Spaces:
Sleeping
Sleeping
| # Ultralytics YOLOv5 π, AGPL-3.0 license | |
| """ | |
| TensorFlow, Keras and TFLite versions of YOLOv5 | |
| Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127. | |
| Usage: | |
| $ python models/tf.py --weights yolov5s.pt | |
| Export: | |
| $ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs | |
| """ | |
| import argparse | |
| import sys | |
| from copy import deepcopy | |
| from pathlib import Path | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[1] # YOLOv5 root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| # ROOT = ROOT.relative_to(Path.cwd()) # relative | |
| import numpy as np | |
| import tensorflow as tf | |
| import torch | |
| import torch.nn as nn | |
| from tensorflow import keras | |
| from models.common import ( | |
| C3, | |
| SPP, | |
| SPPF, | |
| Bottleneck, | |
| BottleneckCSP, | |
| C3x, | |
| Concat, | |
| Conv, | |
| CrossConv, | |
| DWConv, | |
| DWConvTranspose2d, | |
| Focus, | |
| autopad, | |
| ) | |
| from models.experimental import MixConv2d, attempt_load | |
| from models.yolo import Detect, Segment | |
| from utils.activations import SiLU | |
| from utils.general import LOGGER, make_divisible, print_args | |
| class TFBN(keras.layers.Layer): | |
| """TensorFlow BatchNormalization wrapper for initializing with optional pretrained weights.""" | |
| def __init__(self, w=None): | |
| """Initializes a TensorFlow BatchNormalization layer with optional pretrained weights.""" | |
| super().__init__() | |
| self.bn = keras.layers.BatchNormalization( | |
| beta_initializer=keras.initializers.Constant(w.bias.numpy()), | |
| gamma_initializer=keras.initializers.Constant(w.weight.numpy()), | |
| moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), | |
| moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), | |
| epsilon=w.eps, | |
| ) | |
| def call(self, inputs): | |
| """Applies batch normalization to the inputs.""" | |
| return self.bn(inputs) | |
| class TFPad(keras.layers.Layer): | |
| """Pads input tensors in spatial dimensions 1 and 2 with specified integer or tuple padding values.""" | |
| def __init__(self, pad): | |
| """ | |
| Initializes a padding layer for spatial dimensions 1 and 2 with specified padding, supporting both int and tuple | |
| inputs. | |
| Inputs are | |
| """ | |
| super().__init__() | |
| if isinstance(pad, int): | |
| self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) | |
| else: # tuple/list | |
| self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]]) | |
| def call(self, inputs): | |
| """Pads input tensor with zeros using specified padding, suitable for int and tuple pad dimensions.""" | |
| return tf.pad(inputs, self.pad, mode="constant", constant_values=0) | |
| class TFConv(keras.layers.Layer): | |
| """Implements a standard convolutional layer with optional batch normalization and activation for TensorFlow.""" | |
| def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): | |
| """ | |
| Initializes a standard convolution layer with optional batch normalization and activation; supports only | |
| group=1. | |
| Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups. | |
| """ | |
| super().__init__() | |
| assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" | |
| # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) | |
| # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch | |
| conv = keras.layers.Conv2D( | |
| filters=c2, | |
| kernel_size=k, | |
| strides=s, | |
| padding="SAME" if s == 1 else "VALID", | |
| use_bias=not hasattr(w, "bn"), | |
| kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), | |
| bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()), | |
| ) | |
| self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) | |
| self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity | |
| self.act = activations(w.act) if act else tf.identity | |
| def call(self, inputs): | |
| """Applies convolution, batch normalization, and activation function to input tensors.""" | |
| return self.act(self.bn(self.conv(inputs))) | |
| class TFDWConv(keras.layers.Layer): | |
| """Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow.""" | |
| def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None): | |
| """ | |
| Initializes a depthwise convolution layer with optional batch normalization and activation for TensorFlow | |
| models. | |
| Input are ch_in, ch_out, weights, kernel, stride, padding, groups. | |
| """ | |
| super().__init__() | |
| assert c2 % c1 == 0, f"TFDWConv() output={c2} must be a multiple of input={c1} channels" | |
| conv = keras.layers.DepthwiseConv2D( | |
| kernel_size=k, | |
| depth_multiplier=c2 // c1, | |
| strides=s, | |
| padding="SAME" if s == 1 else "VALID", | |
| use_bias=not hasattr(w, "bn"), | |
| depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), | |
| bias_initializer="zeros" if hasattr(w, "bn") else keras.initializers.Constant(w.conv.bias.numpy()), | |
| ) | |
| self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) | |
| self.bn = TFBN(w.bn) if hasattr(w, "bn") else tf.identity | |
| self.act = activations(w.act) if act else tf.identity | |
| def call(self, inputs): | |
| """Applies convolution, batch normalization, and activation function to input tensors.""" | |
| return self.act(self.bn(self.conv(inputs))) | |
| class TFDWConvTranspose2d(keras.layers.Layer): | |
| """Implements a depthwise ConvTranspose2D layer for TensorFlow with specific settings.""" | |
| def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None): | |
| """ | |
| Initializes depthwise ConvTranspose2D layer with specific channel, kernel, stride, and padding settings. | |
| Inputs are ch_in, ch_out, weights, kernel, stride, padding, groups. | |
| """ | |
| super().__init__() | |
| assert c1 == c2, f"TFDWConv() output={c2} must be equal to input={c1} channels" | |
| assert k == 4 and p1 == 1, "TFDWConv() only valid for k=4 and p1=1" | |
| weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy() | |
| self.c1 = c1 | |
| self.conv = [ | |
| keras.layers.Conv2DTranspose( | |
| filters=1, | |
| kernel_size=k, | |
| strides=s, | |
| padding="VALID", | |
| output_padding=p2, | |
| use_bias=True, | |
| kernel_initializer=keras.initializers.Constant(weight[..., i : i + 1]), | |
| bias_initializer=keras.initializers.Constant(bias[i]), | |
| ) | |
| for i in range(c1) | |
| ] | |
| def call(self, inputs): | |
| """Processes input through parallel convolutions and concatenates results, trimming border pixels.""" | |
| return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1] | |
| class TFFocus(keras.layers.Layer): | |
| """Focuses spatial information into channel space using pixel shuffling and convolution for TensorFlow models.""" | |
| def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): | |
| """ | |
| Initializes TFFocus layer to focus width and height information into channel space with custom convolution | |
| parameters. | |
| Inputs are ch_in, ch_out, kernel, stride, padding, groups. | |
| """ | |
| super().__init__() | |
| self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) | |
| def call(self, inputs): | |
| """ | |
| Performs pixel shuffling and convolution on input tensor, downsampling by 2 and expanding channels by 4. | |
| Example x(b,w,h,c) -> y(b,w/2,h/2,4c). | |
| """ | |
| inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]] | |
| return self.conv(tf.concat(inputs, 3)) | |
| class TFBottleneck(keras.layers.Layer): | |
| """Implements a TensorFlow bottleneck layer with optional shortcut connections for efficient feature extraction.""" | |
| def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): | |
| """ | |
| Initializes a standard bottleneck layer for TensorFlow models, expanding and contracting channels with optional | |
| shortcut. | |
| Arguments are ch_in, ch_out, shortcut, groups, expansion. | |
| """ | |
| super().__init__() | |
| c_ = int(c2 * e) # hidden channels | |
| self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
| self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) | |
| self.add = shortcut and c1 == c2 | |
| def call(self, inputs): | |
| """Performs forward pass; if shortcut is True & input/output channels match, adds input to the convolution | |
| result. | |
| """ | |
| return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) | |
| class TFCrossConv(keras.layers.Layer): | |
| """Implements a cross convolutional layer with optional expansion, grouping, and shortcut for TensorFlow.""" | |
| def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None): | |
| """Initializes cross convolution layer with optional expansion, grouping, and shortcut addition capabilities.""" | |
| super().__init__() | |
| c_ = int(c2 * e) # hidden channels | |
| self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1) | |
| self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2) | |
| self.add = shortcut and c1 == c2 | |
| def call(self, inputs): | |
| """Passes input through two convolutions optionally adding the input if channel dimensions match.""" | |
| return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) | |
| class TFConv2d(keras.layers.Layer): | |
| """Implements a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D for specified filters and stride.""" | |
| def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): | |
| """Initializes a TensorFlow 2D convolution layer, mimicking PyTorch's nn.Conv2D functionality for given filter | |
| sizes and stride. | |
| """ | |
| super().__init__() | |
| assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" | |
| self.conv = keras.layers.Conv2D( | |
| filters=c2, | |
| kernel_size=k, | |
| strides=s, | |
| padding="VALID", | |
| use_bias=bias, | |
| kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()), | |
| bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, | |
| ) | |
| def call(self, inputs): | |
| """Applies a convolution operation to the inputs and returns the result.""" | |
| return self.conv(inputs) | |
| class TFBottleneckCSP(keras.layers.Layer): | |
| """Implements a CSP bottleneck layer for TensorFlow models to enhance gradient flow and efficiency.""" | |
| def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): | |
| """ | |
| Initializes CSP bottleneck layer with specified channel sizes, count, shortcut option, groups, and expansion | |
| ratio. | |
| Inputs are ch_in, ch_out, number, shortcut, groups, expansion. | |
| """ | |
| super().__init__() | |
| c_ = int(c2 * e) # hidden channels | |
| self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
| self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) | |
| self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) | |
| self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) | |
| self.bn = TFBN(w.bn) | |
| self.act = lambda x: keras.activations.swish(x) | |
| self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) | |
| def call(self, inputs): | |
| """Processes input through the model layers, concatenates, normalizes, activates, and reduces the output | |
| dimensions. | |
| """ | |
| y1 = self.cv3(self.m(self.cv1(inputs))) | |
| y2 = self.cv2(inputs) | |
| return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) | |
| class TFC3(keras.layers.Layer): | |
| """CSP bottleneck layer with 3 convolutions for TensorFlow, supporting optional shortcuts and group convolutions.""" | |
| def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): | |
| """ | |
| Initializes CSP Bottleneck with 3 convolutions, supporting optional shortcuts and group convolutions. | |
| Inputs are ch_in, ch_out, number, shortcut, groups, expansion. | |
| """ | |
| super().__init__() | |
| c_ = int(c2 * e) # hidden channels | |
| self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
| self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) | |
| self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) | |
| self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) | |
| def call(self, inputs): | |
| """ | |
| Processes input through a sequence of transformations for object detection (YOLOv5). | |
| See https://github.com/ultralytics/yolov5. | |
| """ | |
| return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) | |
| class TFC3x(keras.layers.Layer): | |
| """A TensorFlow layer for enhanced feature extraction using cross-convolutions in object detection models.""" | |
| def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): | |
| """ | |
| Initializes layer with cross-convolutions for enhanced feature extraction in object detection models. | |
| Inputs are ch_in, ch_out, number, shortcut, groups, expansion. | |
| """ | |
| super().__init__() | |
| c_ = int(c2 * e) # hidden channels | |
| self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
| self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) | |
| self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) | |
| self.m = keras.Sequential( | |
| [TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)] | |
| ) | |
| def call(self, inputs): | |
| """Processes input through cascaded convolutions and merges features, returning the final tensor output.""" | |
| return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) | |
| class TFSPP(keras.layers.Layer): | |
| """Implements spatial pyramid pooling for YOLOv3-SPP with specific channels and kernel sizes.""" | |
| def __init__(self, c1, c2, k=(5, 9, 13), w=None): | |
| """Initializes a YOLOv3-SPP layer with specific input/output channels and kernel sizes for pooling.""" | |
| super().__init__() | |
| c_ = c1 // 2 # hidden channels | |
| self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
| self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) | |
| self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding="SAME") for x in k] | |
| def call(self, inputs): | |
| """Processes input through two TFConv layers and concatenates with max-pooled outputs at intermediate stage.""" | |
| x = self.cv1(inputs) | |
| return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) | |
| class TFSPPF(keras.layers.Layer): | |
| """Implements a fast spatial pyramid pooling layer for TensorFlow with optimized feature extraction.""" | |
| def __init__(self, c1, c2, k=5, w=None): | |
| """Initializes a fast spatial pyramid pooling layer with customizable in/out channels, kernel size, and | |
| weights. | |
| """ | |
| super().__init__() | |
| c_ = c1 // 2 # hidden channels | |
| self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
| self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) | |
| self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding="SAME") | |
| def call(self, inputs): | |
| """Executes the model's forward pass, concatenating input features with three max-pooled versions before final | |
| convolution. | |
| """ | |
| x = self.cv1(inputs) | |
| y1 = self.m(x) | |
| y2 = self.m(y1) | |
| return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) | |
| class TFDetect(keras.layers.Layer): | |
| """Implements YOLOv5 object detection layer in TensorFlow for predicting bounding boxes and class probabilities.""" | |
| def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): | |
| """Initializes YOLOv5 detection layer for TensorFlow with configurable classes, anchors, channels, and image | |
| size. | |
| """ | |
| super().__init__() | |
| self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) | |
| self.nc = nc # number of classes | |
| self.no = nc + 5 # number of outputs per anchor | |
| self.nl = len(anchors) # number of detection layers | |
| self.na = len(anchors[0]) // 2 # number of anchors | |
| self.grid = [tf.zeros(1)] * self.nl # init grid | |
| self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) | |
| self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2]) | |
| self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] | |
| self.training = False # set to False after building model | |
| self.imgsz = imgsz | |
| for i in range(self.nl): | |
| ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] | |
| self.grid[i] = self._make_grid(nx, ny) | |
| def call(self, inputs): | |
| """Performs forward pass through the model layers to predict object bounding boxes and classifications.""" | |
| z = [] # inference output | |
| x = [] | |
| for i in range(self.nl): | |
| x.append(self.m[i](inputs[i])) | |
| # x(bs,20,20,255) to x(bs,3,20,20,85) | |
| ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] | |
| x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no]) | |
| if not self.training: # inference | |
| y = x[i] | |
| grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5 | |
| anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4 | |
| xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy | |
| wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid | |
| # Normalize xywh to 0-1 to reduce calibration error | |
| xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) | |
| wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) | |
| y = tf.concat([xy, wh, tf.sigmoid(y[..., 4 : 5 + self.nc]), y[..., 5 + self.nc :]], -1) | |
| z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no])) | |
| return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),) | |
| def _make_grid(nx=20, ny=20): | |
| """Generates a 2D grid of coordinates in (x, y) format with shape [1, 1, ny*nx, 2].""" | |
| # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
| xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) | |
| return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) | |
| class TFSegment(TFDetect): | |
| """YOLOv5 segmentation head for TensorFlow, combining detection and segmentation.""" | |
| def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None): | |
| """Initializes YOLOv5 Segment head with specified channel depths, anchors, and input size for segmentation | |
| models. | |
| """ | |
| super().__init__(nc, anchors, ch, imgsz, w) | |
| self.nm = nm # number of masks | |
| self.npr = npr # number of protos | |
| self.no = 5 + nc + self.nm # number of outputs per anchor | |
| self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv | |
| self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos | |
| self.detect = TFDetect.call | |
| def call(self, x): | |
| """Applies detection and proto layers on input, returning detections and optionally protos if training.""" | |
| p = self.proto(x[0]) | |
| # p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos | |
| p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160) | |
| x = self.detect(self, x) | |
| return (x, p) if self.training else (x[0], p) | |
| class TFProto(keras.layers.Layer): | |
| """Implements convolutional and upsampling layers for feature extraction in YOLOv5 segmentation.""" | |
| def __init__(self, c1, c_=256, c2=32, w=None): | |
| """Initializes TFProto layer with convolutional and upsampling layers for feature extraction and | |
| transformation. | |
| """ | |
| super().__init__() | |
| self.cv1 = TFConv(c1, c_, k=3, w=w.cv1) | |
| self.upsample = TFUpsample(None, scale_factor=2, mode="nearest") | |
| self.cv2 = TFConv(c_, c_, k=3, w=w.cv2) | |
| self.cv3 = TFConv(c_, c2, w=w.cv3) | |
| def call(self, inputs): | |
| """Performs forward pass through the model, applying convolutions and upscaling on input tensor.""" | |
| return self.cv3(self.cv2(self.upsample(self.cv1(inputs)))) | |
| class TFUpsample(keras.layers.Layer): | |
| """Implements a TensorFlow upsampling layer with specified size, scale factor, and interpolation mode.""" | |
| def __init__(self, size, scale_factor, mode, w=None): | |
| """ | |
| Initializes a TensorFlow upsampling layer with specified size, scale_factor, and mode, ensuring scale_factor is | |
| even. | |
| Warning: all arguments needed including 'w' | |
| """ | |
| super().__init__() | |
| assert scale_factor % 2 == 0, "scale_factor must be multiple of 2" | |
| self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode) | |
| # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) | |
| # with default arguments: align_corners=False, half_pixel_centers=False | |
| # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, | |
| # size=(x.shape[1] * 2, x.shape[2] * 2)) | |
| def call(self, inputs): | |
| """Applies upsample operation to inputs using nearest neighbor interpolation.""" | |
| return self.upsample(inputs) | |
| class TFConcat(keras.layers.Layer): | |
| """Implements TensorFlow's version of torch.concat() for concatenating tensors along the last dimension.""" | |
| def __init__(self, dimension=1, w=None): | |
| """Initializes a TensorFlow layer for NCHW to NHWC concatenation, requiring dimension=1.""" | |
| super().__init__() | |
| assert dimension == 1, "convert only NCHW to NHWC concat" | |
| self.d = 3 | |
| def call(self, inputs): | |
| """Concatenates a list of tensors along the last dimension, used for NCHW to NHWC conversion.""" | |
| return tf.concat(inputs, self.d) | |
| def parse_model(d, ch, model, imgsz): | |
| """Parses a model definition dict `d` to create YOLOv5 model layers, including dynamic channel adjustments.""" | |
| LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") | |
| anchors, nc, gd, gw, ch_mul = ( | |
| d["anchors"], | |
| d["nc"], | |
| d["depth_multiple"], | |
| d["width_multiple"], | |
| d.get("channel_multiple"), | |
| ) | |
| na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |
| no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |
| if not ch_mul: | |
| ch_mul = 8 | |
| layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |
| for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args | |
| m_str = m | |
| m = eval(m) if isinstance(m, str) else m # eval strings | |
| for j, a in enumerate(args): | |
| try: | |
| args[j] = eval(a) if isinstance(a, str) else a # eval strings | |
| except NameError: | |
| pass | |
| n = max(round(n * gd), 1) if n > 1 else n # depth gain | |
| if m in [ | |
| nn.Conv2d, | |
| Conv, | |
| DWConv, | |
| DWConvTranspose2d, | |
| Bottleneck, | |
| SPP, | |
| SPPF, | |
| MixConv2d, | |
| Focus, | |
| CrossConv, | |
| BottleneckCSP, | |
| C3, | |
| C3x, | |
| ]: | |
| c1, c2 = ch[f], args[0] | |
| c2 = make_divisible(c2 * gw, ch_mul) if c2 != no else c2 | |
| args = [c1, c2, *args[1:]] | |
| if m in [BottleneckCSP, C3, C3x]: | |
| args.insert(2, n) | |
| n = 1 | |
| elif m is nn.BatchNorm2d: | |
| args = [ch[f]] | |
| elif m is Concat: | |
| c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) | |
| elif m in [Detect, Segment]: | |
| args.append([ch[x + 1] for x in f]) | |
| if isinstance(args[1], int): # number of anchors | |
| args[1] = [list(range(args[1] * 2))] * len(f) | |
| if m is Segment: | |
| args[3] = make_divisible(args[3] * gw, ch_mul) | |
| args.append(imgsz) | |
| else: | |
| c2 = ch[f] | |
| tf_m = eval("TF" + m_str.replace("nn.", "")) | |
| m_ = ( | |
| keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) | |
| if n > 1 | |
| else tf_m(*args, w=model.model[i]) | |
| ) # module | |
| torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module | |
| t = str(m)[8:-2].replace("__main__.", "") # module type | |
| np = sum(x.numel() for x in torch_m_.parameters()) # number params | |
| m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |
| LOGGER.info(f"{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}") # print | |
| save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |
| layers.append(m_) | |
| ch.append(c2) | |
| return keras.Sequential(layers), sorted(save) | |
| class TFModel: | |
| """Implements YOLOv5 model in TensorFlow, supporting TensorFlow, Keras, and TFLite formats for object detection.""" | |
| def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, model=None, imgsz=(640, 640)): | |
| """Initializes TF YOLOv5 model with specified configuration, channels, classes, model instance, and input | |
| size. | |
| """ | |
| super().__init__() | |
| if isinstance(cfg, dict): | |
| self.yaml = cfg # model dict | |
| else: # is *.yaml | |
| import yaml # for torch hub | |
| self.yaml_file = Path(cfg).name | |
| with open(cfg) as f: | |
| self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict | |
| # Define model | |
| if nc and nc != self.yaml["nc"]: | |
| LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") | |
| self.yaml["nc"] = nc # override yaml value | |
| self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz) | |
| def predict( | |
| self, | |
| inputs, | |
| tf_nms=False, | |
| agnostic_nms=False, | |
| topk_per_class=100, | |
| topk_all=100, | |
| iou_thres=0.45, | |
| conf_thres=0.25, | |
| ): | |
| """Runs inference on input data, with an option for TensorFlow NMS.""" | |
| y = [] # outputs | |
| x = inputs | |
| for m in self.model.layers: | |
| if m.f != -1: # if not from previous layer | |
| x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |
| x = m(x) # run | |
| y.append(x if m.i in self.savelist else None) # save output | |
| # Add TensorFlow NMS | |
| if tf_nms: | |
| boxes = self._xywh2xyxy(x[0][..., :4]) | |
| probs = x[0][:, :, 4:5] | |
| classes = x[0][:, :, 5:] | |
| scores = probs * classes | |
| if agnostic_nms: | |
| nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres) | |
| else: | |
| boxes = tf.expand_dims(boxes, 2) | |
| nms = tf.image.combined_non_max_suppression( | |
| boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False | |
| ) | |
| return (nms,) | |
| return x # output [1,6300,85] = [xywh, conf, class0, class1, ...] | |
| # x = x[0] # [x(1,6300,85), ...] to x(6300,85) | |
| # xywh = x[..., :4] # x(6300,4) boxes | |
| # conf = x[..., 4:5] # x(6300,1) confidences | |
| # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes | |
| # return tf.concat([conf, cls, xywh], 1) | |
| def _xywh2xyxy(xywh): | |
| """Converts bounding box format from [x, y, w, h] to [x1, y1, x2, y2], where xy1=top-left and xy2=bottom- | |
| right. | |
| """ | |
| x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) | |
| return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) | |
| class AgnosticNMS(keras.layers.Layer): | |
| """Performs agnostic non-maximum suppression (NMS) on detected objects using IoU and confidence thresholds.""" | |
| def call(self, input, topk_all, iou_thres, conf_thres): | |
| """Performs agnostic NMS on input tensors using given thresholds and top-K selection.""" | |
| return tf.map_fn( | |
| lambda x: self._nms(x, topk_all, iou_thres, conf_thres), | |
| input, | |
| fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), | |
| name="agnostic_nms", | |
| ) | |
| def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): | |
| """Performs agnostic non-maximum suppression (NMS) on detected objects, filtering based on IoU and confidence | |
| thresholds. | |
| """ | |
| boxes, classes, scores = x | |
| class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) | |
| scores_inp = tf.reduce_max(scores, -1) | |
| selected_inds = tf.image.non_max_suppression( | |
| boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres | |
| ) | |
| selected_boxes = tf.gather(boxes, selected_inds) | |
| padded_boxes = tf.pad( | |
| selected_boxes, | |
| paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], | |
| mode="CONSTANT", | |
| constant_values=0.0, | |
| ) | |
| selected_scores = tf.gather(scores_inp, selected_inds) | |
| padded_scores = tf.pad( | |
| selected_scores, | |
| paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], | |
| mode="CONSTANT", | |
| constant_values=-1.0, | |
| ) | |
| selected_classes = tf.gather(class_inds, selected_inds) | |
| padded_classes = tf.pad( | |
| selected_classes, | |
| paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], | |
| mode="CONSTANT", | |
| constant_values=-1.0, | |
| ) | |
| valid_detections = tf.shape(selected_inds)[0] | |
| return padded_boxes, padded_scores, padded_classes, valid_detections | |
| def activations(act=nn.SiLU): | |
| """Converts PyTorch activations to TensorFlow equivalents, supporting LeakyReLU, Hardswish, and SiLU/Swish.""" | |
| if isinstance(act, nn.LeakyReLU): | |
| return lambda x: keras.activations.relu(x, alpha=0.1) | |
| elif isinstance(act, nn.Hardswish): | |
| return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667 | |
| elif isinstance(act, (nn.SiLU, SiLU)): | |
| return lambda x: keras.activations.swish(x) | |
| else: | |
| raise Exception(f"no matching TensorFlow activation found for PyTorch activation {act}") | |
| def representative_dataset_gen(dataset, ncalib=100): | |
| """Generates a representative dataset for calibration by yielding transformed numpy arrays from the input | |
| dataset. | |
| """ | |
| for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): | |
| im = np.transpose(img, [1, 2, 0]) | |
| im = np.expand_dims(im, axis=0).astype(np.float32) | |
| im /= 255 | |
| yield [im] | |
| if n >= ncalib: | |
| break | |
| def run( | |
| weights=ROOT / "yolov5s.pt", # weights path | |
| imgsz=(640, 640), # inference size h,w | |
| batch_size=1, # batch size | |
| dynamic=False, # dynamic batch size | |
| ): | |
| # PyTorch model | |
| """Exports YOLOv5 model from PyTorch to TensorFlow and Keras formats, performing inference for validation.""" | |
| im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image | |
| model = attempt_load(weights, device=torch.device("cpu"), inplace=True, fuse=False) | |
| _ = model(im) # inference | |
| model.info() | |
| # TensorFlow model | |
| im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image | |
| tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) | |
| _ = tf_model.predict(im) # inference | |
| # Keras model | |
| im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) | |
| keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) | |
| keras_model.summary() | |
| LOGGER.info("PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.") | |
| def parse_opt(): | |
| """Parses and returns command-line options for model inference, including weights path, image size, batch size, and | |
| dynamic batching. | |
| """ | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path") | |
| parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w") | |
| parser.add_argument("--batch-size", type=int, default=1, help="batch size") | |
| parser.add_argument("--dynamic", action="store_true", help="dynamic batch size") | |
| opt = parser.parse_args() | |
| opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand | |
| print_args(vars(opt)) | |
| return opt | |
| def main(opt): | |
| """Executes the YOLOv5 model run function with parsed command line options.""" | |
| run(**vars(opt)) | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |