Shuya Feng
commited on
Commit
·
8ad5d56
1
Parent(s):
adae711
Update gradients clipping chart
Browse files- Procfile +1 -0
- app/__init__.py +20 -2
- app/routes.py +58 -26
- app/static/css/styles.css +40 -14
- app/static/js/main.js +284 -7
- app/templates/base.html +5 -0
- app/templates/index.html +6 -6
- app/training/mock_trainer.py +37 -2
- run.py +7 -1
- runtime.txt +1 -0
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: gunicorn run:app
|
app/__init__.py
CHANGED
@@ -2,8 +2,26 @@ from flask import Flask
|
|
2 |
from flask_cors import CORS
|
3 |
|
4 |
def create_app():
|
5 |
-
app = Flask(__name__
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Register blueprints
|
9 |
from app.routes import main
|
|
|
2 |
from flask_cors import CORS
|
3 |
|
4 |
def create_app():
|
5 |
+
app = Flask(__name__,
|
6 |
+
static_folder='static',
|
7 |
+
template_folder='templates')
|
8 |
+
|
9 |
+
# Configure CORS
|
10 |
+
CORS(app, resources={
|
11 |
+
r"/*": {
|
12 |
+
"origins": ["http://localhost:5000", "http://127.0.0.1:5000"],
|
13 |
+
"methods": ["GET", "POST", "OPTIONS"],
|
14 |
+
"allow_headers": ["Content-Type"]
|
15 |
+
}
|
16 |
+
})
|
17 |
+
|
18 |
+
# Configure security headers
|
19 |
+
@app.after_request
|
20 |
+
def add_security_headers(response):
|
21 |
+
response.headers['Access-Control-Allow-Origin'] = '*'
|
22 |
+
response.headers['Access-Control-Allow-Methods'] = 'GET, POST, OPTIONS'
|
23 |
+
response.headers['Access-Control-Allow-Headers'] = 'Content-Type'
|
24 |
+
return response
|
25 |
|
26 |
# Register blueprints
|
27 |
from app.routes import main
|
app/routes.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
-
from flask import Blueprint, render_template, jsonify, request
|
2 |
from app.training.mock_trainer import MockTrainer
|
3 |
from app.training.privacy_calculator import PrivacyCalculator
|
|
|
4 |
|
5 |
main = Blueprint('main', __name__)
|
6 |
mock_trainer = MockTrainer()
|
@@ -14,30 +15,61 @@ def index():
|
|
14 |
def learning():
|
15 |
return render_template('learning.html')
|
16 |
|
17 |
-
@main.route('/api/train', methods=['POST'])
|
|
|
18 |
def train():
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def calculate_privacy_budget():
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Blueprint, render_template, jsonify, request, current_app
|
2 |
from app.training.mock_trainer import MockTrainer
|
3 |
from app.training.privacy_calculator import PrivacyCalculator
|
4 |
+
from flask_cors import cross_origin
|
5 |
|
6 |
main = Blueprint('main', __name__)
|
7 |
mock_trainer = MockTrainer()
|
|
|
15 |
def learning():
|
16 |
return render_template('learning.html')
|
17 |
|
18 |
+
@main.route('/api/train', methods=['POST', 'OPTIONS'])
|
19 |
+
@cross_origin()
|
20 |
def train():
|
21 |
+
if request.method == 'OPTIONS':
|
22 |
+
return jsonify({'status': 'ok'})
|
23 |
+
|
24 |
+
try:
|
25 |
+
data = request.json
|
26 |
+
if not data:
|
27 |
+
return jsonify({'error': 'No data provided'}), 400
|
28 |
+
|
29 |
+
params = {
|
30 |
+
'clipping_norm': float(data.get('clipping_norm', 1.0)),
|
31 |
+
'noise_multiplier': float(data.get('noise_multiplier', 1.0)),
|
32 |
+
'batch_size': int(data.get('batch_size', 64)),
|
33 |
+
'learning_rate': float(data.get('learning_rate', 0.01)),
|
34 |
+
'epochs': int(data.get('epochs', 5))
|
35 |
+
}
|
36 |
+
|
37 |
+
# Get mock training results
|
38 |
+
results = mock_trainer.train(params)
|
39 |
+
|
40 |
+
# Add gradient information for visualization
|
41 |
+
results['gradient_info'] = {
|
42 |
+
'before_clipping': mock_trainer.generate_gradient_norms(params['clipping_norm']),
|
43 |
+
'after_clipping': mock_trainer.generate_clipped_gradients(params['clipping_norm'])
|
44 |
+
}
|
45 |
+
|
46 |
+
return jsonify(results)
|
47 |
+
except (TypeError, ValueError) as e:
|
48 |
+
return jsonify({'error': f'Invalid parameter values: {str(e)}'}), 400
|
49 |
+
except Exception as e:
|
50 |
+
return jsonify({'error': f'Server error: {str(e)}'}), 500
|
51 |
+
|
52 |
+
@main.route('/api/privacy-budget', methods=['POST', 'OPTIONS'])
|
53 |
+
@cross_origin()
|
54 |
def calculate_privacy_budget():
|
55 |
+
if request.method == 'OPTIONS':
|
56 |
+
return jsonify({'status': 'ok'})
|
57 |
+
|
58 |
+
try:
|
59 |
+
data = request.json
|
60 |
+
if not data:
|
61 |
+
return jsonify({'error': 'No data provided'}), 400
|
62 |
+
|
63 |
+
params = {
|
64 |
+
'clipping_norm': float(data.get('clipping_norm', 1.0)),
|
65 |
+
'noise_multiplier': float(data.get('noise_multiplier', 1.0)),
|
66 |
+
'batch_size': int(data.get('batch_size', 64)),
|
67 |
+
'epochs': int(data.get('epochs', 5))
|
68 |
+
}
|
69 |
+
|
70 |
+
epsilon = privacy_calculator.calculate_epsilon(params)
|
71 |
+
return jsonify({'epsilon': epsilon})
|
72 |
+
except (TypeError, ValueError) as e:
|
73 |
+
return jsonify({'error': f'Invalid parameter values: {str(e)}'}), 400
|
74 |
+
except Exception as e:
|
75 |
+
return jsonify({'error': f'Server error: {str(e)}'}), 500
|
app/static/css/styles.css
CHANGED
@@ -204,16 +204,15 @@ body {
|
|
204 |
|
205 |
/* Charts */
|
206 |
.chart-container {
|
|
|
207 |
height: 300px;
|
|
|
208 |
margin-bottom: 1rem;
|
209 |
-
position: relative;
|
210 |
}
|
211 |
|
212 |
-
.chart {
|
213 |
-
width: 100
|
214 |
-
height: 100
|
215 |
-
border: 1px solid var(--border-color);
|
216 |
-
border-radius: 4px;
|
217 |
}
|
218 |
|
219 |
/* Metrics */
|
@@ -295,30 +294,35 @@ body {
|
|
295 |
.status-badge {
|
296 |
display: flex;
|
297 |
align-items: center;
|
298 |
-
|
299 |
-
padding: 0.5rem;
|
300 |
-
background-color:
|
301 |
border-radius: 4px;
|
|
|
302 |
}
|
303 |
|
304 |
.pulse {
|
305 |
display: inline-block;
|
306 |
-
width:
|
307 |
-
height:
|
308 |
border-radius: 50%;
|
309 |
-
background:
|
310 |
-
|
311 |
-
animation: pulse 1.5s infinite;
|
312 |
}
|
313 |
|
314 |
@keyframes pulse {
|
315 |
0% {
|
|
|
316 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0.7);
|
317 |
}
|
|
|
318 |
70% {
|
|
|
319 |
box-shadow: 0 0 0 10px rgba(76, 175, 80, 0);
|
320 |
}
|
|
|
321 |
100% {
|
|
|
322 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0);
|
323 |
}
|
324 |
}
|
@@ -454,4 +458,26 @@ body {
|
|
454 |
|
455 |
.concept-box .box2 {
|
456 |
background-color: #fff8e1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
}
|
|
|
204 |
|
205 |
/* Charts */
|
206 |
.chart-container {
|
207 |
+
position: relative;
|
208 |
height: 300px;
|
209 |
+
width: 100%;
|
210 |
margin-bottom: 1rem;
|
|
|
211 |
}
|
212 |
|
213 |
+
.chart-container canvas {
|
214 |
+
width: 100% !important;
|
215 |
+
height: 100% !important;
|
|
|
|
|
216 |
}
|
217 |
|
218 |
/* Metrics */
|
|
|
294 |
.status-badge {
|
295 |
display: flex;
|
296 |
align-items: center;
|
297 |
+
gap: 1rem;
|
298 |
+
padding: 0.5rem 1rem;
|
299 |
+
background-color: #f5f5f5;
|
300 |
border-radius: 4px;
|
301 |
+
margin-top: 1rem;
|
302 |
}
|
303 |
|
304 |
.pulse {
|
305 |
display: inline-block;
|
306 |
+
width: 8px;
|
307 |
+
height: 8px;
|
308 |
border-radius: 50%;
|
309 |
+
background-color: #4caf50;
|
310 |
+
animation: pulse 1s infinite;
|
|
|
311 |
}
|
312 |
|
313 |
@keyframes pulse {
|
314 |
0% {
|
315 |
+
transform: scale(0.95);
|
316 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0.7);
|
317 |
}
|
318 |
+
|
319 |
70% {
|
320 |
+
transform: scale(1);
|
321 |
box-shadow: 0 0 0 10px rgba(76, 175, 80, 0);
|
322 |
}
|
323 |
+
|
324 |
100% {
|
325 |
+
transform: scale(0.95);
|
326 |
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0);
|
327 |
}
|
328 |
}
|
|
|
458 |
|
459 |
.concept-box .box2 {
|
460 |
background-color: #fff8e1;
|
461 |
+
}
|
462 |
+
|
463 |
+
/* Error Message */
|
464 |
+
.error-message {
|
465 |
+
background-color: #ffebee;
|
466 |
+
color: #c62828;
|
467 |
+
padding: 1rem;
|
468 |
+
margin-bottom: 1rem;
|
469 |
+
border-radius: 4px;
|
470 |
+
border-left: 4px solid #c62828;
|
471 |
+
animation: slideIn 0.3s ease-out;
|
472 |
+
}
|
473 |
+
|
474 |
+
@keyframes slideIn {
|
475 |
+
from {
|
476 |
+
transform: translateY(-20px);
|
477 |
+
opacity: 0;
|
478 |
+
}
|
479 |
+
to {
|
480 |
+
transform: translateY(0);
|
481 |
+
opacity: 1;
|
482 |
+
}
|
483 |
}
|
app/static/js/main.js
CHANGED
@@ -2,6 +2,7 @@ class DPSGDExplorer {
|
|
2 |
constructor() {
|
3 |
this.trainingChart = null;
|
4 |
this.privacyChart = null;
|
|
|
5 |
this.isTraining = false;
|
6 |
this.initializeUI();
|
7 |
}
|
@@ -31,11 +32,29 @@ class DPSGDExplorer {
|
|
31 |
for (const [id, slider] of Object.entries(sliders)) {
|
32 |
if (slider) {
|
33 |
slider.addEventListener('input', (e) => {
|
34 |
-
|
|
|
|
|
|
|
35 |
this.updatePrivacyBudget();
|
|
|
|
|
|
|
|
|
|
|
36 |
});
|
37 |
}
|
38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
|
41 |
initializePresets() {
|
@@ -92,6 +111,7 @@ class DPSGDExplorer {
|
|
92 |
initializeCharts() {
|
93 |
const trainingCtx = document.getElementById('training-chart')?.getContext('2d');
|
94 |
const privacyCtx = document.getElementById('privacy-chart')?.getContext('2d');
|
|
|
95 |
|
96 |
if (trainingCtx) {
|
97 |
this.trainingChart = new Chart(trainingCtx, {
|
@@ -115,6 +135,7 @@ class DPSGDExplorer {
|
|
115 |
},
|
116 |
options: {
|
117 |
responsive: true,
|
|
|
118 |
interaction: {
|
119 |
mode: 'index',
|
120 |
intersect: false,
|
@@ -127,7 +148,9 @@ class DPSGDExplorer {
|
|
127 |
title: {
|
128 |
display: true,
|
129 |
text: 'Accuracy (%)'
|
130 |
-
}
|
|
|
|
|
131 |
},
|
132 |
y1: {
|
133 |
type: 'linear',
|
@@ -137,6 +160,8 @@ class DPSGDExplorer {
|
|
137 |
display: true,
|
138 |
text: 'Loss'
|
139 |
},
|
|
|
|
|
140 |
grid: {
|
141 |
drawOnChartArea: false,
|
142 |
},
|
@@ -159,17 +184,80 @@ class DPSGDExplorer {
|
|
159 |
},
|
160 |
options: {
|
161 |
responsive: true,
|
|
|
162 |
scales: {
|
163 |
y: {
|
|
|
164 |
title: {
|
165 |
display: true,
|
166 |
text: 'Privacy Budget (ε)'
|
167 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
x: {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
title: {
|
171 |
display: true,
|
172 |
-
text: '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
}
|
174 |
}
|
175 |
}
|
@@ -236,6 +324,8 @@ class DPSGDExplorer {
|
|
236 |
this.resetCharts();
|
237 |
|
238 |
try {
|
|
|
|
|
239 |
const response = await fetch('/api/train', {
|
240 |
method: 'POST',
|
241 |
headers: {
|
@@ -245,10 +335,28 @@ class DPSGDExplorer {
|
|
245 |
});
|
246 |
|
247 |
const data = await response.json();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
this.updateCharts(data.epochs_data);
|
249 |
this.updateResults(data);
|
250 |
} catch (error) {
|
251 |
console.error('Training error:', error);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
} finally {
|
253 |
this.stopTraining();
|
254 |
}
|
@@ -277,12 +385,21 @@ class DPSGDExplorer {
|
|
277 |
this.privacyChart.data.datasets[0].data = [];
|
278 |
this.privacyChart.update();
|
279 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
}
|
281 |
|
282 |
updateCharts(epochsData) {
|
283 |
if (!this.trainingChart || !epochsData) return;
|
284 |
|
285 |
-
|
|
|
|
|
|
|
286 |
const accuracies = epochsData.map(d => d.accuracy);
|
287 |
const losses = epochsData.map(d => d.loss);
|
288 |
|
@@ -291,14 +408,85 @@ class DPSGDExplorer {
|
|
291 |
this.trainingChart.data.datasets[1].data = losses;
|
292 |
this.trainingChart.update();
|
293 |
|
294 |
-
// Update
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
if (this.privacyChart) {
|
296 |
-
|
297 |
-
this.privacyChart.data.datasets[0].data = epochsData.map((_, i) =>
|
298 |
this.calculateEpochPrivacy(i + 1)
|
299 |
);
|
|
|
|
|
300 |
this.privacyChart.update();
|
301 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
}
|
303 |
|
304 |
updateResults(data) {
|
@@ -363,6 +551,95 @@ class DPSGDExplorer {
|
|
363 |
const c = Math.sqrt(2 * Math.log(1.25 / delta));
|
364 |
return Math.min((c * samplingRate * Math.sqrt(steps)) / params.noise_multiplier, 10);
|
365 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
}
|
367 |
|
368 |
// Initialize the application when the DOM is loaded
|
|
|
2 |
constructor() {
|
3 |
this.trainingChart = null;
|
4 |
this.privacyChart = null;
|
5 |
+
this.gradientChart = null;
|
6 |
this.isTraining = false;
|
7 |
this.initializeUI();
|
8 |
}
|
|
|
32 |
for (const [id, slider] of Object.entries(sliders)) {
|
33 |
if (slider) {
|
34 |
slider.addEventListener('input', (e) => {
|
35 |
+
const value = parseFloat(e.target.value);
|
36 |
+
document.getElementById(`${id}-value`).textContent = value.toFixed(1);
|
37 |
+
|
38 |
+
// Update privacy budget
|
39 |
this.updatePrivacyBudget();
|
40 |
+
|
41 |
+
// Update gradient visualization when clipping norm changes
|
42 |
+
if (id === 'clipping-norm') {
|
43 |
+
this.updateGradientVisualization(value);
|
44 |
+
}
|
45 |
});
|
46 |
}
|
47 |
}
|
48 |
+
|
49 |
+
// Add event listener for the visual clipping norm slider
|
50 |
+
const visualSlider = document.getElementById('clipping-norm-visual');
|
51 |
+
if (visualSlider) {
|
52 |
+
visualSlider.addEventListener('input', (e) => {
|
53 |
+
const value = parseFloat(e.target.value);
|
54 |
+
document.getElementById('clipping-norm-visual-value').textContent = value.toFixed(1);
|
55 |
+
this.updateGradientVisualization(value);
|
56 |
+
});
|
57 |
+
}
|
58 |
}
|
59 |
|
60 |
initializePresets() {
|
|
|
111 |
initializeCharts() {
|
112 |
const trainingCtx = document.getElementById('training-chart')?.getContext('2d');
|
113 |
const privacyCtx = document.getElementById('privacy-chart')?.getContext('2d');
|
114 |
+
const gradientCtx = document.getElementById('gradient-chart')?.getContext('2d');
|
115 |
|
116 |
if (trainingCtx) {
|
117 |
this.trainingChart = new Chart(trainingCtx, {
|
|
|
135 |
},
|
136 |
options: {
|
137 |
responsive: true,
|
138 |
+
maintainAspectRatio: false,
|
139 |
interaction: {
|
140 |
mode: 'index',
|
141 |
intersect: false,
|
|
|
148 |
title: {
|
149 |
display: true,
|
150 |
text: 'Accuracy (%)'
|
151 |
+
},
|
152 |
+
min: 0,
|
153 |
+
max: 100
|
154 |
},
|
155 |
y1: {
|
156 |
type: 'linear',
|
|
|
160 |
display: true,
|
161 |
text: 'Loss'
|
162 |
},
|
163 |
+
min: 0,
|
164 |
+
max: 2,
|
165 |
grid: {
|
166 |
drawOnChartArea: false,
|
167 |
},
|
|
|
184 |
},
|
185 |
options: {
|
186 |
responsive: true,
|
187 |
+
maintainAspectRatio: false,
|
188 |
scales: {
|
189 |
y: {
|
190 |
+
beginAtZero: true,
|
191 |
title: {
|
192 |
display: true,
|
193 |
text: 'Privacy Budget (ε)'
|
194 |
}
|
195 |
+
}
|
196 |
+
}
|
197 |
+
}
|
198 |
+
});
|
199 |
+
}
|
200 |
+
|
201 |
+
if (gradientCtx) {
|
202 |
+
this.gradientChart = new Chart(gradientCtx, {
|
203 |
+
type: 'scatter',
|
204 |
+
data: {
|
205 |
+
datasets: [
|
206 |
+
{
|
207 |
+
label: 'Before Clipping',
|
208 |
+
borderColor: '#2196f3',
|
209 |
+
backgroundColor: 'rgba(33, 150, 243, 0.1)',
|
210 |
+
data: [],
|
211 |
+
showLine: true
|
212 |
},
|
213 |
+
{
|
214 |
+
label: 'After Clipping',
|
215 |
+
borderColor: '#f44336',
|
216 |
+
backgroundColor: 'rgba(244, 67, 54, 0.1)',
|
217 |
+
data: [],
|
218 |
+
showLine: true
|
219 |
+
}
|
220 |
+
]
|
221 |
+
},
|
222 |
+
options: {
|
223 |
+
responsive: true,
|
224 |
+
maintainAspectRatio: false,
|
225 |
+
scales: {
|
226 |
x: {
|
227 |
+
type: 'linear',
|
228 |
+
position: 'bottom',
|
229 |
+
title: {
|
230 |
+
display: true,
|
231 |
+
text: 'Gradient Norm'
|
232 |
+
},
|
233 |
+
min: 0
|
234 |
+
},
|
235 |
+
y: {
|
236 |
+
type: 'linear',
|
237 |
+
position: 'left',
|
238 |
title: {
|
239 |
display: true,
|
240 |
+
text: 'Density'
|
241 |
+
},
|
242 |
+
min: 0
|
243 |
+
}
|
244 |
+
},
|
245 |
+
plugins: {
|
246 |
+
annotation: {
|
247 |
+
annotations: {
|
248 |
+
line1: {
|
249 |
+
type: 'line',
|
250 |
+
xMin: 1,
|
251 |
+
xMax: 1,
|
252 |
+
borderColor: '#f44336',
|
253 |
+
borderWidth: 2,
|
254 |
+
borderDash: [5, 5],
|
255 |
+
label: {
|
256 |
+
content: 'Clipping Threshold',
|
257 |
+
display: true,
|
258 |
+
position: 'top'
|
259 |
+
}
|
260 |
+
}
|
261 |
}
|
262 |
}
|
263 |
}
|
|
|
324 |
this.resetCharts();
|
325 |
|
326 |
try {
|
327 |
+
console.log('Starting training with parameters:', this.getParameters()); // Debug log
|
328 |
+
|
329 |
const response = await fetch('/api/train', {
|
330 |
method: 'POST',
|
331 |
headers: {
|
|
|
335 |
});
|
336 |
|
337 |
const data = await response.json();
|
338 |
+
|
339 |
+
if (!response.ok) {
|
340 |
+
throw new Error(data.error || 'Unknown error occurred');
|
341 |
+
}
|
342 |
+
|
343 |
+
console.log('Received training data:', data); // Debug log
|
344 |
+
|
345 |
+
// Update charts and results
|
346 |
this.updateCharts(data.epochs_data);
|
347 |
this.updateResults(data);
|
348 |
} catch (error) {
|
349 |
console.error('Training error:', error);
|
350 |
+
// Show error message to user
|
351 |
+
const errorMessage = document.createElement('div');
|
352 |
+
errorMessage.className = 'error-message';
|
353 |
+
errorMessage.textContent = error.message || 'An error occurred during training';
|
354 |
+
document.querySelector('.lab-main').insertBefore(errorMessage, document.querySelector('.lab-main').firstChild);
|
355 |
+
|
356 |
+
// Remove error message after 5 seconds
|
357 |
+
setTimeout(() => {
|
358 |
+
errorMessage.remove();
|
359 |
+
}, 5000);
|
360 |
} finally {
|
361 |
this.stopTraining();
|
362 |
}
|
|
|
385 |
this.privacyChart.data.datasets[0].data = [];
|
386 |
this.privacyChart.update();
|
387 |
}
|
388 |
+
|
389 |
+
if (this.gradientChart) {
|
390 |
+
this.gradientChart.data.datasets[0].data = [];
|
391 |
+
this.gradientChart.data.datasets[1].data = [];
|
392 |
+
this.gradientChart.update();
|
393 |
+
}
|
394 |
}
|
395 |
|
396 |
updateCharts(epochsData) {
|
397 |
if (!this.trainingChart || !epochsData) return;
|
398 |
|
399 |
+
console.log('Updating charts with data:', epochsData); // Debug log
|
400 |
+
|
401 |
+
// Update training metrics chart
|
402 |
+
const labels = epochsData.map(d => `Epoch ${d.epoch}`);
|
403 |
const accuracies = epochsData.map(d => d.accuracy);
|
404 |
const losses = epochsData.map(d => d.loss);
|
405 |
|
|
|
408 |
this.trainingChart.data.datasets[1].data = losses;
|
409 |
this.trainingChart.update();
|
410 |
|
411 |
+
// Update current epoch display
|
412 |
+
const currentEpoch = document.getElementById('current-epoch');
|
413 |
+
const totalEpochs = document.getElementById('total-epochs');
|
414 |
+
if (currentEpoch && totalEpochs) {
|
415 |
+
currentEpoch.textContent = epochsData.length;
|
416 |
+
totalEpochs.textContent = this.getParameters().epochs;
|
417 |
+
}
|
418 |
+
|
419 |
+
// Update privacy budget chart
|
420 |
if (this.privacyChart) {
|
421 |
+
const privacyBudgets = epochsData.map((_, i) =>
|
|
|
422 |
this.calculateEpochPrivacy(i + 1)
|
423 |
);
|
424 |
+
this.privacyChart.data.labels = labels;
|
425 |
+
this.privacyChart.data.datasets[0].data = privacyBudgets;
|
426 |
this.privacyChart.update();
|
427 |
}
|
428 |
+
|
429 |
+
// Update gradient visualization
|
430 |
+
if (this.gradientChart) {
|
431 |
+
const clippingNorm = this.getParameters().clipping_norm;
|
432 |
+
|
433 |
+
// Generate gradient data if not provided in epochsData
|
434 |
+
let gradientData;
|
435 |
+
if (epochsData[epochsData.length - 1]?.gradient_info) {
|
436 |
+
gradientData = epochsData[epochsData.length - 1].gradient_info;
|
437 |
+
} else {
|
438 |
+
// Generate synthetic gradient data
|
439 |
+
const beforeClipping = [];
|
440 |
+
const afterClipping = [];
|
441 |
+
|
442 |
+
// Generate log-normal distributed gradients
|
443 |
+
const mu = Math.log(clippingNorm) - 0.5;
|
444 |
+
const sigma = 0.8;
|
445 |
+
|
446 |
+
for (let i = 0; i < 100; i++) {
|
447 |
+
const u1 = Math.random();
|
448 |
+
const u2 = Math.random();
|
449 |
+
const z = Math.sqrt(-2.0 * Math.log(u1)) * Math.cos(2.0 * Math.PI * u2);
|
450 |
+
const norm = Math.exp(mu + sigma * z);
|
451 |
+
|
452 |
+
const density = Math.exp(-(Math.pow(Math.log(norm) - mu, 2) / (2 * sigma * sigma))) /
|
453 |
+
(norm * sigma * Math.sqrt(2 * Math.PI));
|
454 |
+
const y = 0.2 + 0.8 * (density / 0.8) + 0.1 * (Math.random() - 0.5);
|
455 |
+
|
456 |
+
beforeClipping.push({ x: norm, y: y });
|
457 |
+
afterClipping.push({ x: Math.min(norm, clippingNorm), y: y });
|
458 |
+
}
|
459 |
+
|
460 |
+
gradientData = {
|
461 |
+
before_clipping: beforeClipping.sort((a, b) => a.x - b.x),
|
462 |
+
after_clipping: afterClipping.sort((a, b) => a.x - b.x)
|
463 |
+
};
|
464 |
+
}
|
465 |
+
|
466 |
+
// Update gradient chart
|
467 |
+
this.gradientChart.data.datasets[0].data = gradientData.before_clipping;
|
468 |
+
this.gradientChart.data.datasets[1].data = gradientData.after_clipping;
|
469 |
+
|
470 |
+
// Update clipping threshold line
|
471 |
+
this.gradientChart.options.plugins.annotation.annotations.line1 = {
|
472 |
+
type: 'line',
|
473 |
+
xMin: clippingNorm,
|
474 |
+
xMax: clippingNorm,
|
475 |
+
borderColor: '#f44336',
|
476 |
+
borderWidth: 2,
|
477 |
+
borderDash: [5, 5],
|
478 |
+
label: {
|
479 |
+
content: `Clipping Threshold (C=${clippingNorm.toFixed(1)})`,
|
480 |
+
display: true,
|
481 |
+
position: 'top'
|
482 |
+
}
|
483 |
+
};
|
484 |
+
|
485 |
+
// Update x-axis scale based on clipping norm
|
486 |
+
this.gradientChart.options.scales.x.max = Math.max(clippingNorm * 2.5, 5);
|
487 |
+
|
488 |
+
this.gradientChart.update('active');
|
489 |
+
}
|
490 |
}
|
491 |
|
492 |
updateResults(data) {
|
|
|
551 |
const c = Math.sqrt(2 * Math.log(1.25 / delta));
|
552 |
return Math.min((c * samplingRate * Math.sqrt(steps)) / params.noise_multiplier, 10);
|
553 |
}
|
554 |
+
|
555 |
+
updateGradientVisualization(clippingNorm) {
|
556 |
+
if (!this.gradientChart) return;
|
557 |
+
|
558 |
+
// Generate random gradient norms following a log-normal distribution
|
559 |
+
const numPoints = 100;
|
560 |
+
const beforeClipping = [];
|
561 |
+
const afterClipping = [];
|
562 |
+
|
563 |
+
// Parameters for log-normal distribution
|
564 |
+
const mu = Math.log(clippingNorm) - 0.5;
|
565 |
+
const sigma = 0.8;
|
566 |
+
|
567 |
+
// Generate gradient norms
|
568 |
+
for (let i = 0; i < numPoints; i++) {
|
569 |
+
// Generate log-normal distributed gradient norms
|
570 |
+
const u1 = Math.random();
|
571 |
+
const u2 = Math.random();
|
572 |
+
const z = Math.sqrt(-2.0 * Math.log(u1)) * Math.cos(2.0 * Math.PI * u2);
|
573 |
+
const norm = Math.exp(mu + sigma * z);
|
574 |
+
|
575 |
+
// Calculate density using kernel density estimation
|
576 |
+
const density = Math.exp(-(Math.pow(Math.log(norm) - mu, 2) / (2 * sigma * sigma))) / (norm * sigma * Math.sqrt(2 * Math.PI));
|
577 |
+
|
578 |
+
// Normalize density and add some randomness
|
579 |
+
const y = 0.2 + 0.8 * (density / 0.8) + 0.1 * (Math.random() - 0.5);
|
580 |
+
|
581 |
+
beforeClipping.push({ x: norm, y: y });
|
582 |
+
afterClipping.push({ x: Math.min(norm, clippingNorm), y: y });
|
583 |
+
}
|
584 |
+
|
585 |
+
// Sort points by x-value for smoother lines
|
586 |
+
beforeClipping.sort((a, b) => a.x - b.x);
|
587 |
+
afterClipping.sort((a, b) => a.x - b.x);
|
588 |
+
|
589 |
+
// Update chart data
|
590 |
+
this.gradientChart.data.datasets[0].data = beforeClipping;
|
591 |
+
this.gradientChart.data.datasets[1].data = afterClipping;
|
592 |
+
|
593 |
+
// Update clipping threshold line
|
594 |
+
this.gradientChart.options.plugins.annotation.annotations.line1 = {
|
595 |
+
type: 'line',
|
596 |
+
xMin: clippingNorm,
|
597 |
+
xMax: clippingNorm,
|
598 |
+
borderColor: '#f44336',
|
599 |
+
borderWidth: 2,
|
600 |
+
borderDash: [5, 5],
|
601 |
+
label: {
|
602 |
+
content: `Clipping Threshold (C=${clippingNorm.toFixed(1)})`,
|
603 |
+
display: true,
|
604 |
+
position: 'top'
|
605 |
+
}
|
606 |
+
};
|
607 |
+
|
608 |
+
// Update x-axis scale based on clipping norm
|
609 |
+
this.gradientChart.options.scales.x.max = Math.max(clippingNorm * 2.5, 5);
|
610 |
+
|
611 |
+
// Update the chart with animation
|
612 |
+
this.gradientChart.update('active');
|
613 |
+
}
|
614 |
+
|
615 |
+
updateGradientVisualizationWithData(beforeClipping, afterClipping, clippingNorm) {
|
616 |
+
if (!this.gradientChart) return;
|
617 |
+
|
618 |
+
// Update chart data with real training data
|
619 |
+
this.gradientChart.data.datasets[0].data = beforeClipping;
|
620 |
+
this.gradientChart.data.datasets[1].data = afterClipping;
|
621 |
+
|
622 |
+
// Update clipping threshold line
|
623 |
+
this.gradientChart.options.plugins.annotation.annotations.line1 = {
|
624 |
+
type: 'line',
|
625 |
+
xMin: clippingNorm,
|
626 |
+
xMax: clippingNorm,
|
627 |
+
borderColor: '#f44336',
|
628 |
+
borderWidth: 2,
|
629 |
+
borderDash: [5, 5],
|
630 |
+
label: {
|
631 |
+
content: `Clipping Threshold (C=${clippingNorm.toFixed(1)})`,
|
632 |
+
display: true,
|
633 |
+
position: 'top'
|
634 |
+
}
|
635 |
+
};
|
636 |
+
|
637 |
+
// Update x-axis scale based on clipping norm
|
638 |
+
this.gradientChart.options.scales.x.max = Math.max(clippingNorm * 2.5, 5);
|
639 |
+
|
640 |
+
// Update the chart with animation
|
641 |
+
this.gradientChart.update('active');
|
642 |
+
}
|
643 |
}
|
644 |
|
645 |
// Initialize the application when the DOM is loaded
|
app/templates/base.html
CHANGED
@@ -7,6 +7,11 @@
|
|
7 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
|
8 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/learning.css') }}">
|
9 |
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
|
|
|
|
|
|
|
|
|
|
10 |
{% block extra_head %}{% endblock %}
|
11 |
</head>
|
12 |
<body>
|
|
|
7 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
|
8 |
<link rel="stylesheet" href="{{ url_for('static', filename='css/learning.css') }}">
|
9 |
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
10 |
+
<script src="https://cdn.jsdelivr.net/npm/chartjs-plugin-annotation"></script>
|
11 |
+
<script>
|
12 |
+
// Register the annotation plugin
|
13 |
+
Chart.register(ChartAnnotation);
|
14 |
+
</script>
|
15 |
{% block extra_head %}{% endblock %}
|
16 |
</head>
|
17 |
<body>
|
app/templates/index.html
CHANGED
@@ -190,8 +190,8 @@
|
|
190 |
</div>
|
191 |
|
192 |
<div id="training-tab" class="tab-content active">
|
193 |
-
<div class="chart-container">
|
194 |
-
<canvas id="training-chart"
|
195 |
</div>
|
196 |
|
197 |
<div id="training-status" class="status-badge" style="display: none;">
|
@@ -214,8 +214,8 @@
|
|
214 |
</p>
|
215 |
</div>
|
216 |
|
217 |
-
<div class="
|
218 |
-
<canvas id="gradient-
|
219 |
</div>
|
220 |
</div>
|
221 |
|
@@ -231,8 +231,8 @@
|
|
231 |
</p>
|
232 |
</div>
|
233 |
|
234 |
-
<div class="chart-container">
|
235 |
-
<canvas id="privacy-chart"
|
236 |
</div>
|
237 |
</div>
|
238 |
</div>
|
|
|
190 |
</div>
|
191 |
|
192 |
<div id="training-tab" class="tab-content active">
|
193 |
+
<div class="chart-container" style="position: relative; height: 300px; width: 100%;">
|
194 |
+
<canvas id="training-chart"></canvas>
|
195 |
</div>
|
196 |
|
197 |
<div id="training-status" class="status-badge" style="display: none;">
|
|
|
214 |
</p>
|
215 |
</div>
|
216 |
|
217 |
+
<div class="chart-container">
|
218 |
+
<canvas id="gradient-chart" class="chart"></canvas>
|
219 |
</div>
|
220 |
</div>
|
221 |
|
|
|
231 |
</p>
|
232 |
</div>
|
233 |
|
234 |
+
<div class="chart-container" style="position: relative; height: 300px; width: 100%;">
|
235 |
+
<canvas id="privacy-chart"></canvas>
|
236 |
</div>
|
237 |
</div>
|
238 |
</div>
|
app/training/mock_trainer.py
CHANGED
@@ -41,10 +41,17 @@ class MockTrainer:
|
|
41 |
# Generate recommendations
|
42 |
recommendations = self._generate_recommendations(params, final_metrics)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
return {
|
45 |
'epochs_data': epochs_data,
|
46 |
'final_metrics': final_metrics,
|
47 |
-
'recommendations': recommendations
|
|
|
48 |
}
|
49 |
|
50 |
def _calculate_privacy_factor(self, clipping_norm: float, noise_multiplier: float) -> float:
|
@@ -149,4 +156,32 @@ class MockTrainer:
|
|
149 |
'text': 'Model accuracy is low. Consider adjusting privacy parameters.'
|
150 |
})
|
151 |
|
152 |
-
return recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Generate recommendations
|
42 |
recommendations = self._generate_recommendations(params, final_metrics)
|
43 |
|
44 |
+
# Generate gradient information
|
45 |
+
gradient_info = {
|
46 |
+
'before_clipping': self.generate_gradient_norms(clipping_norm),
|
47 |
+
'after_clipping': self.generate_clipped_gradients(clipping_norm)
|
48 |
+
}
|
49 |
+
|
50 |
return {
|
51 |
'epochs_data': epochs_data,
|
52 |
'final_metrics': final_metrics,
|
53 |
+
'recommendations': recommendations,
|
54 |
+
'gradient_info': gradient_info
|
55 |
}
|
56 |
|
57 |
def _calculate_privacy_factor(self, clipping_norm: float, noise_multiplier: float) -> float:
|
|
|
156 |
'text': 'Model accuracy is low. Consider adjusting privacy parameters.'
|
157 |
})
|
158 |
|
159 |
+
return recommendations
|
160 |
+
|
161 |
+
def generate_gradient_norms(self, clipping_norm: float) -> List[Dict[str, float]]:
|
162 |
+
"""Generate realistic gradient norms following a log-normal distribution."""
|
163 |
+
num_points = 100
|
164 |
+
gradients = []
|
165 |
+
|
166 |
+
# Parameters for log-normal distribution
|
167 |
+
mu = np.log(clipping_norm) - 0.5
|
168 |
+
sigma = 0.8
|
169 |
+
|
170 |
+
for _ in range(num_points):
|
171 |
+
# Generate log-normal distributed gradient norms
|
172 |
+
u1, u2 = np.random.random(2)
|
173 |
+
z = np.sqrt(-2.0 * np.log(u1)) * np.cos(2.0 * np.pi * u2)
|
174 |
+
norm = np.exp(mu + sigma * z)
|
175 |
+
|
176 |
+
# Calculate density using kernel density estimation
|
177 |
+
density = np.exp(-(np.power(np.log(norm) - mu, 2) / (2 * sigma * sigma))) / (norm * sigma * np.sqrt(2 * np.pi))
|
178 |
+
density = 0.2 + 0.8 * (density / 0.8) + 0.1 * (np.random.random() - 0.5)
|
179 |
+
|
180 |
+
gradients.append({'x': float(norm), 'y': float(density)})
|
181 |
+
|
182 |
+
return sorted(gradients, key=lambda x: x['x'])
|
183 |
+
|
184 |
+
def generate_clipped_gradients(self, clipping_norm: float) -> List[Dict[str, float]]:
|
185 |
+
"""Generate clipped versions of the gradient norms."""
|
186 |
+
original_gradients = self.generate_gradient_norms(clipping_norm)
|
187 |
+
return [{'x': min(g['x'], clipping_norm), 'y': g['y']} for g in original_gradients]
|
run.py
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
from app import create_app
|
|
|
2 |
|
3 |
app = create_app()
|
4 |
|
5 |
if __name__ == '__main__':
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from app import create_app
|
2 |
+
import os
|
3 |
|
4 |
app = create_app()
|
5 |
|
6 |
if __name__ == '__main__':
|
7 |
+
# Enable debug mode for development
|
8 |
+
app.config['DEBUG'] = True
|
9 |
+
# Disable CORS in development
|
10 |
+
app.config['CORS_HEADERS'] = 'Content-Type'
|
11 |
+
# Run the application
|
12 |
+
app.run(host='127.0.0.1', port=5000, debug=True)
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.8.12
|