File size: 16,394 Bytes
9c37045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#!/usr/bin/env python3
"""
Qwen2.5-Omni Complete Multimodal Demo
A comprehensive Gradio interface for the Qwen2.5-Omni-3B multimodal AI model
Optimized for Apple Silicon (MPS) with efficient memory management
"""

import os
import gc
import sys
import time
import signal
import warnings
from typing import List, Dict, Any, Optional, Tuple, Union
import tempfile
import soundfile as sf

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

import torch
import numpy as np
import gradio as gr
from PIL import Image

# Global variables for model and processor
model = None
processor = None
device = None

def cleanup_resources():
    """Clean up model and free memory"""
    global model, processor
    
    try:
        if model is not None:
            del model
            model = None
        if processor is not None:
            del processor
            processor = None
        
        # Force garbage collection
        gc.collect()
        
        # Clear CUDA/MPS cache if available
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
            torch.mps.empty_cache()
            
        print("βœ… Resources cleaned up successfully")
        
    except Exception as e:
        print(f"⚠️ Warning during cleanup: {e}")

def signal_handler(signum, frame):
    """Handle interrupt signals gracefully"""
    print("\nπŸ›‘ Interrupt received, cleaning up...")
    cleanup_resources()
    sys.exit(0)

# Register signal handlers
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)

def load_model():
    """Load the Qwen2.5-Omni model and processor"""
    global model, processor, device
    
    if model is not None:
        return "βœ… Model already loaded!"
    
    try:
        # Check device
        if torch.backends.mps.is_available():
            device = torch.device("mps")
            device_info = "πŸš€ Using Apple Silicon MPS acceleration"
        else:
            device = torch.device("cpu")
            device_info = "⚠️ Using CPU (MPS not available)"
        
        # Import the specific Qwen2.5-Omni classes
        from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
        
        # Load processor with optimizations
        processor = Qwen2_5OmniProcessor.from_pretrained(
            "Qwen/Qwen2.5-Omni-3B",
            trust_remote_code=True,
            use_fast=True  # Use fast tokenizer if available
        )
        
        # Load model with memory-efficient settings - keep bfloat16 for all functionalities
        model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
            "Qwen/Qwen2.5-Omni-3B",
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            device_map="auto" if device.type != "mps" else None,
            low_cpu_mem_usage=True,
            use_safetensors=True,
            attn_implementation="sdpa"
        )
        
        # Immediately disable the audio generation module to prevent any initialization overhead
        model.disable_talker()
        print("🎀 Talker module disabled immediately after loading to optimize performance")
        
        # Explicitly move to device for MPS while keeping bfloat16
        if device.type == "mps":
            model = model.to(device=device, dtype=torch.bfloat16)
            
        print(f"πŸ”§ Model loaded with dtype: bfloat16 (memory efficient)")

        # Clear any cached memory after loading
        gc.collect()
        gc.collect() # Run twice for good measure
        if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
            torch.mps.empty_cache()
        
        return f"βœ… Model loaded successfully!\n{device_info}\nDevice: {device}"
        
    except Exception as e:
        return f"❌ Error loading model: {str(e)}"

def text_chat(message, history, system_prompt, temperature, max_tokens):
    """Handle text-only conversations correctly."""
    if model is None or processor is None:
        history.append((message, "❌ Error: Model is not loaded. Please load the model first."))
        return history, ""

    if not message or not message.strip():
        return history, ""

    try:
        conversation = []
        if system_prompt and system_prompt.strip():
            conversation.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})

        # Correctly process history for the model
        for user_msg, assistant_msg in history:
            if user_msg:
                conversation.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
            if assistant_msg:
                # Avoid adding error messages to the model's context
                if not assistant_msg.startswith("❌ Error:"):
                    conversation.append({"role": "assistant", "content": [{"type": "text", "text": assistant_msg}]})

        conversation.append({"role": "user", "content": [{"type": "text", "text": message}]})

        text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
        inputs = processor(text=text, return_tensors="pt", padding=True).to(device)

        with torch.no_grad():
            generated_ids = model.generate(
                **inputs,
                max_new_tokens=max_tokens,
                temperature=temperature,
                do_sample=True,
                pad_token_id=processor.tokenizer.eos_token_id
            )

        input_token_len = inputs["input_ids"].shape[1]
        response_ids = generated_ids[:, input_token_len:]
        response = processor.batch_decode(response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

        history.append((message, response))
        return history, ""

    except Exception as e:
        import traceback
        traceback.print_exc()
        error_message = f"❌ Error in text chat: {str(e)}"
        history.append((message, error_message))
        return history, ""

def multimodal_chat(message, image, audio, history, system_prompt, temperature, max_tokens):
    """
    Handle multimodal conversations (text, image, and audio) using the correct
    processor.apply_chat_template method as per the official documentation.
    """
    global model, processor, device
    if model is None or processor is None:
        history.append((message, "❌ Error: Model is not loaded. Please load the model first."))
        return history, ""

    if not message.strip() and image is None and audio is None:
        history.append(("", "Please provide an input (text, image, or audio)."))
        return history, ""

    # --- Create a temporary directory for media files ---
    temp_dir = tempfile.mkdtemp()

    try:
        # --- Build the conversation history in the required format ---
        conversation = []
        if system_prompt and system_prompt.strip():
            conversation.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
        
        # Process Gradio history into the conversation format
        for user_turn, bot_turn in history:
            # For simplicity, we only process the text part of the history.
            # A more robust solution would parse the [Image] and [Audio] tags
            # and reconstruct the full multimodal history.
            if user_turn:
                conversation.append({"role": "user", "content": [{"type": "text", "text": user_turn.replace("[Image]", "").replace("[Audio]", "").strip()}]})
            if bot_turn and not bot_turn.startswith("❌ Error:"):
                 conversation.append({"role": "assistant", "content": [{"type": "text", "text": bot_turn}]})


        # --- Prepare the current user's turn ---
        current_content = []
        user_message_for_history = ""

        # Process text
        if message and message.strip():
            current_content.append({"type": "text", "text": message})
            user_message_for_history += message

        # Process image
        if image is not None:
            # --- FIX: Resize large images to prevent OOM errors ---
            MAX_PIXELS = 1024 * 1024  # 1 megapixel
            if image.width * image.height > MAX_PIXELS:
                image.thumbnail((1024, 1024), Image.Resampling.LANCZOS)

            temp_image_path = os.path.join(temp_dir, "temp_image.png")
            image.save(temp_image_path)
            current_content.append({"type": "image", "image": temp_image_path})
            user_message_for_history += " [Image]"

        # Process audio
        if audio is not None:
            sample_rate, audio_data = audio
            temp_audio_path = os.path.join(temp_dir, "temp_audio.wav")
            sf.write(temp_audio_path, audio_data, sample_rate)
            current_content.append({"type": "audio", "audio": temp_audio_path})
            user_message_for_history += " [Audio]"
            
        if not current_content:
             history.append(("", "Please provide some input."))
             return history, ""

        conversation.append({"role": "user", "content": current_content})

        # --- Use `apply_chat_template` as per the documentation ---
        # This is the single, correct way to process all modalities.
        inputs = processor.apply_chat_template(
            conversation,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt",
            padding=True,
        ).to(device)
        
        # --- Generation ---
        with torch.no_grad():
            # Note: The model's generate function does not return audio directly in this setup
            # We are focusing on getting the text response right first.
            generated_ids = model.generate(
                **inputs,
                max_new_tokens=max_tokens,
                temperature=temperature,
                do_sample=True,
                pad_token_id=processor.tokenizer.eos_token_id,
                # return_audio=False # This might be needed if audio output is enabled by default
            )

        # The generate call for the full Omni model might return a tuple (text_ids, audio_wav)
        # We handle both cases to be safe.
        if isinstance(generated_ids, tuple):
             response_ids = generated_ids[0]
        else:
             response_ids = generated_ids

        input_token_len = inputs["input_ids"].shape[1]
        response_ids_decoded = response_ids[:, input_token_len:]
        response = processor.batch_decode(response_ids_decoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

        history.append((user_message_for_history.strip(), response))
        return history, ""

    except Exception as e:
        import traceback
        error_message = f"❌ Multimodal chat error: {traceback.format_exc()}"
        print(error_message) # Print full traceback to console for debugging
        history.append((message, f"❌ Error: {e}"))
        return history, ""
    finally:
        # --- Clean up temporary files ---
        if os.path.exists(temp_dir):
            import shutil
            shutil.rmtree(temp_dir)

def clear_history():
    """Clear chat history"""
    return []

def clear_model_cache():
    """Clear model cache and free memory"""
    global model, processor
    try:
        cleanup_resources()
        
        # Clear additional caches
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
            torch.mps.empty_cache()
        
        return "βœ… Cache cleared successfully! Click 'Load Model' to reload."
    except Exception as e:
        return f"❌ Error clearing cache: {str(e)}"

def create_interface():
    """Create the complete Gradio interface with the fix."""
    with gr.Blocks(title="Qwen2.5-Omni Multimodal Demo", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # πŸ€– Qwen2.5-Omni Complete Multimodal Demo
        A comprehensive and corrected Gradio interface for the Qwen2.5-Omni-3B model.
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                load_btn = gr.Button("πŸ”„ Load Model", variant="primary")
            with gr.Column(scale=2):
                cache_clear_btn = gr.Button("🧹 Clear Cache", variant="secondary")
            with gr.Column(scale=3):
                model_status = gr.Textbox(label="Model Status", value="Model not loaded", interactive=False)
        
        load_btn.click(load_model, outputs=model_status)
        cache_clear_btn.click(clear_model_cache, outputs=model_status)
        
        with gr.Tabs():
            with gr.Tab("πŸ’¬ Text Chat"):
                text_chatbot = gr.Chatbot(label="Conversation", height=450)
                with gr.Row():
                    text_msg = gr.Textbox(label="Your message", placeholder="Type your message...", scale=4, container=False)
                    text_send = gr.Button("Send", variant="primary", scale=1)
                with gr.Row():
                    text_clear = gr.Button("Clear History")
                with gr.Accordion("Settings", open=False):
                    text_system = gr.Textbox(label="System Prompt", value="You are a helpful AI assistant.")
                    text_temp = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
                    text_max_tokens = gr.Slider(50, 1000, value=500, label="Max New Tokens", step=50)

                text_send.click(text_chat, inputs=[text_msg, text_chatbot, text_system, text_temp, text_max_tokens], outputs=[text_chatbot, text_msg])
                text_msg.submit(text_chat, inputs=[text_msg, text_chatbot, text_system, text_temp, text_max_tokens], outputs=[text_chatbot, text_msg])
                text_clear.click(clear_history, outputs=text_chatbot)
            
            with gr.Tab("🌟 Multimodal Chat"):
                multi_chatbot = gr.Chatbot(label="Multimodal Conversation", height=450)
                multi_text = gr.Textbox(label="Text Message (optional)", placeholder="Describe what you want to know...", scale=4, container=False)
                with gr.Row():
                    multi_image = gr.Image(label="Upload Image (optional)", type="pil")
                    multi_audio = gr.Audio(label="Upload Audio (optional)", type="numpy")
                with gr.Row():
                    multi_send = gr.Button("Send Multimodal Input", variant="primary")
                    multi_clear = gr.Button("Clear History")
                with gr.Accordion("Settings", open=False):
                    multi_system = gr.Textbox(label="System Prompt", value="You are Qwen, capable of understanding images, audio, and text.")
                    multi_temp = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
                    multi_max_tokens = gr.Slider(50, 1000, value=500, label="Max New Tokens", step=50)

                multi_send.click(multimodal_chat, inputs=[multi_text, multi_image, multi_audio, multi_chatbot, multi_system, multi_temp, multi_max_tokens], outputs=[multi_chatbot, multi_text])
                multi_clear.click(clear_history, outputs=multi_chatbot)
            
            with gr.Tab("ℹ️ Model Info"):
                # Placeholder for model info content
                gr.Markdown("Model information will be displayed here.")

    return demo

if __name__ == "__main__":
    try:
        os.environ["TOKENIZERS_PARALLELISM"] = "false"
        os.environ["OMP_NUM_THREADS"] = "1"
        
        demo = create_interface()
        
        print("πŸš€ Starting Qwen2.5-Omni Gradio Demo...")
        print("πŸ“‹ Memory management optimizations enabled")
        print("πŸ”— Access the interface at: http://localhost:7860")
        
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False,
            show_error=True,
            quiet=False
        )
    except KeyboardInterrupt:
        print("\nπŸ›‘ Shutting down gracefully...")
        cleanup_resources()
    except Exception as e:
        print(f"❌ Error starting demo: {e}")
        cleanup_resources()