import streamlit as st from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer ## Function To get response from LLAma 2 model def getLLamaresponse(input_text): ### LLama2 model # Load the fine-tuned model and tokenizer model_name = "Jithendra-k/InterACT_mini" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define the input prompt #prompt = "I want to drink water" # Run text generation pipeline with the model pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=50, do_sample=True, repetition_penalty=1.9) result = pipe(f"[INST] {input_text} [/INST]") # print(result[0]['generated_text']) return result[0]['generated_text'] st.set_page_config(page_title="Generate Keywords from User Queries", page_icon='🤖', layout='centered', initial_sidebar_state='collapsed') st.header("Generate keywords from User queries 🤖") input_text =st.text_input("Enter the query") submit =st.button("Generate") ## Final response if submit: st.write(getLLamaresponse(input_text))