import gradio as gr def evaluate(instruction): # Generate a response: input = None prompt = prompter.generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") #inputs = inputs.to("cuda:0") input_ids = inputs["input_ids"] #play around with generation strategies for better/diverse sequences. https://huggingface.co/docs/transformers/generation_strategies temperature=0.2 top_p=0.95 top_k=25 num_beams=1 # num_beam_groups=num_beams #see: 'Diverse beam search decoding' max_new_tokens=256 repetition_penalty = 2.0 do_sample = True # allow 'beam sample': do_sample=True, num_beams > 1 num_return_sequences = 1 #generate multiple candidates, takes longer.. generation_config = transformers.GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, repetition_penalty=repetition_penalty, do_sample=do_sample, min_new_tokens=32, num_return_sequences=num_return_sequences, pad_token_id = 0 # num_beam_groups=num_beam_groups ) generate_params = { "input_ids": input_ids, "generation_config": generation_config, "return_dict_in_generate": True, "output_scores": True, "max_new_tokens": max_new_tokens, } with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) print(f'Instruction: {instruction}') for i,s in enumerate(generation_output.sequences): output = tokenizer.decode(s,skip_special_tokens=True) # print(output) return(f' {prompter.get_response(output)}') gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Explain economic growth.", ), ], outputs=[ gr.components.Textbox( lines=5, label="Output", ) ], title="🌲 ELM - Erasmian Language Model", description="ELM is a 900M parameter language model finetuned to follow instruction. It is trained on Erasmus University academic outputs and the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. For more information, please visit [the GitHub repository](https://github.com/Joaoffg/ELM).", # noqa: E501 ).queue().gr.load("models/Joaoffg/ELM").launch()