Spaces:
Sleeping
Sleeping
v10
Browse filessupport OCR
- README.md +29 -40
- pdf2text.py +29 -342
README.md
CHANGED
|
@@ -1,62 +1,51 @@
|
|
| 1 |
-
|
| 2 |
-
title: DocSummarizer_Jimmy
|
| 3 |
-
emoji: 📝
|
| 4 |
-
colorFrom: blue
|
| 5 |
-
colorTo: green
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: "4.16.0"
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: true
|
| 10 |
-
---
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
-
|
| 17 |
-
-
|
| 18 |
-
-
|
| 19 |
-
-
|
| 20 |
-
- 🚀 Gradio 網頁介面即時輸出摘要結果
|
| 21 |
|
| 22 |
---
|
| 23 |
|
| 24 |
-
##
|
| 25 |
-
|
| 26 |
-
### 本地端執行(建議使用 Python 3.10+)
|
| 27 |
|
|
|
|
| 28 |
```bash
|
| 29 |
-
pip install -r requirements.txt
|
| 30 |
python app.py
|
| 31 |
```
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
你也可以上傳 PDF 或直接輸入文字。
|
| 38 |
|
| 39 |
---
|
| 40 |
|
| 41 |
-
## 📦
|
| 42 |
|
| 43 |
```bash
|
| 44 |
-
.
|
| 45 |
-
|
| 46 |
-
├── aggregate.py # 多段摘要彙整模組
|
| 47 |
-
├── summarize.py # 單段文字摘要處理
|
| 48 |
-
├── pdf2text.py # PDF OCR / 文字擷取處理
|
| 49 |
-
├── utils.py # 工具函式
|
| 50 |
-
├── requirements.txt # 所需套件列表
|
| 51 |
-
├── examples/
|
| 52 |
-
│ └── example1.txt # 範例檔案
|
| 53 |
-
└── README.md # 說明文件
|
| 54 |
```
|
| 55 |
|
| 56 |
---
|
| 57 |
|
| 58 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
|
| 61 |
-
- 📦 前端:Gradio Blocks
|
| 62 |
-
- 👨💻 Author: Jimmy
|
|
|
|
| 1 |
+
# DocSummarizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
本工具可將 PDF 文件自動擷取內容並摘要,支援兩種文字擷取模式:
|
| 4 |
|
| 5 |
+
## ✅ 功能特色
|
| 6 |
|
| 7 |
+
- 📄 支援 PDF 檔文字擷取
|
| 8 |
+
- 🔍 可選「文字擷取」或「OCR 模式」
|
| 9 |
+
- 🤖 利用 BART 模型進行摘要
|
| 10 |
+
- 🌐 Gradio 介面操作簡便
|
|
|
|
| 11 |
|
| 12 |
---
|
| 13 |
|
| 14 |
+
## 🧑💻 操作方式
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
1. 啟動應用:
|
| 17 |
```bash
|
|
|
|
| 18 |
python app.py
|
| 19 |
```
|
| 20 |
|
| 21 |
+
2. 上傳 PDF 後選擇擷取模式:
|
| 22 |
+
- `simple`:適用於文字可複製的 PDF
|
| 23 |
+
- `ocr`:適用於圖片 PDF 或文字亂碼
|
| 24 |
|
| 25 |
+
3. 查看並修改匯入文字後按下「Generate Summary」
|
|
|
|
|
|
|
| 26 |
|
| 27 |
---
|
| 28 |
|
| 29 |
+
## 📦 依賴安裝
|
| 30 |
|
| 31 |
```bash
|
| 32 |
+
pip install -r requirements.txt
|
| 33 |
+
sudo apt install tesseract-ocr tesseract-ocr-chi-tra poppler-utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
```
|
| 35 |
|
| 36 |
---
|
| 37 |
|
| 38 |
+
## 📁 檔案結構
|
| 39 |
+
|
| 40 |
+
```
|
| 41 |
+
├── app.py # 主介面
|
| 42 |
+
├── pdf2text.py # PDF 文字擷取
|
| 43 |
+
├── summarize.py # 摘要產生邏輯
|
| 44 |
+
├── requirements.txt
|
| 45 |
+
├── examples/
|
| 46 |
+
│ └── example1.txt
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
|
| 51 |
+
Jimmy 製作 ✨
|
|
|
|
|
|
pdf2text.py
CHANGED
|
@@ -1,346 +1,33 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import logging
|
| 6 |
import os
|
| 7 |
-
import re
|
| 8 |
-
import shutil
|
| 9 |
-
import time
|
| 10 |
-
from datetime import date
|
| 11 |
-
from os.path import join
|
| 12 |
-
from pathlib import Path
|
| 13 |
-
|
| 14 |
-
logging.basicConfig(
|
| 15 |
-
level=logging.INFO,
|
| 16 |
-
format="%(asctime)s %(levelname)s %(message)s",
|
| 17 |
-
datefmt="%m/%d/%Y %I:%M:%S",
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
os.environ["USE_TORCH"] = "1"
|
| 22 |
-
|
| 23 |
-
from cleantext import clean
|
| 24 |
-
from doctr.io import DocumentFile
|
| 25 |
-
from doctr.models import ocr_predictor
|
| 26 |
-
from spellchecker import SpellChecker
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def simple_rename(filepath, target_ext=".txt"):
|
| 30 |
-
"""simple_rename - get a new str to rename a file"""
|
| 31 |
-
_fp = Path(filepath)
|
| 32 |
-
basename = _fp.stem
|
| 33 |
-
return f"OCR_{basename}_{target_ext}"
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def rm_local_text_files(name_contains="RESULT_"):
|
| 37 |
-
"""
|
| 38 |
-
rm_local_text_files - remove local text files
|
| 39 |
-
"""
|
| 40 |
-
files = [
|
| 41 |
-
f
|
| 42 |
-
for f in Path.cwd().iterdir()
|
| 43 |
-
if f.is_file() and f.suffix == ".txt" and name_contains in f.name
|
| 44 |
-
]
|
| 45 |
-
logging.info(f"removing {len(files)} text files")
|
| 46 |
-
for f in files:
|
| 47 |
-
os.remove(f)
|
| 48 |
-
logging.info("done")
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
def corr(
|
| 52 |
-
s: str,
|
| 53 |
-
add_space_when_numerics=False,
|
| 54 |
-
exceptions=["e.g.", "i.e.", "etc.", "cf.", "vs.", "p."],
|
| 55 |
-
) -> str:
|
| 56 |
-
"""corrects spacing in a string
|
| 57 |
-
|
| 58 |
-
Args:
|
| 59 |
-
s (str): the string to correct
|
| 60 |
-
add_space_when_numerics (bool, optional): [add a space when a period is between two numbers, example 5.73]. Defaults to False.
|
| 61 |
-
exceptions (list, optional): [do not change these substrings]. Defaults to ['e.g.', 'i.e.', 'etc.', 'cf.', 'vs.', 'p.'].
|
| 62 |
-
|
| 63 |
-
Returns:
|
| 64 |
-
str: the corrected string
|
| 65 |
-
"""
|
| 66 |
-
if add_space_when_numerics:
|
| 67 |
-
s = re.sub(r"(\d)\.(\d)", r"\1. \2", s)
|
| 68 |
-
|
| 69 |
-
s = re.sub(r"\s+", " ", s)
|
| 70 |
-
s = re.sub(r'\s([?.!"](?:\s|$))', r"\1", s)
|
| 71 |
-
|
| 72 |
-
# fix space before apostrophe
|
| 73 |
-
s = re.sub(r"\s\'", r"'", s)
|
| 74 |
-
# fix space after apostrophe
|
| 75 |
-
s = re.sub(r"'\s", r"'", s)
|
| 76 |
-
# fix space before comma
|
| 77 |
-
s = re.sub(r"\s,", r",", s)
|
| 78 |
-
|
| 79 |
-
for e in exceptions:
|
| 80 |
-
expected_sub = re.sub(r"\s", "", e)
|
| 81 |
-
s = s.replace(expected_sub, e)
|
| 82 |
-
|
| 83 |
-
return s
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def fix_punct_spaces(string: str) -> str:
|
| 87 |
-
"""
|
| 88 |
-
fix_punct_spaces - fix spaces around punctuation
|
| 89 |
-
|
| 90 |
-
:param str string: input string
|
| 91 |
-
:return str: string with spaces fixed
|
| 92 |
-
"""
|
| 93 |
-
|
| 94 |
-
fix_spaces = re.compile(r"\s*([?!.,]+(?:\s+[?!.,]+)*)\s*")
|
| 95 |
-
string = fix_spaces.sub(lambda x: "{} ".format(x.group(1).replace(" ", "")), string)
|
| 96 |
-
string = string.replace(" ' ", "'")
|
| 97 |
-
string = string.replace(' " ', '"')
|
| 98 |
-
return string.strip()
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
def clean_OCR(ugly_text: str) -> str:
|
| 102 |
-
"""
|
| 103 |
-
clean_OCR - clean up the OCR text
|
| 104 |
-
|
| 105 |
-
:param str ugly_text: input text to be cleaned
|
| 106 |
-
:return str: cleaned text
|
| 107 |
-
"""
|
| 108 |
-
# Remove all the newlines.
|
| 109 |
-
cleaned_text = ugly_text.replace("\n", " ")
|
| 110 |
-
# Remove all the tabs.
|
| 111 |
-
cleaned_text = cleaned_text.replace("\t", " ")
|
| 112 |
-
# Remove all the double spaces.
|
| 113 |
-
cleaned_text = cleaned_text.replace(" ", " ")
|
| 114 |
-
# Remove all the spaces at the beginning of the text.
|
| 115 |
-
cleaned_text = cleaned_text.lstrip()
|
| 116 |
-
# remove all instances of "- " and " - "
|
| 117 |
-
cleaned_text = cleaned_text.replace("- ", "")
|
| 118 |
-
cleaned_text = cleaned_text.replace(" -", "")
|
| 119 |
-
return fix_punct_spaces(cleaned_text)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
def move2completed(
|
| 123 |
-
from_dir, filename, new_folder: str = "completed", verbose: bool = False
|
| 124 |
-
):
|
| 125 |
-
"""
|
| 126 |
-
move2completed - move a file to a new folder
|
| 127 |
-
"""
|
| 128 |
-
old_filepath = join(from_dir, filename)
|
| 129 |
-
|
| 130 |
-
new_filedirectory = join(from_dir, new_folder)
|
| 131 |
-
|
| 132 |
-
if not os.path.isdir(new_filedirectory):
|
| 133 |
-
os.mkdir(new_filedirectory)
|
| 134 |
-
if verbose:
|
| 135 |
-
print("created new directory for files at: \n", new_filedirectory)
|
| 136 |
-
new_filepath = join(new_filedirectory, filename)
|
| 137 |
|
|
|
|
|
|
|
| 138 |
try:
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
custom_replace_list = {
|
| 150 |
-
"t0": "to",
|
| 151 |
-
"'$": "'s",
|
| 152 |
-
",,": ", ",
|
| 153 |
-
"_ ": " ",
|
| 154 |
-
" '": "'",
|
| 155 |
-
}
|
| 156 |
-
|
| 157 |
-
replace_corr_exceptions = {
|
| 158 |
-
"i. e.": "i.e.",
|
| 159 |
-
"e. g.": "e.g.",
|
| 160 |
-
"e. g": "e.g.",
|
| 161 |
-
" ,": ",",
|
| 162 |
-
}
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
spell = SpellChecker()
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
def check_word_spelling(word: str) -> bool:
|
| 169 |
-
"""
|
| 170 |
-
check_word_spelling - check the spelling of a word
|
| 171 |
-
|
| 172 |
-
Args:
|
| 173 |
-
word (str): word to check
|
| 174 |
-
|
| 175 |
-
Returns:
|
| 176 |
-
bool: True if word is spelled correctly, False if not
|
| 177 |
-
"""
|
| 178 |
-
|
| 179 |
-
misspelled = spell.unknown([word])
|
| 180 |
-
|
| 181 |
-
return len(misspelled) == 0
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
def eval_and_replace(text: str, match_token: str = "- ") -> str:
|
| 185 |
-
"""
|
| 186 |
-
eval_and_replace - conditionally replace all instances of a substring in a string based on whether the eliminated substring results in a valid word
|
| 187 |
-
|
| 188 |
-
Args:
|
| 189 |
-
text (str): text to evaluate
|
| 190 |
-
match_token (str, optional): token to replace. Defaults to "- ".
|
| 191 |
-
|
| 192 |
-
Returns:
|
| 193 |
-
str: text with replaced tokens
|
| 194 |
-
"""
|
| 195 |
-
|
| 196 |
-
if match_token not in text:
|
| 197 |
-
return text
|
| 198 |
-
else:
|
| 199 |
-
while True:
|
| 200 |
-
full_before_text = text.split(match_token, maxsplit=1)[0]
|
| 201 |
-
before_text = [
|
| 202 |
-
char for char in full_before_text.split()[-1] if char.isalpha()
|
| 203 |
-
]
|
| 204 |
-
before_text = "".join(before_text)
|
| 205 |
-
full_after_text = text.split(match_token, maxsplit=1)[-1]
|
| 206 |
-
after_text = [char for char in full_after_text.split()[0] if char.isalpha()]
|
| 207 |
-
after_text = "".join(after_text)
|
| 208 |
-
full_text = before_text + after_text
|
| 209 |
-
if check_word_spelling(full_text):
|
| 210 |
-
text = full_before_text + full_after_text
|
| 211 |
-
else:
|
| 212 |
-
text = full_before_text + " " + full_after_text
|
| 213 |
-
if match_token not in text:
|
| 214 |
-
break
|
| 215 |
-
return text
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
def cleantxt_ocr(ugly_text, lower=False, lang: str = "en") -> str:
|
| 219 |
-
"""
|
| 220 |
-
cleantxt_ocr - clean text from OCR
|
| 221 |
-
|
| 222 |
-
https://pypi.org/project/clean-text/
|
| 223 |
-
Args:
|
| 224 |
-
ugly_text (str): text to clean
|
| 225 |
-
lower (bool, optional): lowercase text. Defaults to False.
|
| 226 |
-
lang (str, optional): language of text. Defaults to "en".
|
| 227 |
-
|
| 228 |
-
Returns:
|
| 229 |
-
str: cleaned text
|
| 230 |
-
"""
|
| 231 |
-
|
| 232 |
-
cleaned_text = clean(
|
| 233 |
-
ugly_text,
|
| 234 |
-
fix_unicode=True, # fix various unicode errors
|
| 235 |
-
to_ascii=True, # transliterate to closest ASCII representation
|
| 236 |
-
lower=lower, # lowercase text
|
| 237 |
-
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
| 238 |
-
no_urls=True, # replace all URLs with a special token
|
| 239 |
-
no_emails=True, # replace all email addresses with a special token
|
| 240 |
-
no_phone_numbers=True, # replace all phone numbers with a special token
|
| 241 |
-
no_numbers=False, # replace all numbers with a special token
|
| 242 |
-
no_digits=False, # replace all digits with a special token
|
| 243 |
-
no_currency_symbols=False, # replace all currency symbols with a special token
|
| 244 |
-
no_punct=False, # remove punctuations
|
| 245 |
-
replace_with_punct="", # instead of removing punctuations you may replace them
|
| 246 |
-
replace_with_url="this url",
|
| 247 |
-
replace_with_email="this email",
|
| 248 |
-
replace_with_phone_number="this phone number",
|
| 249 |
-
lang=lang, # set to 'de' for German special handling
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
return cleaned_text
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
def format_ocr_out(OCR_data):
|
| 256 |
-
"""format OCR output to text"""
|
| 257 |
-
if isinstance(OCR_data, list):
|
| 258 |
-
text = " ".join(OCR_data)
|
| 259 |
-
else:
|
| 260 |
-
text = str(OCR_data)
|
| 261 |
-
_clean = cleantxt_ocr(text)
|
| 262 |
-
return corr(_clean)
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
def postprocess(text: str) -> str:
|
| 266 |
-
"""to be used after recombining the lines"""
|
| 267 |
-
|
| 268 |
-
proc = corr(cleantxt_ocr(text))
|
| 269 |
-
|
| 270 |
-
for k, v in custom_replace_list.items():
|
| 271 |
-
proc = proc.replace(str(k), str(v))
|
| 272 |
-
|
| 273 |
-
proc = corr(proc)
|
| 274 |
-
|
| 275 |
-
for k, v in replace_corr_exceptions.items():
|
| 276 |
-
proc = proc.replace(str(k), str(v))
|
| 277 |
-
|
| 278 |
-
return eval_and_replace(proc)
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
def result2text(result, as_text=False) -> str or list:
|
| 282 |
-
"""Convert OCR result to text"""
|
| 283 |
-
|
| 284 |
-
full_doc = []
|
| 285 |
-
for i, page in enumerate(result.pages, start=1):
|
| 286 |
text = ""
|
| 287 |
-
for
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
ocr_model=None,
|
| 301 |
-
max_pages: int = 20,
|
| 302 |
-
) -> str:
|
| 303 |
-
"""
|
| 304 |
-
convert_PDF_to_Text - convert a PDF file to text
|
| 305 |
-
|
| 306 |
-
:param str PDF_file: path to PDF file
|
| 307 |
-
:param ocr_model: model to use for OCR, defaults to None (uses the default model)
|
| 308 |
-
:param int max_pages: maximum number of pages to process, defaults to 20
|
| 309 |
-
:return str: text from PDF
|
| 310 |
-
"""
|
| 311 |
-
st = time.perf_counter()
|
| 312 |
-
PDF_file = Path(PDF_file)
|
| 313 |
-
ocr_model = ocr_predictor(pretrained=True) if ocr_model is None else ocr_model
|
| 314 |
-
logging.info(f"starting OCR on {PDF_file.name}")
|
| 315 |
-
doc = DocumentFile.from_pdf(PDF_file)
|
| 316 |
-
truncated = False
|
| 317 |
-
if len(doc) > max_pages:
|
| 318 |
-
logging.warning(
|
| 319 |
-
f"PDF has {len(doc)} pages, which is more than {max_pages}.. truncating"
|
| 320 |
-
)
|
| 321 |
-
doc = doc[:max_pages]
|
| 322 |
-
truncated = True
|
| 323 |
-
|
| 324 |
-
# Analyze
|
| 325 |
-
logging.info(f"running OCR on {len(doc)} pages")
|
| 326 |
-
result = ocr_model(doc)
|
| 327 |
-
raw_text = result2text(result)
|
| 328 |
-
proc_text = [format_ocr_out(r) for r in raw_text]
|
| 329 |
-
fin_text = [postprocess(t) for t in proc_text]
|
| 330 |
-
|
| 331 |
-
ocr_results = "\n\n".join(fin_text)
|
| 332 |
-
|
| 333 |
-
fn_rt = time.perf_counter() - st
|
| 334 |
-
|
| 335 |
-
logging.info("OCR complete")
|
| 336 |
-
|
| 337 |
-
results_dict = {
|
| 338 |
-
"num_pages": len(doc),
|
| 339 |
-
"runtime": round(fn_rt, 2),
|
| 340 |
-
"date": str(date.today()),
|
| 341 |
-
"converted_text": ocr_results,
|
| 342 |
-
"truncated": truncated,
|
| 343 |
-
"length": len(ocr_results),
|
| 344 |
-
}
|
| 345 |
-
|
| 346 |
-
return results_dict
|
|
|
|
| 1 |
+
from pdf2image import convert_from_path
|
| 2 |
+
import pytesseract
|
| 3 |
+
from PyPDF2 import PdfReader
|
| 4 |
+
import tempfile
|
|
|
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def extract_text_simple(pdf_path: str) -> str:
|
| 8 |
+
"""使用 PyPDF2 直接提取 PDF 純文字"""
|
| 9 |
try:
|
| 10 |
+
with open(pdf_path, "rb") as f:
|
| 11 |
+
reader = PdfReader(f)
|
| 12 |
+
return "\n\n".join(page.extract_text() or "" for page in reader.pages)
|
| 13 |
+
except Exception as e:
|
| 14 |
+
return f"❌ PDF 讀取錯誤: {e}"
|
| 15 |
+
|
| 16 |
+
def extract_text_ocr(pdf_path: str) -> str:
|
| 17 |
+
"""使用 OCR 擷取 PDF 的圖片並辨識成文字"""
|
| 18 |
+
try:
|
| 19 |
+
images = convert_from_path(pdf_path, dpi=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
text = ""
|
| 21 |
+
for i, img in enumerate(images):
|
| 22 |
+
gray = img.convert('L')
|
| 23 |
+
page_text = pytesseract.image_to_string(gray, lang='chi_tra')
|
| 24 |
+
text += f"\n\n--- Page {i+1} ---\n\n" + page_text
|
| 25 |
+
return text
|
| 26 |
+
except Exception as e:
|
| 27 |
+
return f"❌ OCR 擷取失敗: {e}"
|
| 28 |
+
|
| 29 |
+
def extract_text(pdf_path: str, mode: str = "simple") -> str:
|
| 30 |
+
"""依模式選擇擷取方式:simple 或 ocr"""
|
| 31 |
+
if mode == "ocr":
|
| 32 |
+
return extract_text_ocr(pdf_path)
|
| 33 |
+
return extract_text_simple(pdf_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|