Spaces:
Runtime error
Runtime error
File size: 12,697 Bytes
41f5990 06bc344 41f5990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# -*- coding: utf-8 -*-
# 財政部財政資訊中心 江信宗
import streamlit as st
import requests
from PIL import Image
import io
import base64
import time
import uuid
import json
from gtts import gTTS
import os
from litellm import completion
from dotenv import load_dotenv
load_dotenv()
def compress_image(image, max_size=(800, 800), quality=95):
img_copy = image.copy()
img_copy.thumbnail(max_size)
buffered = io.BytesIO()
img_copy.save(buffered, format="JPEG", quality=quality)
return buffered.getvalue()
def analyze_image(image, api_key, model):
compressed_image = compress_image(image)
img_str = base64.b64encode(compressed_image).decode()
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Carefully observe this image and describe it in as much detail as possible. Please address the following aspects: primary subject matter, background setting, color palette, emotional conveyance, and specific details."},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_str}"
}
}
]
}
]
response = completion(model=model, messages=messages, max_tokens=1024)
return response.choices[0].message.content.strip()
def translate_to_chinese(text, api_key, model):
if "groq/" in model:
translation_model = "groq/gemma2-9b-it"
else:
translation_model = model
messages = [
{
"role": "system",
"content": "You are an expert translator proficient in both Traditional Chinese and English, with 40 years of translation experience and extensive cross-disciplinary knowledge. You have been deeply involved in the Chinese translations of The New York Times and Bloomberg, and have a deep understanding of the translation of current events and academic papers. I would like you to translate the following English text into Traditional Chinese, with a style similar to the Chinese versions of the aforementioned magazines. I would like to request a translation of the following English content into Traditional Chinese. Please ensure that the translation is accurate and natural-sounding."
},
{
"role": "user",
"content": f"THAT'S IMPORTANT OTHERWISE I'LL DIE. Translate the Text ``` {text} ``` into \"Traditional Chinese\". Must reply to me in Traditional Chinese."
}
]
response = completion(model=translation_model, messages=messages, max_tokens=1024)
return response.choices[0].message.content.strip()
def resize_image(image, target_height=400):
original_width, original_height = image.size
aspect_ratio = original_width / original_height
target_width = int(target_height * aspect_ratio)
resized_image = image.resize((target_width, target_height), Image.LANCZOS)
return resized_image
def main():
st.set_page_config(
layout="wide",
page_title="AI-Powered Visual Storytelling",
page_icon="🖼️",
menu_items={
'Get Help': None,
'Report a bug': None,
'About': '# 圖片AI辨識應用\n使用AI分析圖片內容之網頁程式。'
}
)
st.markdown("""
<style>
.stApp {
background-image: linear-gradient(to bottom, #e6f3ff, #ffffff);
}
.stTitle, .stMarkdown, .stRadio, .stFileUploader, .stTextInput > label, p {
color: black !important;
}
.stTitle h1 {
color: black !important;
}
.stButton>button {
background-color: #3498db;
color: white;
}
.stTextInput>div>div>input {
background-color: #ecf0f1;
color: #2c3e50;
}
.custom-image-container {
border: 2px solid #bdc3c7;
border-radius: 10px;
overflow: hidden;
}
.custom-image {
width: 100%;
height: 400px;
object-fit: cover;
border-radius: 10px;
}
.description-box {
background-color: rgba(52, 152, 219, 0.1);
border-left: 5px solid #3498db;
padding: 12px;
border-radius: 0 6px 6px 0;
transition: all 0.3s ease;
margin-bottom: 5px;
}
.description-box:hover {
background-color: rgba(52, 152, 219, 0.2);
box-shadow: 0 0 10px rgba(52, 152, 219, 0.5);
}
.description-box p {
color: #2c3e50;
font-size: 16px;
line-height: 1.6;
transition: all 0.3s ease;
}
.description-box:hover p {
font-weight: bold;
}
.info-box {
background-color: rgba(52, 152, 219, 0.1);
border-left: 5px solid #3498db;
padding: 10px;
border-radius: 0 10px 10px 0;
transition: all 0.3s ease;
margin-bottom: 5px;
}
.info-box:hover {
background-color: rgba(52, 152, 219, 0.2);
box-shadow: 0 0 10px rgba(52, 152, 219, 0.5);
}
.info-box p {
color: #2c3e50;
font-size: 16px;
line-height: 1.6;
transition: all 0.3s ease;
margin: 0;
}
.info-box:hover p {
font-weight: bold;
}
.stTextInput > div > div > input {
background-color: #ffffff;
color: #2c3e50;
border: 2px solid #3498db;
border-radius: 5px;
padding: 8px 12px;
}
.stButton > button {
background-color: #3498db;
color: white;
border: none;
border-radius: 5px;
padding: 8px 16px;
font-weight: bold;
transition: all 0.3s ease;
}
.stButton > button:hover {
background-color: #2980b9;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
[data-testid=stSidebar] {
background-color: #f0f8ff;
padding: 20px;
}
[data-testid=stSidebar] .stTitle h1 {
color: #2c3e50 !important;
font-size: 24px;
margin-bottom: 20px;
}
.main-content {
padding-left: 0 !important;
}
.stColumns {
gap: 1rem !important;
}
.streamlit-expanderHeader {
background-color: #3498db;
color: white !important;
border-radius: 5px;
padding: 10px 15px;
font-weight: bold;
transition: all 0.3s ease;
}
.streamlit-expanderHeader:hover {
background-color: #2980b9;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.streamlit-expanderContent {
border: 1px solid #3498db;
border-radius: 0 0 5px 5px;
padding: 10px;
}
</style>
<script>
const mutationObserver = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.type === 'childList') {
const descriptionBoxes = document.querySelectorAll('.description-box');
descriptionBoxes.forEach(box => {
const paragraphs = box.querySelectorAll('p');
paragraphs.forEach(p => {
p.textContent = p.textContent.replace(/^<strong>|<\/strong>$/g, '');
});
});
}
});
});
mutationObserver.observe(document.body, {
childList: true,
subtree: true
});
</script>
""", unsafe_allow_html=True)
with st.sidebar:
st.title("🖼️ 圖片分析")
if 'uploaded_files' not in st.session_state:
st.session_state.uploaded_files = []
new_uploads = st.file_uploader("新增/刪除圖片", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
current_files = {f.name: f for f in new_uploads} if new_uploads else {}
st.session_state.uploaded_files = [f for f in st.session_state.uploaded_files if f.name in current_files]
for file_name, file in current_files.items():
if file_name not in [f.name for f in st.session_state.uploaded_files]:
st.session_state.uploaded_files.append(file)
uploaded_files = st.session_state.uploaded_files
with st.expander("詮釋圖片語言", expanded=False):
language = st.radio("", ["繁體中文", "English"], index=0)
st.markdown("### 🤖 Model Settings")
model_options = ["gpt-4o", "gemini-1.5-pro", "gpt-4o-mini", "custom"]
selected_model = st.selectbox("Select Model", model_options)
if selected_model == "custom":
custom_model = st.text_input("Enter custom model name")
model = custom_model if custom_model else "groq/llava-v1.5-7b-4096-preview"
else:
model = selected_model
st.markdown("### 🔑 API Settings")
api_key = st.text_input("API Key", type="password", value=os.getenv("OPENAI_API_KEY", ""))
api_base = st.text_input("API Base URL", value=os.getenv("OPENAI_API_BASE", ""))
if st.button("Save API Settings"):
os.environ["OPENAI_API_KEY"] = api_key
os.environ["OPENAI_API_BASE"] = api_base
st.success("API settings saved successfully")
st.markdown("""
<div class="info-box">
<p>系統部署:江信宗<br>Vision Language Models</p>
</div>
""", unsafe_allow_html=True)
st.markdown('<div class="main-content">', unsafe_allow_html=True)
st.title("🌄 AI-Powered Visual Storytelling")
if api_key and uploaded_files:
if 'analyzed_files' not in st.session_state:
st.session_state.analyzed_files = {}
files_to_remove = set(st.session_state.analyzed_files.keys()) - set(f.name for f in uploaded_files)
for file_name in files_to_remove:
del st.session_state.analyzed_files[file_name]
for i in range(0, len(uploaded_files), 2):
img_col1, img_col2 = st.columns(2)
for j in range(2):
if i + j < len(uploaded_files):
with img_col1 if j == 0 else img_col2:
uploaded_file = uploaded_files[i + j]
image = Image.open(uploaded_file)
resized_image = resize_image(image)
buffered = io.BytesIO()
resized_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
st.markdown(f"""
<div class="custom-image-container">
<img src="data:image/png;base64,{img_str}" class="custom-image">
</div>
<p style="text-align: center; color: black;">{uploaded_file.name}</p>
""", unsafe_allow_html=True)
if uploaded_file.name not in st.session_state.analyzed_files:
with st.spinner("分析圖片及生成語音中..."):
try:
description = analyze_image(image, api_key, model)
if language == "繁體中文":
with st.spinner("翻譯中..."):
description = translate_to_chinese(description, api_key, model)
st.session_state.analyzed_files[uploaded_file.name] = description
time.sleep(1)
except Exception as e:
st.error(f"處理圖片時發生錯誤: {str(e)}")
continue
description = st.session_state.analyzed_files[uploaded_file.name]
paragraphs = [p.strip() for p in description.split('\n') if p.strip()]
if paragraphs:
formatted_description = ''.join([f'<p style="margin: 0;">{p}</p>' for p in paragraphs])
st.markdown(f'<div class="description-box">{formatted_description}</div>', unsafe_allow_html=True)
tts = gTTS(text=description, lang='zh-tw' if language == "繁體中文" else 'en')
audio_file = f"audio_{uuid.uuid4()}.mp3"
tts.save(audio_file)
st.audio(audio_file)
os.remove(audio_file)
else:
st.warning("無法獲取圖片描述。")
elif uploaded_files:
st.warning("請輸入有效的 API Key 以分析圖片。")
st.markdown('</div>', unsafe_allow_html=True)
if __name__ == "__main__":
main()
|