 |
+
HF_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
|
22 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "google/gemma-2b-it")
|
23 |
+
|
24 |
+
# Create data directory for persistence
|
25 |
+
DATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data")
|
26 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
27 |
+
|
28 |
+
# History file
|
29 |
+
HISTORY_FILE = os.path.join(DATA_DIR, "review_history.json")
|
30 |
+
|
31 |
+
class Review:
|
32 |
+
def __init__(self, code: str, language: str, suggestions: str):
|
33 |
+
self.code = code
|
34 |
+
self.language = language
|
35 |
+
self.suggestions = suggestions
|
36 |
+
self.timestamp = datetime.now().isoformat()
|
37 |
+
self.response_time = 0.0
|
38 |
+
|
39 |
+
def to_dict(self):
|
40 |
+
return {
|
41 |
+
'timestamp': self.timestamp,
|
42 |
+
'language': self.language,
|
43 |
+
'code': self.code,
|
44 |
+
'suggestions': self.suggestions,
|
45 |
+
'response_time': self.response_time
|
46 |
+
}
|
47 |
+
|
48 |
+
@classmethod
|
49 |
+
def from_dict(cls, data):
|
50 |
+
review = cls(data['code'], data['language'], data['suggestions'])
|
51 |
+
review.timestamp = data['timestamp']
|
52 |
+
review.response_time = data['response_time']
|
53 |
+
return review
|
54 |
+
|
55 |
+
class CodeReviewer:
|
56 |
+
def __init__(self):
|
57 |
+
self.model = None
|
58 |
+
self.tokenizer = None
|
59 |
+
self.device = None
|
60 |
+
self.review_history: List[Review] = []
|
61 |
+
self.metrics = {
|
62 |
+
'total_reviews': 0,
|
63 |
+
'avg_response_time': 0.0,
|
64 |
+
'reviews_today': 0
|
65 |
+
}
|
66 |
+
self._initialized = False
|
67 |
+
self.load_history()
|
68 |
+
|
69 |
+
def load_history(self):
|
70 |
+
"""Load review history from file."""
|
71 |
+
try:
|
72 |
+
if os.path.exists(HISTORY_FILE):
|
73 |
+
with open(HISTORY_FILE, 'r') as f:
|
74 |
+
data = json.load(f)
|
75 |
+
self.review_history = [Review.from_dict(r) for r in data['history']]
|
76 |
+
self.metrics = data['metrics']
|
77 |
+
logger.info(f"Loaded {len(self.review_history)} reviews from history")
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"Error loading history: {e}")
|
80 |
+
# Initialize empty history if file doesn't exist or is corrupted
|
81 |
+
self.review_history = []
|
82 |
+
self.metrics = {
|
83 |
+
'total_reviews': 0,
|
84 |
+
'avg_response_time': 0.0,
|
85 |
+
'reviews_today': 0
|
86 |
+
}
|
87 |
+
|
88 |
+
def save_history(self):
|
89 |
+
"""Save review history to file."""
|
90 |
+
try:
|
91 |
+
data = {
|
92 |
+
'history': [r.to_dict() for r in self.review_history],
|
93 |
+
'metrics': self.metrics
|
94 |
+
}
|
95 |
+
# Ensure the directory exists
|
96 |
+
os.makedirs(os.path.dirname(HISTORY_FILE), exist_ok=True)
|
97 |
+
with open(HISTORY_FILE, 'w') as f:
|
98 |
+
json.dump(data, f)
|
99 |
+
logger.info("Saved review history")
|
100 |
+
except Exception as e:
|
101 |
+
logger.error(f"Error saving history: {e}")
|
102 |
+
|
103 |
+
@spaces.GPU
|
104 |
+
def ensure_initialized(self):
|
105 |
+
"""Ensure model is initialized."""
|
106 |
+
if not self._initialized:
|
107 |
+
self.initialize_model()
|
108 |
+
self._initialized = True
|
109 |
+
|
110 |
+
def initialize_model(self):
|
111 |
+
"""Initialize the model and tokenizer."""
|
112 |
+
try:
|
113 |
+
if HF_TOKEN:
|
114 |
+
login(token=HF_TOKEN, add_to_git_credential=False)
|
115 |
+
|
116 |
+
logger.info("Loading tokenizer...")
|
117 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
118 |
+
MODEL_NAME,
|
119 |
+
token=HF_TOKEN,
|
120 |
+
trust_remote_code=True
|
121 |
+
)
|
122 |
+
special_tokens = {
|
123 |
+
'pad_token': '[PAD]',
|
124 |
+
'eos_token': '</s>',
|
125 |
+
'bos_token': '<s>'
|
126 |
+
}
|
127 |
+
num_added = self.tokenizer.add_special_tokens(special_tokens)
|
128 |
+
logger.info(f"Added {num_added} special tokens")
|
129 |
+
logger.info("Tokenizer loaded successfully")
|
130 |
+
|
131 |
+
logger.info("Loading model...")
|
132 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
133 |
+
MODEL_NAME,
|
134 |
+
device_map="auto",
|
135 |
+
torch_dtype=torch.float16,
|
136 |
+
trust_remote_code=True,
|
137 |
+
low_cpu_mem_usage=True,
|
138 |
+
token=HF_TOKEN
|
139 |
+
)
|
140 |
+
if num_added > 0:
|
141 |
+
logger.info("Resizing model embeddings for special tokens")
|
142 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
143 |
+
|
144 |
+
self.device = next(self.model.parameters()).device
|
145 |
+
logger.info(f"Model loaded successfully on {self.device}")
|
146 |
+
self._initialized = True
|
147 |
+
return True
|
148 |
+
except Exception as e:
|
149 |
+
logger.error(f"Error initializing model: {e}")
|
150 |
+
self._initialized = False
|
151 |
+
return False
|
152 |
+
|
153 |
+
def create_review_prompt(self, code: str, language: str) -> str:
|
154 |
+
"""Create a structured prompt for code review."""
|
155 |
+
return f"""Review this {language} code. List specific points in these sections:
|
156 |
+
Issues:
|
157 |
+
Improvements:
|
158 |
+
Best Practices:
|
159 |
+
Security:
|
160 |
+
|
161 |
+
Code:
|
162 |
+
```{language}
|
163 |
+
{code}
|
164 |
+
```"""
|
165 |
+
|
166 |
+
@spaces.GPU
|
167 |
+
def review_code(self, code: str, language: str) -> str:
|
168 |
+
"""Perform code review using the model."""
|
169 |
+
try:
|
170 |
+
if not self._initialized and not self.initialize_model():
|
171 |
+
return "Error: Model initialization failed. Please try again later."
|
172 |
+
|
173 |
+
start_time = datetime.now()
|
174 |
+
prompt = self.create_review_prompt(code, language)
|
175 |
+
|
176 |
+
try:
|
177 |
+
inputs = self.tokenizer(
|
178 |
+
prompt,
|
179 |
+
return_tensors="pt",
|
180 |
+
truncation=True,
|
181 |
+
max_length=512,
|
182 |
+
padding=True
|
183 |
+
)
|
184 |
+
if inputs is None:
|
185 |
+
raise ValueError("Failed to tokenize input")
|
186 |
+
inputs = inputs.to(self.device)
|
187 |
+
except Exception as token_error:
|
188 |
+
logger.error(f"Tokenization error: {token_error}")
|
189 |
+
return "Error: Failed to process input code. Please try again."
|
190 |
+
|
191 |
+
try:
|
192 |
+
with torch.no_grad():
|
193 |
+
outputs = self.model.generate(
|
194 |
+
**inputs,
|
195 |
+
max_new_tokens=512,
|
196 |
+
do_sample=True,
|
197 |
+
temperature=0.7,
|
198 |
+
top_p=0.95,
|
199 |
+
num_beams=1,
|
200 |
+
early_stopping=True,
|
201 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
202 |
+
eos_token_id=self.tokenizer.eos_token_id
|
203 |
+
)
|
204 |
+
except Exception as gen_error:
|
205 |
+
logger.error(f"Generation error: {gen_error}")
|
206 |
+
return "Error: Failed to generate review. Please try again."
|
207 |
+
|
208 |
+
try:
|
209 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
210 |
+
suggestions = response[len(prompt):].strip()
|
211 |
+
except Exception as decode_error:
|
212 |
+
logger.error(f"Decoding error: {decode_error}")
|
213 |
+
return "Error: Failed to decode model output. Please try again."
|
214 |
+
|
215 |
+
# Create and save review
|
216 |
+
end_time = datetime.now()
|
217 |
+
review = Review(code, language, suggestions)
|
218 |
+
review.response_time = (end_time - start_time).total_seconds()
|
219 |
+
|
220 |
+
# Update metrics first
|
221 |
+
self.metrics['total_reviews'] += 1
|
222 |
+
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
|
223 |
+
total_time += review.response_time
|
224 |
+
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
|
225 |
+
|
226 |
+
today = datetime.now().date()
|
227 |
+
|
228 |
+
# Add review to history
|
229 |
+
self.review_history.append(review)
|
230 |
+
|
231 |
+
# Update today's reviews count
|
232 |
+
self.metrics['reviews_today'] = sum(
|
233 |
+
1 for r in self.review_history
|
234 |
+
if datetime.fromisoformat(r.timestamp).date() == today
|
235 |
+
)
|
236 |
+
|
237 |
+
# Save to file
|
238 |
+
self.save_history()
|
239 |
+
|
240 |
+
if self.device and self.device.type == "cuda":
|
241 |
+
del inputs, outputs
|
242 |
+
torch.cuda.empty_cache()
|
243 |
+
|
244 |
+
return suggestions
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
logger.error(f"Error during code review: {e}")
|
248 |
+
return f"Error performing code review: {str(e)}"
|
249 |
+
|
250 |
+
def update_metrics(self, review: Review):
|
251 |
+
"""Update metrics with new review."""
|
252 |
+
self.metrics['total_reviews'] += 1
|
253 |
+
|
254 |
+
total_time = self.metrics['avg_response_time'] * (self.metrics['total_reviews'] - 1)
|
255 |
+
total_time += review.response_time
|
256 |
+
self.metrics['avg_response_time'] = total_time / self.metrics['total_reviews']
|
257 |
+
|
258 |
+
today = datetime.now().date()
|
259 |
+
self.metrics['reviews_today'] = sum(
|
260 |
+
1 for r in self.review_history
|
261 |
+
if datetime.fromisoformat(r.timestamp).date() == today
|
262 |
+
)
|
263 |
+
|
264 |
+
def get_history(self) -> List[Dict]:
|
265 |
+
"""Get formatted review history."""
|
266 |
+
return [
|
267 |
+
{
|
268 |
+
'timestamp': r.timestamp,
|
269 |
+
'language': r.language,
|
270 |
+
'code': r.code,
|
271 |
+
'suggestions': r.suggestions,
|
272 |
+
'response_time': f"{r.response_time:.2f}s"
|
273 |
+
}
|
274 |
+
for r in reversed(self.review_history[-10:])
|
275 |
+
]
|
276 |
+
|
277 |
+
def get_metrics(self) -> Dict:
|
278 |
+
"""Get current metrics."""
|
279 |
+
return {
|
280 |
+
'Total Reviews': self.metrics['total_reviews'],
|
281 |
+
'Average Response Time': f"{self.metrics['avg_response_time']:.2f}s",
|
282 |
+
'Reviews Today': self.metrics['reviews_today'],
|
283 |
+
'Device': str(self.device) if self.device else "Not initialized"
|
284 |
+
}
|
285 |
+
|
286 |
+
# Initialize reviewer
|
287 |
+
reviewer = CodeReviewer()
|
288 |
+
|
289 |
+
# Create Gradio interface
|
290 |
+
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
291 |
+
gr.Markdown("# Code Review Assistant")
|
292 |
+
gr.Markdown("An automated code review system powered by Gemma-2b")
|
293 |
+
|
294 |
+
with gr.Tabs():
|
295 |
+
with gr.Tab("Review Code"):
|
296 |
+
with gr.Row():
|
297 |
+
with gr.Column():
|
298 |
+
code_input = gr.Textbox(
|
299 |
+
lines=10,
|
300 |
+
placeholder="Enter your code here...",
|
301 |
+
label="Code"
|
302 |
+
)
|
303 |
+
language_input = gr.Dropdown(
|
304 |
+
choices=["python", "javascript", "java", "cpp", "typescript", "go", "rust"],
|
305 |
+
value="python",
|
306 |
+
label="Language"
|
307 |
+
)
|
308 |
+
submit_btn = gr.Button("Submit for Review", variant="primary")
|
309 |
+
with gr.Column():
|
310 |
+
output = gr.Textbox(
|
311 |
+
label="Review Results",
|
312 |
+
lines=10
|
313 |
+
)
|
314 |
+
|
315 |
+
with gr.Tab("History"):
|
316 |
+
with gr.Row():
|
317 |
+
refresh_history = gr.Button("Refresh History", variant="secondary")
|
318 |
+
history_output = gr.Textbox(
|
319 |
+
label="Review History",
|
320 |
+
lines=20,
|
321 |
+
value="Click 'Refresh History' to view review history"
|
322 |
+
)
|
323 |
+
|
324 |
+
with gr.Tab("Metrics"):
|
325 |
+
with gr.Row():
|
326 |
+
refresh_metrics = gr.Button("Refresh Metrics", variant="secondary")
|
327 |
+
metrics_output = gr.JSON(
|
328 |
+
label="Performance Metrics"
|
329 |
+
)
|
330 |
+
|
331 |
+
@spaces.GPU
|
332 |
+
def review_code_interface(code: str, language: str) -> str:
|
333 |
+
if not code.strip():
|
334 |
+
return "Please enter some code to review."
|
335 |
+
try:
|
336 |
+
reviewer.ensure_initialized()
|
337 |
+
result = reviewer.review_code(code, language)
|
338 |
+
return result
|
339 |
+
except Exception as e:
|
340 |
+
logger.error(f"Interface error: {e}")
|
341 |
+
return f"Error: {str(e)}"
|
342 |
+
|
343 |
+
def get_history_interface() -> str:
|
344 |
+
try:
|
345 |
+
history = reviewer.get_history()
|
346 |
+
if not history:
|
347 |
+
return "No reviews yet."
|
348 |
+
result = ""
|
349 |
+
for review in history:
|
350 |
+
result += f"Time: {review['timestamp']}\n"
|
351 |
+
result += f"Language: {review['language']}\n"
|
352 |
+
result += f"Response Time: {review['response_time']}\n"
|
353 |
+
result += "Code:\n```\n" + review['code'] + "\n```\n"
|
354 |
+
result += "Suggestions:\n" + review['suggestions'] + "\n"
|
355 |
+
result += "-" * 80 + "\n\n"
|
356 |
+
return result
|
357 |
+
except Exception as e:
|
358 |
+
logger.error(f"History error: {e}")
|
359 |
+
return "Error retrieving history"
|
360 |
+
|
361 |
+
def get_metrics_interface() -> Dict:
|
362 |
+
try:
|
363 |
+
metrics = reviewer.get_metrics()
|
364 |
+
if not metrics:
|
365 |
+
return {
|
366 |
+
'Total Reviews': 0,
|
367 |
+
'Average Response Time': '0.00s',
|
368 |
+
'Reviews Today': 0,
|
369 |
+
'Device': str(reviewer.device) if reviewer.device else "Not initialized"
|
370 |
+
}
|
371 |
+
return metrics
|
372 |
+
except Exception as e:
|
373 |
+
logger.error(f"Metrics error: {e}")
|
374 |
+
return {"error": str(e)}
|
375 |
+
|
376 |
+
def update_all_outputs(code: str, language: str) -> tuple:
|
377 |
+
"""Update all outputs after code review."""
|
378 |
+
result = review_code_interface(code, language)
|
379 |
+
history = get_history_interface()
|
380 |
+
metrics = get_metrics_interface()
|
381 |
+
return result, history, metrics
|
382 |
+
|
383 |
+
# Connect the interface
|
384 |
+
submit_btn.click(
|
385 |
+
update_all_outputs,
|
386 |
+
inputs=[code_input, language_input],
|
387 |
+
outputs=[output, history_output, metrics_output]
|
388 |
+
)
|
389 |
+
|
390 |
+
refresh_history.click(
|
391 |
+
get_history_interface,
|
392 |
+
outputs=history_output
|
393 |
+
)
|
394 |
+
|
395 |
+
refresh_metrics.click(
|
396 |
+
get_metrics_interface,
|
397 |
+
outputs=metrics_output
|
398 |
+
)
|
399 |
+
|
400 |
+
# Add example inputs
|
401 |
+
gr.Examples(
|
402 |
+
examples=[
|
403 |
+
["""def add_numbers(a, b):
|
404 |
+
return a + b""", "python"],
|
405 |
+
["""function calculateSum(numbers) {
|
406 |
+
let sum = 0;
|
407 |
+
for(let i = 0; i < numbers.length; i++) {
|
408 |
+
sum += numbers[i];
|
409 |
+
}
|
410 |
+
return sum;
|
411 |
+
}""", "javascript"]
|
412 |
+
],
|
413 |
+
inputs=[code_input, language_input]
|
414 |
+
)
|
415 |
+
|
416 |
+
# Launch the app
|
417 |
+
if __name__ == "__main__":
|
418 |
+
iface.launch(
|
419 |
+
server_name="0.0.0.0",
|
420 |
+
server_port=7860,
|
421 |
+
show_error=True,
|
422 |
+
quiet=False
|
423 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies
|
2 |
+
gradio>=4.0.0
|
3 |
+
transformers>=4.39.0
|
4 |
+
torch>=2.0.0
|
5 |
+
accelerate>=0.27.2
|
6 |
+
safetensors>=0.4.2
|
7 |
+
sentencepiece>=0.1.99
|
8 |
+
|
9 |
+
# Model dependencies
|
10 |
+
einops>=0.7.0
|
11 |
+
scipy>=1.11.0
|
12 |
+
|
13 |
+
# Hugging Face
|
14 |
+
huggingface-hub>=0.20.3
|
15 |
+
spaces>=0.19.4
|
16 |
+
|
17 |
+
# Utilities
|
18 |
+
python-dotenv>=1.0.0
|
19 |
+
pydantic>=2.4.2
|
20 |
+
numpy<2.0.0
|
21 |
+
tqdm>=4.66.0
|
22 |
+
requests>=2.31.0
|
23 |
+
|
24 |
+
# Memory optimization
|
25 |
+
psutil>=5.9.0
|
26 |
+
|
27 |
+
# For Gemma model
|
28 |
+
google-cloud-aiplatform>=1.36.4
|