File size: 1,103 Bytes
5927b5a
226cf35
 
 
5927b5a
3061ca9
 
226cf35
3061ca9
5927b5a
 
 
 
 
 
 
 
 
 
b5bbbbd
 
 
 
 
 
 
226cf35
5927b5a
3061ca9
 
af6166c
3061ca9
 
 
 
b5bbbbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Importa librerias
from transformers import pipeline
import gradio as gr

# Inicializa Modelo de Clasificación de Sentimientos
model_name = 'pysentimiento/robertuito-sentiment-analysis'
classifier = pipeline("text-classification", model=model_name)

def classify_text(text):
    """
    Clasifica un texto como positivo, negativo o neutro utilizando un clasificador.

    Args:
    text (str): El texto a clasificar.

    Returns:
    str: La clasificación del texto, que puede ser "Positivo", "Negativo" o "Neutro".

    """
    result = classifier(text)[0]['label']
    if result == "POS":
        return "Positivo"
    elif result == "NEG":
        return "Negativo"
    else:
        return "Neutro"

# Crea Interfaz Gradio
input_text = gr.inputs.Textbox(label="Texto a clasificar")
output_text = gr.outputs.Textbox(label="Sentimiento")

gr.Interface(fn=classify_text, inputs=input_text, outputs=output_text, examples=[
    ['Estoy feliz 🤗 de mostrarles un toolkit para Análisis de Sentimientos y otras tareas de SocialNLP'],
    ['Espero que no lo odien.'],
    ['Lo odiamos.']
]).launch()