Shuya Feng
commited on
Commit
·
8ad5d56
1
Parent(s):
adae711
Update gradients clipping chart
Browse files- Procfile +1 -0
- app/__init__.py +20 -2
- app/routes.py +58 -26
- app/static/css/styles.css +40 -14
- app/static/js/main.js +284 -7
- app/templates/base.html +5 -0
- app/templates/index.html +6 -6
- app/training/mock_trainer.py +37 -2
- run.py +7 -1
- runtime.txt +1 -0
Procfile
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
web: gunicorn run:app
|
app/__init__.py
CHANGED
|
@@ -2,8 +2,26 @@ from flask import Flask
|
|
| 2 |
from flask_cors import CORS
|
| 3 |
|
| 4 |
def create_app():
|
| 5 |
-
app = Flask(__name__
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Register blueprints
|
| 9 |
from app.routes import main
|
|
|
|
| 2 |
from flask_cors import CORS
|
| 3 |
|
| 4 |
def create_app():
|
| 5 |
+
app = Flask(__name__,
|
| 6 |
+
static_folder='static',
|
| 7 |
+
template_folder='templates')
|
| 8 |
+
|
| 9 |
+
# Configure CORS
|
| 10 |
+
CORS(app, resources={
|
| 11 |
+
r"/*": {
|
| 12 |
+
"origins": ["http://localhost:5000", "http://127.0.0.1:5000"],
|
| 13 |
+
"methods": ["GET", "POST", "OPTIONS"],
|
| 14 |
+
"allow_headers": ["Content-Type"]
|
| 15 |
+
}
|
| 16 |
+
})
|
| 17 |
+
|
| 18 |
+
# Configure security headers
|
| 19 |
+
@app.after_request
|
| 20 |
+
def add_security_headers(response):
|
| 21 |
+
response.headers['Access-Control-Allow-Origin'] = '*'
|
| 22 |
+
response.headers['Access-Control-Allow-Methods'] = 'GET, POST, OPTIONS'
|
| 23 |
+
response.headers['Access-Control-Allow-Headers'] = 'Content-Type'
|
| 24 |
+
return response
|
| 25 |
|
| 26 |
# Register blueprints
|
| 27 |
from app.routes import main
|
app/routes.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
-
from flask import Blueprint, render_template, jsonify, request
|
| 2 |
from app.training.mock_trainer import MockTrainer
|
| 3 |
from app.training.privacy_calculator import PrivacyCalculator
|
|
|
|
| 4 |
|
| 5 |
main = Blueprint('main', __name__)
|
| 6 |
mock_trainer = MockTrainer()
|
|
@@ -14,30 +15,61 @@ def index():
|
|
| 14 |
def learning():
|
| 15 |
return render_template('learning.html')
|
| 16 |
|
| 17 |
-
@main.route('/api/train', methods=['POST'])
|
|
|
|
| 18 |
def train():
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def calculate_privacy_budget():
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Blueprint, render_template, jsonify, request, current_app
|
| 2 |
from app.training.mock_trainer import MockTrainer
|
| 3 |
from app.training.privacy_calculator import PrivacyCalculator
|
| 4 |
+
from flask_cors import cross_origin
|
| 5 |
|
| 6 |
main = Blueprint('main', __name__)
|
| 7 |
mock_trainer = MockTrainer()
|
|
|
|
| 15 |
def learning():
|
| 16 |
return render_template('learning.html')
|
| 17 |
|
| 18 |
+
@main.route('/api/train', methods=['POST', 'OPTIONS'])
|
| 19 |
+
@cross_origin()
|
| 20 |
def train():
|
| 21 |
+
if request.method == 'OPTIONS':
|
| 22 |
+
return jsonify({'status': 'ok'})
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
data = request.json
|
| 26 |
+
if not data:
|
| 27 |
+
return jsonify({'error': 'No data provided'}), 400
|
| 28 |
+
|
| 29 |
+
params = {
|
| 30 |
+
'clipping_norm': float(data.get('clipping_norm', 1.0)),
|
| 31 |
+
'noise_multiplier': float(data.get('noise_multiplier', 1.0)),
|
| 32 |
+
'batch_size': int(data.get('batch_size', 64)),
|
| 33 |
+
'learning_rate': float(data.get('learning_rate', 0.01)),
|
| 34 |
+
'epochs': int(data.get('epochs', 5))
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
# Get mock training results
|
| 38 |
+
results = mock_trainer.train(params)
|
| 39 |
+
|
| 40 |
+
# Add gradient information for visualization
|
| 41 |
+
results['gradient_info'] = {
|
| 42 |
+
'before_clipping': mock_trainer.generate_gradient_norms(params['clipping_norm']),
|
| 43 |
+
'after_clipping': mock_trainer.generate_clipped_gradients(params['clipping_norm'])
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
return jsonify(results)
|
| 47 |
+
except (TypeError, ValueError) as e:
|
| 48 |
+
return jsonify({'error': f'Invalid parameter values: {str(e)}'}), 400
|
| 49 |
+
except Exception as e:
|
| 50 |
+
return jsonify({'error': f'Server error: {str(e)}'}), 500
|
| 51 |
+
|
| 52 |
+
@main.route('/api/privacy-budget', methods=['POST', 'OPTIONS'])
|
| 53 |
+
@cross_origin()
|
| 54 |
def calculate_privacy_budget():
|
| 55 |
+
if request.method == 'OPTIONS':
|
| 56 |
+
return jsonify({'status': 'ok'})
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
data = request.json
|
| 60 |
+
if not data:
|
| 61 |
+
return jsonify({'error': 'No data provided'}), 400
|
| 62 |
+
|
| 63 |
+
params = {
|
| 64 |
+
'clipping_norm': float(data.get('clipping_norm', 1.0)),
|
| 65 |
+
'noise_multiplier': float(data.get('noise_multiplier', 1.0)),
|
| 66 |
+
'batch_size': int(data.get('batch_size', 64)),
|
| 67 |
+
'epochs': int(data.get('epochs', 5))
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
epsilon = privacy_calculator.calculate_epsilon(params)
|
| 71 |
+
return jsonify({'epsilon': epsilon})
|
| 72 |
+
except (TypeError, ValueError) as e:
|
| 73 |
+
return jsonify({'error': f'Invalid parameter values: {str(e)}'}), 400
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return jsonify({'error': f'Server error: {str(e)}'}), 500
|
app/static/css/styles.css
CHANGED
|
@@ -204,16 +204,15 @@ body {
|
|
| 204 |
|
| 205 |
/* Charts */
|
| 206 |
.chart-container {
|
|
|
|
| 207 |
height: 300px;
|
|
|
|
| 208 |
margin-bottom: 1rem;
|
| 209 |
-
position: relative;
|
| 210 |
}
|
| 211 |
|
| 212 |
-
.chart {
|
| 213 |
-
width: 100
|
| 214 |
-
height: 100
|
| 215 |
-
border: 1px solid var(--border-color);
|
| 216 |
-
border-radius: 4px;
|
| 217 |
}
|
| 218 |
|
| 219 |
/* Metrics */
|
|
@@ -295,30 +294,35 @@ body {
|
|
| 295 |
.status-badge {
|
| 296 |
display: flex;
|
| 297 |
align-items: center;
|
| 298 |
-
|
| 299 |
-
padding: 0.5rem;
|
| 300 |
-
background-color:
|
| 301 |
border-radius: 4px;
|
|
|
|
| 302 |
}
|
| 303 |
|
| 304 |
.pulse {
|
| 305 |
display: inline-block;
|
| 306 |
-
width:
|
| 307 |
-
height:
|
| 308 |
border-radius: 50%;
|
| 309 |
-
background:
|
| 310 |
-
|
| 311 |
-
animation: pulse 1.5s infinite;
|
| 312 |
}
|
| 313 |
|
| 314 |
@keyframes pulse {
|
| 315 |
0% {
|
|
|
|
| 316 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0.7);
|
| 317 |
}
|
|
|
|
| 318 |
70% {
|
|
|
|
| 319 |
box-shadow: 0 0 0 10px rgba(76, 175, 80, 0);
|
| 320 |
}
|
|
|
|
| 321 |
100% {
|
|
|
|
| 322 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0);
|
| 323 |
}
|
| 324 |
}
|
|
@@ -454,4 +458,26 @@ body {
|
|
| 454 |
|
| 455 |
.concept-box .box2 {
|
| 456 |
background-color: #fff8e1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
}
|
|
|
|
| 204 |
|
| 205 |
/* Charts */
|
| 206 |
.chart-container {
|
| 207 |
+
position: relative;
|
| 208 |
height: 300px;
|
| 209 |
+
width: 100%;
|
| 210 |
margin-bottom: 1rem;
|
|
|
|
| 211 |
}
|
| 212 |
|
| 213 |
+
.chart-container canvas {
|
| 214 |
+
width: 100% !important;
|
| 215 |
+
height: 100% !important;
|
|
|
|
|
|
|
| 216 |
}
|
| 217 |
|
| 218 |
/* Metrics */
|
|
|
|
| 294 |
.status-badge {
|
| 295 |
display: flex;
|
| 296 |
align-items: center;
|
| 297 |
+
gap: 1rem;
|
| 298 |
+
padding: 0.5rem 1rem;
|
| 299 |
+
background-color: #f5f5f5;
|
| 300 |
border-radius: 4px;
|
| 301 |
+
margin-top: 1rem;
|
| 302 |
}
|
| 303 |
|
| 304 |
.pulse {
|
| 305 |
display: inline-block;
|
| 306 |
+
width: 8px;
|
| 307 |
+
height: 8px;
|
| 308 |
border-radius: 50%;
|
| 309 |
+
background-color: #4caf50;
|
| 310 |
+
animation: pulse 1s infinite;
|
|
|
|
| 311 |
}
|
| 312 |
|
| 313 |
@keyframes pulse {
|
| 314 |
0% {
|
| 315 |
+
transform: scale(0.95);
|
| 316 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0.7);
|
| 317 |
}
|
| 318 |
+
|
| 319 |
70% {
|
| 320 |
+
transform: scale(1);
|
| 321 |
box-shadow: 0 0 0 10px rgba(76, 175, 80, 0);
|
| 322 |
}
|
| 323 |
+
|
| 324 |
100% {
|
| 325 |
+
transform: scale(0.95);
|
| 326 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0);
|
| 327 |
}
|
| 328 |
}
|
|
|
|
| 458 |
|
| 459 |
.concept-box .box2 {
|
| 460 |
background-color: #fff8e1;
|
| 461 |
+
}
|
| 462 |
+
|
| 463 |
+
/* Error Message */
|
| 464 |
+
.error-message {
|
| 465 |
+
background-color: #ffebee;
|
| 466 |
+
color: #c62828;
|
| 467 |
+
padding: 1rem;
|
| 468 |
+
margin-bottom: 1rem;
|
| 469 |
+
border-radius: 4px;
|
| 470 |
+
border-left: 4px solid #c62828;
|
| 471 |
+
animation: slideIn 0.3s ease-out;
|
| 472 |
+
}
|
| 473 |
+
|
| 474 |
+
@keyframes slideIn {
|
| 475 |
+
from {
|
| 476 |
+
transform: translateY(-20px);
|
| 477 |
+
opacity: 0;
|
| 478 |
+
}
|
| 479 |
+
to {
|
| 480 |
+
transform: translateY(0);
|
| 481 |
+
opacity: 1;
|
| 482 |
+
}
|
| 483 |
}
|
app/static/js/main.js
CHANGED
|
@@ -2,6 +2,7 @@ class DPSGDExplorer {
|
|
| 2 |
constructor() {
|
| 3 |
this.trainingChart = null;
|
| 4 |
this.privacyChart = null;
|
|
|
|
| 5 |
this.isTraining = false;
|
| 6 |
this.initializeUI();
|
| 7 |
}
|
|
@@ -31,11 +32,29 @@ class DPSGDExplorer {
|
|
| 31 |
for (const [id, slider] of Object.entries(sliders)) {
|
| 32 |
if (slider) {
|
| 33 |
slider.addEventListener('input', (e) => {
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
| 35 |
this.updatePrivacyBudget();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
});
|
| 37 |
}
|
| 38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
}
|
| 40 |
|
| 41 |
initializePresets() {
|
|
@@ -92,6 +111,7 @@ class DPSGDExplorer {
|
|
| 92 |
initializeCharts() {
|
| 93 |
const trainingCtx = document.getElementById('training-chart')?.getContext('2d');
|
| 94 |
const privacyCtx = document.getElementById('privacy-chart')?.getContext('2d');
|
|
|
|
| 95 |
|
| 96 |
if (trainingCtx) {
|
| 97 |
this.trainingChart = new Chart(trainingCtx, {
|
|
@@ -115,6 +135,7 @@ class DPSGDExplorer {
|
|
| 115 |
},
|
| 116 |
options: {
|
| 117 |
responsive: true,
|
|
|
|
| 118 |
interaction: {
|
| 119 |
mode: 'index',
|
| 120 |
intersect: false,
|
|
@@ -127,7 +148,9 @@ class DPSGDExplorer {
|
|
| 127 |
title: {
|
| 128 |
display: true,
|
| 129 |
text: 'Accuracy (%)'
|
| 130 |
-
}
|
|
|
|
|
|
|
| 131 |
},
|
| 132 |
y1: {
|
| 133 |
type: 'linear',
|
|
@@ -137,6 +160,8 @@ class DPSGDExplorer {
|
|
| 137 |
display: true,
|
| 138 |
text: 'Loss'
|
| 139 |
},
|
|
|
|
|
|
|
| 140 |
grid: {
|
| 141 |
drawOnChartArea: false,
|
| 142 |
},
|
|
@@ -159,17 +184,80 @@ class DPSGDExplorer {
|
|
| 159 |
},
|
| 160 |
options: {
|
| 161 |
responsive: true,
|
|
|
|
| 162 |
scales: {
|
| 163 |
y: {
|
|
|
|
| 164 |
title: {
|
| 165 |
display: true,
|
| 166 |
text: 'Privacy Budget (ε)'
|
| 167 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
x: {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
title: {
|
| 171 |
display: true,
|
| 172 |
-
text: '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
}
|
| 174 |
}
|
| 175 |
}
|
|
@@ -236,6 +324,8 @@ class DPSGDExplorer {
|
|
| 236 |
this.resetCharts();
|
| 237 |
|
| 238 |
try {
|
|
|
|
|
|
|
| 239 |
const response = await fetch('/api/train', {
|
| 240 |
method: 'POST',
|
| 241 |
headers: {
|
|
@@ -245,10 +335,28 @@ class DPSGDExplorer {
|
|
| 245 |
});
|
| 246 |
|
| 247 |
const data = await response.json();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
this.updateCharts(data.epochs_data);
|
| 249 |
this.updateResults(data);
|
| 250 |
} catch (error) {
|
| 251 |
console.error('Training error:', error);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
} finally {
|
| 253 |
this.stopTraining();
|
| 254 |
}
|
|
@@ -277,12 +385,21 @@ class DPSGDExplorer {
|
|
| 277 |
this.privacyChart.data.datasets[0].data = [];
|
| 278 |
this.privacyChart.update();
|
| 279 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
}
|
| 281 |
|
| 282 |
updateCharts(epochsData) {
|
| 283 |
if (!this.trainingChart || !epochsData) return;
|
| 284 |
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
| 286 |
const accuracies = epochsData.map(d => d.accuracy);
|
| 287 |
const losses = epochsData.map(d => d.loss);
|
| 288 |
|
|
@@ -291,14 +408,85 @@ class DPSGDExplorer {
|
|
| 291 |
this.trainingChart.data.datasets[1].data = losses;
|
| 292 |
this.trainingChart.update();
|
| 293 |
|
| 294 |
-
// Update
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
if (this.privacyChart) {
|
| 296 |
-
|
| 297 |
-
this.privacyChart.data.datasets[0].data = epochsData.map((_, i) =>
|
| 298 |
this.calculateEpochPrivacy(i + 1)
|
| 299 |
);
|
|
|
|
|
|
|
| 300 |
this.privacyChart.update();
|
| 301 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
}
|
| 303 |
|
| 304 |
updateResults(data) {
|
|
@@ -363,6 +551,95 @@ class DPSGDExplorer {
|
|
| 363 |
const c = Math.sqrt(2 * Math.log(1.25 / delta));
|
| 364 |
return Math.min((c * samplingRate * Math.sqrt(steps)) / params.noise_multiplier, 10);
|
| 365 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
}
|
| 367 |
|
| 368 |
// Initialize the application when the DOM is loaded
|
|
|
|
| 2 |
constructor() {
|
| 3 |
this.trainingChart = null;
|
| 4 |
this.privacyChart = null;
|
| 5 |
+
this.gradientChart = null;
|
| 6 |
this.isTraining = false;
|
| 7 |
this.initializeUI();
|
| 8 |
}
|
|
|
|
| 32 |
for (const [id, slider] of Object.entries(sliders)) {
|
| 33 |
if (slider) {
|
| 34 |
slider.addEventListener('input', (e) => {
|
| 35 |
+
const value = parseFloat(e.target.value);
|
| 36 |
+
document.getElementById(`${id}-value`).textContent = value.toFixed(1);
|
| 37 |
+
|
| 38 |
+
// Update privacy budget
|
| 39 |
this.updatePrivacyBudget();
|
| 40 |
+
|
| 41 |
+
// Update gradient visualization when clipping norm changes
|
| 42 |
+
if (id === 'clipping-norm') {
|
| 43 |
+
this.updateGradientVisualization(value);
|
| 44 |
+
}
|
| 45 |
});
|
| 46 |
}
|
| 47 |
}
|
| 48 |
+
|
| 49 |
+
// Add event listener for the visual clipping norm slider
|
| 50 |
+
const visualSlider = document.getElementById('clipping-norm-visual');
|
| 51 |
+
if (visualSlider) {
|
| 52 |
+
visualSlider.addEventListener('input', (e) => {
|
| 53 |
+
const value = parseFloat(e.target.value);
|
| 54 |
+
document.getElementById('clipping-norm-visual-value').textContent = value.toFixed(1);
|
| 55 |
+
this.updateGradientVisualization(value);
|
| 56 |
+
});
|
| 57 |
+
}
|
| 58 |
}
|
| 59 |
|
| 60 |
initializePresets() {
|
|
|
|
| 111 |
initializeCharts() {
|
| 112 |
const trainingCtx = document.getElementById('training-chart')?.getContext('2d');
|
| 113 |
const privacyCtx = document.getElementById('privacy-chart')?.getContext('2d');
|
| 114 |
+
const gradientCtx = document.getElementById('gradient-chart')?.getContext('2d');
|
| 115 |
|
| 116 |
if (trainingCtx) {
|
| 117 |
this.trainingChart = new Chart(trainingCtx, {
|
|
|
|
| 135 |
},
|
| 136 |
options: {
|
| 137 |
responsive: true,
|
| 138 |
+
maintainAspectRatio: false,
|
| 139 |
interaction: {
|
| 140 |
mode: 'index',
|
| 141 |
intersect: false,
|
|
|
|
| 148 |
title: {
|
| 149 |
display: true,
|
| 150 |
text: 'Accuracy (%)'
|
| 151 |
+
},
|
| 152 |
+
min: 0,
|
| 153 |
+
max: 100
|
| 154 |
},
|
| 155 |
y1: {
|
| 156 |
type: 'linear',
|
|
|
|
| 160 |
display: true,
|
| 161 |
text: 'Loss'
|
| 162 |
},
|
| 163 |
+
min: 0,
|
| 164 |
+
max: 2,
|
| 165 |
grid: {
|
| 166 |
drawOnChartArea: false,
|
| 167 |
},
|
|
|
|
| 184 |
},
|
| 185 |
options: {
|
| 186 |
responsive: true,
|
| 187 |
+
maintainAspectRatio: false,
|
| 188 |
scales: {
|
| 189 |
y: {
|
| 190 |
+
beginAtZero: true,
|
| 191 |
title: {
|
| 192 |
display: true,
|
| 193 |
text: 'Privacy Budget (ε)'
|
| 194 |
}
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
}
|
| 198 |
+
});
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
if (gradientCtx) {
|
| 202 |
+
this.gradientChart = new Chart(gradientCtx, {
|
| 203 |
+
type: 'scatter',
|
| 204 |
+
data: {
|
| 205 |
+
datasets: [
|
| 206 |
+
{
|
| 207 |
+
label: 'Before Clipping',
|
| 208 |
+
borderColor: '#2196f3',
|
| 209 |
+
backgroundColor: 'rgba(33, 150, 243, 0.1)',
|
| 210 |
+
data: [],
|
| 211 |
+
showLine: true
|
| 212 |
},
|
| 213 |
+
{
|
| 214 |
+
label: 'After Clipping',
|
| 215 |
+
borderColor: '#f44336',
|
| 216 |
+
backgroundColor: 'rgba(244, 67, 54, 0.1)',
|
| 217 |
+
data: [],
|
| 218 |
+
showLine: true
|
| 219 |
+
}
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
options: {
|
| 223 |
+
responsive: true,
|
| 224 |
+
maintainAspectRatio: false,
|
| 225 |
+
scales: {
|
| 226 |
x: {
|
| 227 |
+
type: 'linear',
|
| 228 |
+
position: 'bottom',
|
| 229 |
+
title: {
|
| 230 |
+
display: true,
|
| 231 |
+
text: 'Gradient Norm'
|
| 232 |
+
},
|
| 233 |
+
min: 0
|
| 234 |
+
},
|
| 235 |
+
y: {
|
| 236 |
+
type: 'linear',
|
| 237 |
+
position: 'left',
|
| 238 |
title: {
|
| 239 |
display: true,
|
| 240 |
+
text: 'Density'
|
| 241 |
+
},
|
| 242 |
+
min: 0
|
| 243 |
+
}
|
| 244 |
+
},
|
| 245 |
+
plugins: {
|
| 246 |
+
annotation: {
|
| 247 |
+
annotations: {
|
| 248 |
+
line1: {
|
| 249 |
+
type: 'line',
|
| 250 |
+
xMin: 1,
|
| 251 |
+
xMax: 1,
|
| 252 |
+
borderColor: '#f44336',
|
| 253 |
+
borderWidth: 2,
|
| 254 |
+
borderDash: [5, 5],
|
| 255 |
+
label: {
|
| 256 |
+
content: 'Clipping Threshold',
|
| 257 |
+
display: true,
|
| 258 |
+
position: 'top'
|
| 259 |
+
}
|
| 260 |
+
}
|
| 261 |
}
|
| 262 |
}
|
| 263 |
}
|
|
|
|
| 324 |
this.resetCharts();
|
| 325 |
|
| 326 |
try {
|
| 327 |
+
console.log('Starting training with parameters:', this.getParameters()); // Debug log
|
| 328 |
+
|
| 329 |
const response = await fetch('/api/train', {
|
| 330 |
method: 'POST',
|
| 331 |
headers: {
|
|
|
|
| 335 |
});
|
| 336 |
|
| 337 |
const data = await response.json();
|
| 338 |
+
|
| 339 |
+
if (!response.ok) {
|
| 340 |
+
throw new Error(data.error || 'Unknown error occurred');
|
| 341 |
+
}
|
| 342 |
+
|
| 343 |
+
console.log('Received training data:', data); // Debug log
|
| 344 |
+
|
| 345 |
+
// Update charts and results
|
| 346 |
this.updateCharts(data.epochs_data);
|
| 347 |
this.updateResults(data);
|
| 348 |
} catch (error) {
|
| 349 |
console.error('Training error:', error);
|
| 350 |
+
// Show error message to user
|
| 351 |
+
const errorMessage = document.createElement('div');
|
| 352 |
+
errorMessage.className = 'error-message';
|
| 353 |
+
errorMessage.textContent = error.message || 'An error occurred during training';
|
| 354 |
+
document.querySelector('.lab-main').insertBefore(errorMessage, document.querySelector('.lab-main').firstChild);
|
| 355 |
+
|
| 356 |
+
// Remove error message after 5 seconds
|
| 357 |
+
setTimeout(() => {
|
| 358 |
+
errorMessage.remove();
|
| 359 |
+
}, 5000);
|
| 360 |
} finally {
|
| 361 |
this.stopTraining();
|
| 362 |
}
|
|
|
|
| 385 |
this.privacyChart.data.datasets[0].data = [];
|
| 386 |
this.privacyChart.update();
|
| 387 |
}
|
| 388 |
+
|
| 389 |
+
if (this.gradientChart) {
|
| 390 |
+
this.gradientChart.data.datasets[0].data = [];
|
| 391 |
+
this.gradientChart.data.datasets[1].data = [];
|
| 392 |
+
this.gradientChart.update();
|
| 393 |
+
}
|
| 394 |
}
|
| 395 |
|
| 396 |
updateCharts(epochsData) {
|
| 397 |
if (!this.trainingChart || !epochsData) return;
|
| 398 |
|
| 399 |
+
console.log('Updating charts with data:', epochsData); // Debug log
|
| 400 |
+
|
| 401 |
+
// Update training metrics chart
|
| 402 |
+
const labels = epochsData.map(d => `Epoch ${d.epoch}`);
|
| 403 |
const accuracies = epochsData.map(d => d.accuracy);
|
| 404 |
const losses = epochsData.map(d => d.loss);
|
| 405 |
|
|
|
|
| 408 |
this.trainingChart.data.datasets[1].data = losses;
|
| 409 |
this.trainingChart.update();
|
| 410 |
|
| 411 |
+
// Update current epoch display
|
| 412 |
+
const currentEpoch = document.getElementById('current-epoch');
|
| 413 |
+
const totalEpochs = document.getElementById('total-epochs');
|
| 414 |
+
if (currentEpoch && totalEpochs) {
|
| 415 |
+
currentEpoch.textContent = epochsData.length;
|
| 416 |
+
totalEpochs.textContent = this.getParameters().epochs;
|
| 417 |
+
}
|
| 418 |
+
|
| 419 |
+
// Update privacy budget chart
|
| 420 |
if (this.privacyChart) {
|
| 421 |
+
const privacyBudgets = epochsData.map((_, i) =>
|
|
|
|
| 422 |
this.calculateEpochPrivacy(i + 1)
|
| 423 |
);
|
| 424 |
+
this.privacyChart.data.labels = labels;
|
| 425 |
+
this.privacyChart.data.datasets[0].data = privacyBudgets;
|
| 426 |
this.privacyChart.update();
|
| 427 |
}
|
| 428 |
+
|
| 429 |
+
// Update gradient visualization
|
| 430 |
+
if (this.gradientChart) {
|
| 431 |
+
const clippingNorm = this.getParameters().clipping_norm;
|
| 432 |
+
|
| 433 |
+
// Generate gradient data if not provided in epochsData
|
| 434 |
+
let gradientData;
|
| 435 |
+
if (epochsData[epochsData.length - 1]?.gradient_info) {
|
| 436 |
+
gradientData = epochsData[epochsData.length - 1].gradient_info;
|
| 437 |
+
} else {
|
| 438 |
+
// Generate synthetic gradient data
|
| 439 |
+
const beforeClipping = [];
|
| 440 |
+
const afterClipping = [];
|
| 441 |
+
|
| 442 |
+
// Generate log-normal distributed gradients
|
| 443 |
+
const mu = Math.log(clippingNorm) - 0.5;
|
| 444 |
+
const sigma = 0.8;
|
| 445 |
+
|
| 446 |
+
for (let i = 0; i < 100; i++) {
|
| 447 |
+
const u1 = Math.random();
|
| 448 |
+
const u2 = Math.random();
|
| 449 |
+
const z = Math.sqrt(-2.0 * Math.log(u1)) * Math.cos(2.0 * Math.PI * u2);
|
| 450 |
+
const norm = Math.exp(mu + sigma * z);
|
| 451 |
+
|
| 452 |
+
const density = Math.exp(-(Math.pow(Math.log(norm) - mu, 2) / (2 * sigma * sigma))) /
|
| 453 |
+
(norm * sigma * Math.sqrt(2 * Math.PI));
|
| 454 |
+
const y = 0.2 + 0.8 * (density / 0.8) + 0.1 * (Math.random() - 0.5);
|
| 455 |
+
|
| 456 |
+
beforeClipping.push({ x: norm, y: y });
|
| 457 |
+
afterClipping.push({ x: Math.min(norm, clippingNorm), y: y });
|
| 458 |
+
}
|
| 459 |
+
|
| 460 |
+
gradientData = {
|
| 461 |
+
before_clipping: beforeClipping.sort((a, b) => a.x - b.x),
|
| 462 |
+
after_clipping: afterClipping.sort((a, b) => a.x - b.x)
|
| 463 |
+
};
|
| 464 |
+
}
|
| 465 |
+
|
| 466 |
+
// Update gradient chart
|
| 467 |
+
this.gradientChart.data.datasets[0].data = gradientData.before_clipping;
|
| 468 |
+
this.gradientChart.data.datasets[1].data = gradientData.after_clipping;
|
| 469 |
+
|
| 470 |
+
// Update clipping threshold line
|
| 471 |
+
this.gradientChart.options.plugins.annotation.annotations.line1 = {
|
| 472 |
+
type: 'line',
|
| 473 |
+
xMin: clippingNorm,
|
| 474 |
+
xMax: clippingNorm,
|
| 475 |
+
borderColor: '#f44336',
|
| 476 |
+
borderWidth: 2,
|
| 477 |
+
borderDash: [5, 5],
|
| 478 |
+
label: {
|
| 479 |
+
content: `Clipping Threshold (C=${clippingNorm.toFixed(1)})`,
|
| 480 |
+
display: true,
|
| 481 |
+
position: 'top'
|
| 482 |
+
}
|
| 483 |
+
};
|
| 484 |
+
|
| 485 |
+
// Update x-axis scale based on clipping norm
|
| 486 |
+
this.gradientChart.options.scales.x.max = Math.max(clippingNorm * 2.5, 5);
|
| 487 |
+
|
| 488 |
+
this.gradientChart.update('active');
|
| 489 |
+
}
|
| 490 |
}
|
| 491 |
|
| 492 |
updateResults(data) {
|
|
|
|
| 551 |
const c = Math.sqrt(2 * Math.log(1.25 / delta));
|
| 552 |
return Math.min((c * samplingRate * Math.sqrt(steps)) / params.noise_multiplier, 10);
|
| 553 |
}
|
| 554 |
+
|
| 555 |
+
updateGradientVisualization(clippingNorm) {
|
| 556 |
+
if (!this.gradientChart) return;
|
| 557 |
+
|
| 558 |
+
// Generate random gradient norms following a log-normal distribution
|
| 559 |
+
const numPoints = 100;
|
| 560 |
+
const beforeClipping = [];
|
| 561 |
+
const afterClipping = [];
|
| 562 |
+
|
| 563 |
+
// Parameters for log-normal distribution
|
| 564 |
+
const mu = Math.log(clippingNorm) - 0.5;
|
| 565 |
+
const sigma = 0.8;
|
| 566 |
+
|
| 567 |
+
// Generate gradient norms
|
| 568 |
+
for (let i = 0; i < numPoints; i++) {
|
| 569 |
+
// Generate log-normal distributed gradient norms
|
| 570 |
+
const u1 = Math.random();
|
| 571 |
+
const u2 = Math.random();
|
| 572 |
+
const z = Math.sqrt(-2.0 * Math.log(u1)) * Math.cos(2.0 * Math.PI * u2);
|
| 573 |
+
const norm = Math.exp(mu + sigma * z);
|
| 574 |
+
|
| 575 |
+
// Calculate density using kernel density estimation
|
| 576 |
+
const density = Math.exp(-(Math.pow(Math.log(norm) - mu, 2) / (2 * sigma * sigma))) / (norm * sigma * Math.sqrt(2 * Math.PI));
|
| 577 |
+
|
| 578 |
+
// Normalize density and add some randomness
|
| 579 |
+
const y = 0.2 + 0.8 * (density / 0.8) + 0.1 * (Math.random() - 0.5);
|
| 580 |
+
|
| 581 |
+
beforeClipping.push({ x: norm, y: y });
|
| 582 |
+
afterClipping.push({ x: Math.min(norm, clippingNorm), y: y });
|
| 583 |
+
}
|
| 584 |
+
|
| 585 |
+
// Sort points by x-value for smoother lines
|
| 586 |
+
beforeClipping.sort((a, b) => a.x - b.x);
|
| 587 |
+
afterClipping.sort((a, b) => a.x - b.x);
|
| 588 |
+
|
| 589 |
+
// Update chart data
|
| 590 |
+
this.gradientChart.data.datasets[0].data = beforeClipping;
|
| 591 |
+
this.gradientChart.data.datasets[1].data = afterClipping;
|
| 592 |
+
|
| 593 |
+
// Update clipping threshold line
|
| 594 |
+
this.gradientChart.options.plugins.annotation.annotations.line1 = {
|
| 595 |
+
type: 'line',
|
| 596 |
+
xMin: clippingNorm,
|
| 597 |
+
xMax: clippingNorm,
|
| 598 |
+
borderColor: '#f44336',
|
| 599 |
+
borderWidth: 2,
|
| 600 |
+
borderDash: [5, 5],
|
| 601 |
+
label: {
|
| 602 |
+
content: `Clipping Threshold (C=${clippingNorm.toFixed(1)})`,
|
| 603 |
+
display: true,
|
| 604 |
+
position: 'top'
|
| 605 |
+
}
|
| 606 |
+
};
|
| 607 |
+
|
| 608 |
+
// Update x-axis scale based on clipping norm
|
| 609 |
+
this.gradientChart.options.scales.x.max = Math.max(clippingNorm * 2.5, 5);
|
| 610 |
+
|
| 611 |
+
// Update the chart with animation
|
| 612 |
+
this.gradientChart.update('active');
|
| 613 |
+
}
|
| 614 |
+
|
| 615 |
+
updateGradientVisualizationWithData(beforeClipping, afterClipping, clippingNorm) {
|
| 616 |
+
if (!this.gradientChart) return;
|
| 617 |
+
|
| 618 |
+
// Update chart data with real training data
|
| 619 |
+
this.gradientChart.data.datasets[0].data = beforeClipping;
|
| 620 |
+
this.gradientChart.data.datasets[1].data = afterClipping;
|
| 621 |
+
|
| 622 |
+
// Update clipping threshold line
|
| 623 |
+
this.gradientChart.options.plugins.annotation.annotations.line1 = {
|
| 624 |
+
type: 'line',
|
| 625 |
+
xMin: clippingNorm,
|
| 626 |
+
xMax: clippingNorm,
|
| 627 |
+
borderColor: '#f44336',
|
| 628 |
+
borderWidth: 2,
|
| 629 |
+
borderDash: [5, 5],
|
| 630 |
+
label: {
|
| 631 |
+
content: `Clipping Threshold (C=${clippingNorm.toFixed(1)})`,
|
| 632 |
+
display: true,
|
| 633 |
+
position: 'top'
|
| 634 |
+
}
|
| 635 |
+
};
|
| 636 |
+
|
| 637 |
+
// Update x-axis scale based on clipping norm
|
| 638 |
+
this.gradientChart.options.scales.x.max = Math.max(clippingNorm * 2.5, 5);
|
| 639 |
+
|
| 640 |
+
// Update the chart with animation
|
| 641 |
+
this.gradientChart.update('active');
|
| 642 |
+
}
|
| 643 |
}
|
| 644 |
|
| 645 |
// Initialize the application when the DOM is loaded
|
app/templates/base.html
CHANGED
|
@@ -7,6 +7,11 @@
|
|
| 7 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
|
| 8 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/learning.css') }}">
|
| 9 |
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
{% block extra_head %}{% endblock %}
|
| 11 |
</head>
|
| 12 |
<body>
|
|
|
|
| 7 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
|
| 8 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/learning.css') }}">
|
| 9 |
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
| 10 |
+
<script src="https://cdn.jsdelivr.net/npm/chartjs-plugin-annotation"></script>
|
| 11 |
+
<script>
|
| 12 |
+
// Register the annotation plugin
|
| 13 |
+
Chart.register(ChartAnnotation);
|
| 14 |
+
</script>
|
| 15 |
{% block extra_head %}{% endblock %}
|
| 16 |
</head>
|
| 17 |
<body>
|
app/templates/index.html
CHANGED
|
@@ -190,8 +190,8 @@
|
|
| 190 |
</div>
|
| 191 |
|
| 192 |
<div id="training-tab" class="tab-content active">
|
| 193 |
-
<div class="chart-container">
|
| 194 |
-
<canvas id="training-chart"
|
| 195 |
</div>
|
| 196 |
|
| 197 |
<div id="training-status" class="status-badge" style="display: none;">
|
|
@@ -214,8 +214,8 @@
|
|
| 214 |
</p>
|
| 215 |
</div>
|
| 216 |
|
| 217 |
-
<div class="
|
| 218 |
-
<canvas id="gradient-
|
| 219 |
</div>
|
| 220 |
</div>
|
| 221 |
|
|
@@ -231,8 +231,8 @@
|
|
| 231 |
</p>
|
| 232 |
</div>
|
| 233 |
|
| 234 |
-
<div class="chart-container">
|
| 235 |
-
<canvas id="privacy-chart"
|
| 236 |
</div>
|
| 237 |
</div>
|
| 238 |
</div>
|
|
|
|
| 190 |
</div>
|
| 191 |
|
| 192 |
<div id="training-tab" class="tab-content active">
|
| 193 |
+
<div class="chart-container" style="position: relative; height: 300px; width: 100%;">
|
| 194 |
+
<canvas id="training-chart"></canvas>
|
| 195 |
</div>
|
| 196 |
|
| 197 |
<div id="training-status" class="status-badge" style="display: none;">
|
|
|
|
| 214 |
</p>
|
| 215 |
</div>
|
| 216 |
|
| 217 |
+
<div class="chart-container">
|
| 218 |
+
<canvas id="gradient-chart" class="chart"></canvas>
|
| 219 |
</div>
|
| 220 |
</div>
|
| 221 |
|
|
|
|
| 231 |
</p>
|
| 232 |
</div>
|
| 233 |
|
| 234 |
+
<div class="chart-container" style="position: relative; height: 300px; width: 100%;">
|
| 235 |
+
<canvas id="privacy-chart"></canvas>
|
| 236 |
</div>
|
| 237 |
</div>
|
| 238 |
</div>
|
app/training/mock_trainer.py
CHANGED
|
@@ -41,10 +41,17 @@ class MockTrainer:
|
|
| 41 |
# Generate recommendations
|
| 42 |
recommendations = self._generate_recommendations(params, final_metrics)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
return {
|
| 45 |
'epochs_data': epochs_data,
|
| 46 |
'final_metrics': final_metrics,
|
| 47 |
-
'recommendations': recommendations
|
|
|
|
| 48 |
}
|
| 49 |
|
| 50 |
def _calculate_privacy_factor(self, clipping_norm: float, noise_multiplier: float) -> float:
|
|
@@ -149,4 +156,32 @@ class MockTrainer:
|
|
| 149 |
'text': 'Model accuracy is low. Consider adjusting privacy parameters.'
|
| 150 |
})
|
| 151 |
|
| 152 |
-
return recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
# Generate recommendations
|
| 42 |
recommendations = self._generate_recommendations(params, final_metrics)
|
| 43 |
|
| 44 |
+
# Generate gradient information
|
| 45 |
+
gradient_info = {
|
| 46 |
+
'before_clipping': self.generate_gradient_norms(clipping_norm),
|
| 47 |
+
'after_clipping': self.generate_clipped_gradients(clipping_norm)
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
return {
|
| 51 |
'epochs_data': epochs_data,
|
| 52 |
'final_metrics': final_metrics,
|
| 53 |
+
'recommendations': recommendations,
|
| 54 |
+
'gradient_info': gradient_info
|
| 55 |
}
|
| 56 |
|
| 57 |
def _calculate_privacy_factor(self, clipping_norm: float, noise_multiplier: float) -> float:
|
|
|
|
| 156 |
'text': 'Model accuracy is low. Consider adjusting privacy parameters.'
|
| 157 |
})
|
| 158 |
|
| 159 |
+
return recommendations
|
| 160 |
+
|
| 161 |
+
def generate_gradient_norms(self, clipping_norm: float) -> List[Dict[str, float]]:
|
| 162 |
+
"""Generate realistic gradient norms following a log-normal distribution."""
|
| 163 |
+
num_points = 100
|
| 164 |
+
gradients = []
|
| 165 |
+
|
| 166 |
+
# Parameters for log-normal distribution
|
| 167 |
+
mu = np.log(clipping_norm) - 0.5
|
| 168 |
+
sigma = 0.8
|
| 169 |
+
|
| 170 |
+
for _ in range(num_points):
|
| 171 |
+
# Generate log-normal distributed gradient norms
|
| 172 |
+
u1, u2 = np.random.random(2)
|
| 173 |
+
z = np.sqrt(-2.0 * np.log(u1)) * np.cos(2.0 * np.pi * u2)
|
| 174 |
+
norm = np.exp(mu + sigma * z)
|
| 175 |
+
|
| 176 |
+
# Calculate density using kernel density estimation
|
| 177 |
+
density = np.exp(-(np.power(np.log(norm) - mu, 2) / (2 * sigma * sigma))) / (norm * sigma * np.sqrt(2 * np.pi))
|
| 178 |
+
density = 0.2 + 0.8 * (density / 0.8) + 0.1 * (np.random.random() - 0.5)
|
| 179 |
+
|
| 180 |
+
gradients.append({'x': float(norm), 'y': float(density)})
|
| 181 |
+
|
| 182 |
+
return sorted(gradients, key=lambda x: x['x'])
|
| 183 |
+
|
| 184 |
+
def generate_clipped_gradients(self, clipping_norm: float) -> List[Dict[str, float]]:
|
| 185 |
+
"""Generate clipped versions of the gradient norms."""
|
| 186 |
+
original_gradients = self.generate_gradient_norms(clipping_norm)
|
| 187 |
+
return [{'x': min(g['x'], clipping_norm), 'y': g['y']} for g in original_gradients]
|
run.py
CHANGED
|
@@ -1,6 +1,12 @@
|
|
| 1 |
from app import create_app
|
|
|
|
| 2 |
|
| 3 |
app = create_app()
|
| 4 |
|
| 5 |
if __name__ == '__main__':
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from app import create_app
|
| 2 |
+
import os
|
| 3 |
|
| 4 |
app = create_app()
|
| 5 |
|
| 6 |
if __name__ == '__main__':
|
| 7 |
+
# Enable debug mode for development
|
| 8 |
+
app.config['DEBUG'] = True
|
| 9 |
+
# Disable CORS in development
|
| 10 |
+
app.config['CORS_HEADERS'] = 'Content-Type'
|
| 11 |
+
# Run the application
|
| 12 |
+
app.run(host='127.0.0.1', port=5000, debug=True)
|
runtime.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python-3.8.12
|