File size: 2,680 Bytes
dcf2cc2
 
c12c6cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr

def evaluate(instruction):
    # Generate a response:
    input = None
    prompt = prompter.generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    #inputs = inputs.to("cuda:0")
    input_ids = inputs["input_ids"]
    
    #play around with generation strategies for better/diverse sequences. https://huggingface.co/docs/transformers/generation_strategies
    temperature=0.2
    top_p=0.95
    top_k=25
    num_beams=1
    # num_beam_groups=num_beams #see: 'Diverse beam search decoding'
    max_new_tokens=256
    repetition_penalty = 2.0
    do_sample = True # allow 'beam sample': do_sample=True, num_beams > 1
    num_return_sequences = 1 #generate multiple candidates, takes longer..
    
    generation_config = transformers.GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        repetition_penalty=repetition_penalty,
        do_sample=do_sample,
        min_new_tokens=32,
        num_return_sequences=num_return_sequences,
        pad_token_id = 0
        # num_beam_groups=num_beam_groups
    )
    
    generate_params = {
        "input_ids": input_ids,
        "generation_config": generation_config,
        "return_dict_in_generate": True,
        "output_scores": True,
        "max_new_tokens": max_new_tokens,
    }
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    
    
    print(f'Instruction: {instruction}')
    
    for i,s in enumerate(generation_output.sequences):
      output = tokenizer.decode(s,skip_special_tokens=True)
      # print(output)
      return(f' {prompter.get_response(output)}')

gr.Interface(
    fn=evaluate,
    inputs=[
            gr.components.Textbox(
                lines=2,
                label="Instruction",
                placeholder="Explain economic growth.",
            ),
        ],
        outputs=[
            gr.components.Textbox(
                lines=5,
                label="Output",
            )
        ],
    title="🌲 ELM - Erasmian Language Model",
    description="ELM is a 900M parameter language model finetuned to follow instruction. It is trained on Erasmus University academic outputs and the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. For more information, please visit [the GitHub repository](https://github.com/Joaoffg/ELM).",  # noqa: E501
    ).queue().gr.load("models/Joaoffg/ELM").launch()