Shuya Feng
commited on
Commit
·
6640531
1
Parent(s):
17e9685
feat: Implement DP-SGD Explorer web application with Flask backend, interactive frontend, and easy deployment script
Browse files- README.md +77 -1
- app/__init__.py +12 -0
- app/__pycache__/__init__.cpython-38.pyc +0 -0
- app/__pycache__/routes.cpython-38.pyc +0 -0
- app/routes.py +43 -0
- app/static/css/learning.css +202 -0
- app/static/css/styles.css +457 -0
- app/static/js/main.js +371 -0
- app/templates/base.html +42 -0
- app/templates/index.html +331 -0
- app/templates/learning.html +261 -0
- app/training/__init__.py +4 -0
- app/training/__pycache__/__init__.cpython-38.pyc +0 -0
- app/training/__pycache__/mock_trainer.cpython-38.pyc +0 -0
- app/training/__pycache__/privacy_calculator.cpython-38.pyc +0 -0
- app/training/mock_trainer.py +152 -0
- app/training/privacy_calculator.py +104 -0
- requirements.txt +5 -0
- run.py +6 -0
- start_server.sh +60 -0
README.md
CHANGED
@@ -1 +1,77 @@
|
|
1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DP-SGD Explorer
|
2 |
+
|
3 |
+
An interactive web application for exploring and learning about Differentially Private Stochastic Gradient Descent (DP-SGD).
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- Interactive playground for experimenting with DP-SGD parameters
|
8 |
+
- Comprehensive learning hub with detailed explanations
|
9 |
+
- Real-time privacy budget calculations
|
10 |
+
- Training visualizations and metrics
|
11 |
+
- Parameter recommendations
|
12 |
+
|
13 |
+
## Requirements
|
14 |
+
|
15 |
+
- Python 3.8 or higher
|
16 |
+
- Modern web browser (Chrome, Firefox, Safari, or Edge)
|
17 |
+
|
18 |
+
## Quick Start
|
19 |
+
|
20 |
+
1. Clone this repository:
|
21 |
+
```bash
|
22 |
+
git clone https://github.com/yourusername/dpsgd-explorer.git
|
23 |
+
cd dpsgd-explorer
|
24 |
+
```
|
25 |
+
|
26 |
+
2. Run the start script:
|
27 |
+
```bash
|
28 |
+
./start_server.sh
|
29 |
+
```
|
30 |
+
|
31 |
+
3. Open your web browser and navigate to:
|
32 |
+
```
|
33 |
+
http://127.0.0.1:5000
|
34 |
+
```
|
35 |
+
|
36 |
+
The start script will automatically:
|
37 |
+
- Check for Python installation
|
38 |
+
- Create a virtual environment
|
39 |
+
- Install required dependencies
|
40 |
+
- Start the Flask development server
|
41 |
+
|
42 |
+
## Manual Setup (if the script doesn't work)
|
43 |
+
|
44 |
+
1. Create a virtual environment:
|
45 |
+
```bash
|
46 |
+
python3 -m venv .venv
|
47 |
+
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
48 |
+
```
|
49 |
+
|
50 |
+
2. Install dependencies:
|
51 |
+
```bash
|
52 |
+
pip install -r requirements.txt
|
53 |
+
```
|
54 |
+
|
55 |
+
3. Start the server:
|
56 |
+
```bash
|
57 |
+
PYTHONPATH=. python3 run.py
|
58 |
+
```
|
59 |
+
|
60 |
+
## Project Structure
|
61 |
+
|
62 |
+
```
|
63 |
+
dpsgd-explorer/
|
64 |
+
├── app/
|
65 |
+
│ ├── static/ # Static files (CSS, JS)
|
66 |
+
│ ├── templates/ # HTML templates
|
67 |
+
│ ├── training/ # Training simulation
|
68 |
+
│ ├── routes.py # Flask routes
|
69 |
+
│ └── __init__.py # App initialization
|
70 |
+
├── requirements.txt # Python dependencies
|
71 |
+
├── run.py # Application entry point
|
72 |
+
└── start_server.sh # Start script
|
73 |
+
```
|
74 |
+
|
75 |
+
## License
|
76 |
+
|
77 |
+
MIT License - Feel free to use this project for learning and educational purposes.
|
app/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask
|
2 |
+
from flask_cors import CORS
|
3 |
+
|
4 |
+
def create_app():
|
5 |
+
app = Flask(__name__)
|
6 |
+
CORS(app)
|
7 |
+
|
8 |
+
# Register blueprints
|
9 |
+
from app.routes import main
|
10 |
+
app.register_blueprint(main)
|
11 |
+
|
12 |
+
return app
|
app/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (444 Bytes). View file
|
|
app/__pycache__/routes.cpython-38.pyc
ADDED
Binary file (1.58 kB). View file
|
|
app/routes.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Blueprint, render_template, jsonify, request
|
2 |
+
from app.training.mock_trainer import MockTrainer
|
3 |
+
from app.training.privacy_calculator import PrivacyCalculator
|
4 |
+
|
5 |
+
main = Blueprint('main', __name__)
|
6 |
+
mock_trainer = MockTrainer()
|
7 |
+
privacy_calculator = PrivacyCalculator()
|
8 |
+
|
9 |
+
@main.route('/')
|
10 |
+
def index():
|
11 |
+
return render_template('index.html')
|
12 |
+
|
13 |
+
@main.route('/learning')
|
14 |
+
def learning():
|
15 |
+
return render_template('learning.html')
|
16 |
+
|
17 |
+
@main.route('/api/train', methods=['POST'])
|
18 |
+
def train():
|
19 |
+
data = request.json
|
20 |
+
params = {
|
21 |
+
'clipping_norm': float(data.get('clipping_norm', 1.0)),
|
22 |
+
'noise_multiplier': float(data.get('noise_multiplier', 1.0)),
|
23 |
+
'batch_size': int(data.get('batch_size', 64)),
|
24 |
+
'learning_rate': float(data.get('learning_rate', 0.01)),
|
25 |
+
'epochs': int(data.get('epochs', 5))
|
26 |
+
}
|
27 |
+
|
28 |
+
# Get mock training results
|
29 |
+
results = mock_trainer.train(params)
|
30 |
+
return jsonify(results)
|
31 |
+
|
32 |
+
@main.route('/api/privacy-budget', methods=['POST'])
|
33 |
+
def calculate_privacy_budget():
|
34 |
+
data = request.json
|
35 |
+
params = {
|
36 |
+
'clipping_norm': float(data.get('clipping_norm', 1.0)),
|
37 |
+
'noise_multiplier': float(data.get('noise_multiplier', 1.0)),
|
38 |
+
'batch_size': int(data.get('batch_size', 64)),
|
39 |
+
'epochs': int(data.get('epochs', 5))
|
40 |
+
}
|
41 |
+
|
42 |
+
epsilon = privacy_calculator.calculate_epsilon(params)
|
43 |
+
return jsonify({'epsilon': epsilon})
|
app/static/css/learning.css
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Learning Hub Container */
|
2 |
+
.learning-container {
|
3 |
+
display: flex;
|
4 |
+
gap: 2rem;
|
5 |
+
padding: 2rem;
|
6 |
+
max-width: 1400px;
|
7 |
+
margin: 0 auto;
|
8 |
+
}
|
9 |
+
|
10 |
+
/* Sidebar Styles */
|
11 |
+
.learning-sidebar {
|
12 |
+
flex: 0 0 300px;
|
13 |
+
background: #f8f9fa;
|
14 |
+
border-radius: 8px;
|
15 |
+
padding: 1.5rem;
|
16 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
17 |
+
height: fit-content;
|
18 |
+
position: sticky;
|
19 |
+
top: 2rem;
|
20 |
+
}
|
21 |
+
|
22 |
+
.learning-steps {
|
23 |
+
list-style: none;
|
24 |
+
padding: 0;
|
25 |
+
margin: 1rem 0;
|
26 |
+
}
|
27 |
+
|
28 |
+
.learning-step {
|
29 |
+
padding: 0.75rem 1rem;
|
30 |
+
margin: 0.5rem 0;
|
31 |
+
border-radius: 6px;
|
32 |
+
cursor: pointer;
|
33 |
+
transition: all 0.3s ease;
|
34 |
+
font-size: 0.95rem;
|
35 |
+
color: #495057;
|
36 |
+
}
|
37 |
+
|
38 |
+
.learning-step:hover {
|
39 |
+
background: #e9ecef;
|
40 |
+
color: #212529;
|
41 |
+
}
|
42 |
+
|
43 |
+
.learning-step.active {
|
44 |
+
background: #007bff;
|
45 |
+
color: white;
|
46 |
+
font-weight: 500;
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Content Area Styles */
|
50 |
+
.learning-content {
|
51 |
+
flex: 1;
|
52 |
+
min-width: 0;
|
53 |
+
}
|
54 |
+
|
55 |
+
.step-content {
|
56 |
+
display: none;
|
57 |
+
animation: fadeIn 0.3s ease;
|
58 |
+
}
|
59 |
+
|
60 |
+
.step-content.active {
|
61 |
+
display: block;
|
62 |
+
}
|
63 |
+
|
64 |
+
/* Typography */
|
65 |
+
.section-title {
|
66 |
+
font-size: 2.5rem;
|
67 |
+
color: #212529;
|
68 |
+
margin-bottom: 2rem;
|
69 |
+
text-align: center;
|
70 |
+
}
|
71 |
+
|
72 |
+
.panel-title {
|
73 |
+
font-size: 1.25rem;
|
74 |
+
color: #343a40;
|
75 |
+
margin-bottom: 1rem;
|
76 |
+
}
|
77 |
+
|
78 |
+
.step-content h2 {
|
79 |
+
font-size: 2rem;
|
80 |
+
color: #212529;
|
81 |
+
margin-bottom: 1.5rem;
|
82 |
+
}
|
83 |
+
|
84 |
+
.step-content h3 {
|
85 |
+
font-size: 1.5rem;
|
86 |
+
color: #343a40;
|
87 |
+
margin: 2rem 0 1rem;
|
88 |
+
}
|
89 |
+
|
90 |
+
.step-content p {
|
91 |
+
font-size: 1rem;
|
92 |
+
line-height: 1.6;
|
93 |
+
color: #495057;
|
94 |
+
margin-bottom: 1rem;
|
95 |
+
}
|
96 |
+
|
97 |
+
/* Concept Box Styles */
|
98 |
+
.concept-box {
|
99 |
+
display: flex;
|
100 |
+
gap: 1.5rem;
|
101 |
+
margin: 2rem 0;
|
102 |
+
}
|
103 |
+
|
104 |
+
.box1, .box2 {
|
105 |
+
flex: 1;
|
106 |
+
background: #f8f9fa;
|
107 |
+
padding: 1.5rem;
|
108 |
+
border-radius: 8px;
|
109 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
110 |
+
}
|
111 |
+
|
112 |
+
.concept-highlight {
|
113 |
+
background: #e9ecef;
|
114 |
+
padding: 1.5rem;
|
115 |
+
border-radius: 8px;
|
116 |
+
margin: 1.5rem 0;
|
117 |
+
border-left: 4px solid #007bff;
|
118 |
+
}
|
119 |
+
|
120 |
+
/* Formula Styles */
|
121 |
+
.formula {
|
122 |
+
background: #f8f9fa;
|
123 |
+
padding: 1.5rem;
|
124 |
+
border-radius: 8px;
|
125 |
+
margin: 1rem 0;
|
126 |
+
text-align: center;
|
127 |
+
font-family: 'Times New Roman', serif;
|
128 |
+
font-size: 1.2rem;
|
129 |
+
}
|
130 |
+
|
131 |
+
/* List Styles */
|
132 |
+
.step-content ul, .step-content ol {
|
133 |
+
padding-left: 1.5rem;
|
134 |
+
margin: 1rem 0;
|
135 |
+
}
|
136 |
+
|
137 |
+
.step-content li {
|
138 |
+
margin-bottom: 0.5rem;
|
139 |
+
color: #495057;
|
140 |
+
line-height: 1.5;
|
141 |
+
}
|
142 |
+
|
143 |
+
/* Animation */
|
144 |
+
@keyframes fadeIn {
|
145 |
+
from {
|
146 |
+
opacity: 0;
|
147 |
+
transform: translateY(10px);
|
148 |
+
}
|
149 |
+
to {
|
150 |
+
opacity: 1;
|
151 |
+
transform: translateY(0);
|
152 |
+
}
|
153 |
+
}
|
154 |
+
|
155 |
+
/* Responsive Design */
|
156 |
+
@media (max-width: 1024px) {
|
157 |
+
.learning-container {
|
158 |
+
flex-direction: column;
|
159 |
+
}
|
160 |
+
|
161 |
+
.learning-sidebar {
|
162 |
+
flex: none;
|
163 |
+
position: static;
|
164 |
+
width: 100%;
|
165 |
+
}
|
166 |
+
|
167 |
+
.concept-box {
|
168 |
+
flex-direction: column;
|
169 |
+
}
|
170 |
+
}
|
171 |
+
|
172 |
+
/* Code and Math Styles */
|
173 |
+
code {
|
174 |
+
background: #f8f9fa;
|
175 |
+
padding: 0.2rem 0.4rem;
|
176 |
+
border-radius: 4px;
|
177 |
+
font-family: 'Courier New', monospace;
|
178 |
+
font-size: 0.9rem;
|
179 |
+
}
|
180 |
+
|
181 |
+
sub {
|
182 |
+
font-size: 0.75em;
|
183 |
+
vertical-align: sub;
|
184 |
+
}
|
185 |
+
|
186 |
+
/* Links */
|
187 |
+
.step-content a {
|
188 |
+
color: #007bff;
|
189 |
+
text-decoration: none;
|
190 |
+
transition: color 0.2s ease;
|
191 |
+
}
|
192 |
+
|
193 |
+
.step-content a:hover {
|
194 |
+
color: #0056b3;
|
195 |
+
text-decoration: underline;
|
196 |
+
}
|
197 |
+
|
198 |
+
/* Strong Text */
|
199 |
+
strong {
|
200 |
+
color: #212529;
|
201 |
+
font-weight: 600;
|
202 |
+
}
|
app/static/css/styles.css
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
:root {
|
2 |
+
--primary-color: #3f51b5;
|
3 |
+
--primary-light: #757de8;
|
4 |
+
--primary-dark: #002984;
|
5 |
+
--secondary-color: #4caf50;
|
6 |
+
--accent-color: #ff9800;
|
7 |
+
--error-color: #f44336;
|
8 |
+
--text-primary: #333;
|
9 |
+
--text-secondary: #666;
|
10 |
+
--background-light: #fff;
|
11 |
+
--background-off: #f5f7fa;
|
12 |
+
--border-color: #ddd;
|
13 |
+
|
14 |
+
--font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, sans-serif;
|
15 |
+
--shadow-sm: 0 1px 3px rgba(0, 0, 0, 0.12), 0 1px 2px rgba(0, 0, 0, 0.24);
|
16 |
+
}
|
17 |
+
|
18 |
+
/* Base Styles */
|
19 |
+
body {
|
20 |
+
font-family: var(--font-family);
|
21 |
+
margin: 0;
|
22 |
+
padding: 0;
|
23 |
+
background: var(--background-off);
|
24 |
+
color: var(--text-primary);
|
25 |
+
}
|
26 |
+
|
27 |
+
.app-container {
|
28 |
+
min-height: 100vh;
|
29 |
+
display: flex;
|
30 |
+
flex-direction: column;
|
31 |
+
}
|
32 |
+
|
33 |
+
/* Header */
|
34 |
+
.main-header {
|
35 |
+
background-color: var(--primary-color);
|
36 |
+
color: white;
|
37 |
+
padding: 1rem;
|
38 |
+
box-shadow: var(--shadow-sm);
|
39 |
+
}
|
40 |
+
|
41 |
+
.header-container {
|
42 |
+
display: flex;
|
43 |
+
justify-content: space-between;
|
44 |
+
align-items: center;
|
45 |
+
max-width: 1200px;
|
46 |
+
margin: 0 auto;
|
47 |
+
}
|
48 |
+
|
49 |
+
.logo {
|
50 |
+
font-size: 1.5rem;
|
51 |
+
font-weight: bold;
|
52 |
+
}
|
53 |
+
|
54 |
+
.tagline {
|
55 |
+
font-size: 0.8rem;
|
56 |
+
opacity: 0.8;
|
57 |
+
}
|
58 |
+
|
59 |
+
/* Navigation */
|
60 |
+
.nav-list {
|
61 |
+
list-style: none;
|
62 |
+
display: flex;
|
63 |
+
gap: 1rem;
|
64 |
+
padding: 0;
|
65 |
+
margin: 0;
|
66 |
+
}
|
67 |
+
|
68 |
+
.nav-link {
|
69 |
+
color: white;
|
70 |
+
cursor: pointer;
|
71 |
+
padding: 0.5rem 1rem;
|
72 |
+
border-radius: 4px;
|
73 |
+
text-decoration: none;
|
74 |
+
}
|
75 |
+
|
76 |
+
.nav-link:hover {
|
77 |
+
background-color: rgba(255, 255, 255, 0.1);
|
78 |
+
}
|
79 |
+
|
80 |
+
.nav-link.active {
|
81 |
+
background-color: rgba(255, 255, 255, 0.2);
|
82 |
+
}
|
83 |
+
|
84 |
+
/* Main Content */
|
85 |
+
.main-content {
|
86 |
+
flex: 1;
|
87 |
+
max-width: 1200px;
|
88 |
+
margin: 0 auto;
|
89 |
+
padding: 1rem;
|
90 |
+
}
|
91 |
+
|
92 |
+
.section-title {
|
93 |
+
font-size: 2rem;
|
94 |
+
color: var(--primary-dark);
|
95 |
+
margin-bottom: 1.5rem;
|
96 |
+
}
|
97 |
+
|
98 |
+
/* Grid Layout */
|
99 |
+
.lab-container {
|
100 |
+
display: grid;
|
101 |
+
grid-template-columns: 300px 1fr;
|
102 |
+
gap: 1.5rem;
|
103 |
+
}
|
104 |
+
|
105 |
+
@media (max-width: 900px) {
|
106 |
+
.lab-container {
|
107 |
+
grid-template-columns: 1fr;
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
/* Panels */
|
112 |
+
.panel {
|
113 |
+
background: white;
|
114 |
+
border-radius: 8px;
|
115 |
+
padding: 1rem;
|
116 |
+
box-shadow: var(--shadow-sm);
|
117 |
+
}
|
118 |
+
|
119 |
+
.panel-title {
|
120 |
+
font-size: 1.2rem;
|
121 |
+
margin-bottom: 1rem;
|
122 |
+
color: var(--primary-dark);
|
123 |
+
}
|
124 |
+
|
125 |
+
/* Parameter Controls */
|
126 |
+
.parameter-control {
|
127 |
+
margin-bottom: 1rem;
|
128 |
+
}
|
129 |
+
|
130 |
+
.parameter-label {
|
131 |
+
display: block;
|
132 |
+
margin-bottom: 0.5rem;
|
133 |
+
font-weight: 500;
|
134 |
+
}
|
135 |
+
|
136 |
+
.parameter-slider {
|
137 |
+
width: 100%;
|
138 |
+
margin-bottom: 0.5rem;
|
139 |
+
}
|
140 |
+
|
141 |
+
.slider-display {
|
142 |
+
display: flex;
|
143 |
+
justify-content: space-between;
|
144 |
+
font-size: 0.9rem;
|
145 |
+
color: var(--text-secondary);
|
146 |
+
}
|
147 |
+
|
148 |
+
/* Privacy Budget Display */
|
149 |
+
.budget-display {
|
150 |
+
margin-top: 1.5rem;
|
151 |
+
padding: 1rem;
|
152 |
+
background: var(--background-off);
|
153 |
+
border-radius: 4px;
|
154 |
+
}
|
155 |
+
|
156 |
+
.budget-bar {
|
157 |
+
height: 8px;
|
158 |
+
background-color: #e0e0e0;
|
159 |
+
border-radius: 4px;
|
160 |
+
position: relative;
|
161 |
+
margin: 0.5rem 0;
|
162 |
+
}
|
163 |
+
|
164 |
+
.budget-fill {
|
165 |
+
height: 100%;
|
166 |
+
border-radius: 4px;
|
167 |
+
background-color: var(--accent-color);
|
168 |
+
transition: width 0.3s ease;
|
169 |
+
}
|
170 |
+
|
171 |
+
.budget-fill.low {
|
172 |
+
background-color: var(--secondary-color);
|
173 |
+
}
|
174 |
+
|
175 |
+
.budget-fill.medium {
|
176 |
+
background-color: var(--accent-color);
|
177 |
+
}
|
178 |
+
|
179 |
+
.budget-fill.high {
|
180 |
+
background-color: var(--error-color);
|
181 |
+
}
|
182 |
+
|
183 |
+
/* Buttons */
|
184 |
+
.control-button {
|
185 |
+
width: 100%;
|
186 |
+
padding: 0.8rem;
|
187 |
+
border: none;
|
188 |
+
border-radius: 4px;
|
189 |
+
background-color: var(--primary-color);
|
190 |
+
color: white;
|
191 |
+
font-weight: bold;
|
192 |
+
cursor: pointer;
|
193 |
+
margin-top: 1rem;
|
194 |
+
transition: background-color 0.3s ease;
|
195 |
+
}
|
196 |
+
|
197 |
+
.control-button:hover {
|
198 |
+
background-color: var(--primary-dark);
|
199 |
+
}
|
200 |
+
|
201 |
+
.control-button.running {
|
202 |
+
background-color: var(--error-color);
|
203 |
+
}
|
204 |
+
|
205 |
+
/* Charts */
|
206 |
+
.chart-container {
|
207 |
+
height: 300px;
|
208 |
+
margin-bottom: 1rem;
|
209 |
+
position: relative;
|
210 |
+
}
|
211 |
+
|
212 |
+
.chart {
|
213 |
+
width: 100%;
|
214 |
+
height: 100%;
|
215 |
+
border: 1px solid var(--border-color);
|
216 |
+
border-radius: 4px;
|
217 |
+
}
|
218 |
+
|
219 |
+
/* Metrics */
|
220 |
+
.metrics-grid {
|
221 |
+
display: grid;
|
222 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
223 |
+
gap: 1rem;
|
224 |
+
margin-bottom: 1rem;
|
225 |
+
}
|
226 |
+
|
227 |
+
.metric-card {
|
228 |
+
background-color: var(--background-off);
|
229 |
+
border-radius: 4px;
|
230 |
+
padding: 1rem;
|
231 |
+
text-align: center;
|
232 |
+
}
|
233 |
+
|
234 |
+
.metric-value {
|
235 |
+
font-size: 1.5rem;
|
236 |
+
font-weight: bold;
|
237 |
+
margin-bottom: 0.5rem;
|
238 |
+
}
|
239 |
+
|
240 |
+
.metric-label {
|
241 |
+
color: var(--text-secondary);
|
242 |
+
font-weight: 500;
|
243 |
+
}
|
244 |
+
|
245 |
+
/* Recommendations */
|
246 |
+
.recommendation-list {
|
247 |
+
list-style: none;
|
248 |
+
padding: 0;
|
249 |
+
margin: 0;
|
250 |
+
}
|
251 |
+
|
252 |
+
.recommendation-item {
|
253 |
+
display: flex;
|
254 |
+
align-items: flex-start;
|
255 |
+
padding: 0.8rem 0;
|
256 |
+
border-bottom: 1px solid var(--border-color);
|
257 |
+
}
|
258 |
+
|
259 |
+
.recommendation-icon {
|
260 |
+
margin-right: 0.5rem;
|
261 |
+
font-size: 1.2rem;
|
262 |
+
}
|
263 |
+
|
264 |
+
/* Tabs */
|
265 |
+
.tabs {
|
266 |
+
display: flex;
|
267 |
+
margin-bottom: 1rem;
|
268 |
+
}
|
269 |
+
|
270 |
+
.tab {
|
271 |
+
padding: 0.5rem 1rem;
|
272 |
+
cursor: pointer;
|
273 |
+
border-bottom: 2px solid transparent;
|
274 |
+
transition: all 0.3s ease;
|
275 |
+
}
|
276 |
+
|
277 |
+
.tab:hover {
|
278 |
+
color: var(--primary-color);
|
279 |
+
}
|
280 |
+
|
281 |
+
.tab.active {
|
282 |
+
border-bottom: 2px solid var(--primary-color);
|
283 |
+
color: var(--primary-color);
|
284 |
+
}
|
285 |
+
|
286 |
+
.tab-content {
|
287 |
+
display: none;
|
288 |
+
}
|
289 |
+
|
290 |
+
.tab-content.active {
|
291 |
+
display: block;
|
292 |
+
}
|
293 |
+
|
294 |
+
/* Training Status */
|
295 |
+
.status-badge {
|
296 |
+
display: flex;
|
297 |
+
align-items: center;
|
298 |
+
margin-top: 1rem;
|
299 |
+
padding: 0.5rem;
|
300 |
+
background-color: var(--background-off);
|
301 |
+
border-radius: 4px;
|
302 |
+
}
|
303 |
+
|
304 |
+
.pulse {
|
305 |
+
display: inline-block;
|
306 |
+
width: 10px;
|
307 |
+
height: 10px;
|
308 |
+
border-radius: 50%;
|
309 |
+
background: var(--secondary-color);
|
310 |
+
margin-right: 0.5rem;
|
311 |
+
animation: pulse 1.5s infinite;
|
312 |
+
}
|
313 |
+
|
314 |
+
@keyframes pulse {
|
315 |
+
0% {
|
316 |
+
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0.7);
|
317 |
+
}
|
318 |
+
70% {
|
319 |
+
box-shadow: 0 0 0 10px rgba(76, 175, 80, 0);
|
320 |
+
}
|
321 |
+
100% {
|
322 |
+
box-shadow: 0 0 0 0 rgba(76, 175, 80, 0);
|
323 |
+
}
|
324 |
+
}
|
325 |
+
|
326 |
+
/* Footer */
|
327 |
+
.footer {
|
328 |
+
text-align: center;
|
329 |
+
padding: 1rem;
|
330 |
+
background-color: var(--primary-dark);
|
331 |
+
color: white;
|
332 |
+
margin-top: 2rem;
|
333 |
+
}
|
334 |
+
|
335 |
+
/* Tooltips */
|
336 |
+
.tooltip {
|
337 |
+
position: relative;
|
338 |
+
display: inline-block;
|
339 |
+
margin-left: 0.5rem;
|
340 |
+
}
|
341 |
+
|
342 |
+
.tooltip-icon {
|
343 |
+
width: 16px;
|
344 |
+
height: 16px;
|
345 |
+
border-radius: 50%;
|
346 |
+
background-color: var(--primary-light);
|
347 |
+
color: white;
|
348 |
+
font-size: 12px;
|
349 |
+
display: flex;
|
350 |
+
align-items: center;
|
351 |
+
justify-content: center;
|
352 |
+
cursor: help;
|
353 |
+
}
|
354 |
+
|
355 |
+
.tooltip-text {
|
356 |
+
visibility: hidden;
|
357 |
+
width: 200px;
|
358 |
+
background-color: #333;
|
359 |
+
color: white;
|
360 |
+
text-align: center;
|
361 |
+
border-radius: 4px;
|
362 |
+
padding: 0.5rem;
|
363 |
+
position: absolute;
|
364 |
+
z-index: 1;
|
365 |
+
bottom: 125%;
|
366 |
+
left: 50%;
|
367 |
+
margin-left: -100px;
|
368 |
+
opacity: 0;
|
369 |
+
transition: opacity 0.3s;
|
370 |
+
font-size: 0.8rem;
|
371 |
+
}
|
372 |
+
|
373 |
+
.tooltip:hover .tooltip-text {
|
374 |
+
visibility: visible;
|
375 |
+
opacity: 1;
|
376 |
+
}
|
377 |
+
|
378 |
+
/* Learning Hub Styles */
|
379 |
+
.learning-container {
|
380 |
+
display: grid;
|
381 |
+
grid-template-columns: 250px 1fr;
|
382 |
+
gap: 1.5rem;
|
383 |
+
}
|
384 |
+
|
385 |
+
.learning-sidebar {
|
386 |
+
background: white;
|
387 |
+
border-radius: 8px;
|
388 |
+
padding: 1rem;
|
389 |
+
box-shadow: var(--shadow-sm);
|
390 |
+
}
|
391 |
+
|
392 |
+
.learning-content {
|
393 |
+
background: white;
|
394 |
+
border-radius: 8px;
|
395 |
+
padding: 1.5rem;
|
396 |
+
box-shadow: var(--shadow-sm);
|
397 |
+
}
|
398 |
+
|
399 |
+
.learning-steps {
|
400 |
+
list-style: none;
|
401 |
+
padding: 0;
|
402 |
+
margin: 0;
|
403 |
+
}
|
404 |
+
|
405 |
+
.learning-step {
|
406 |
+
padding: 0.75rem 0.5rem;
|
407 |
+
border-radius: 4px;
|
408 |
+
cursor: pointer;
|
409 |
+
margin-bottom: 0.5rem;
|
410 |
+
transition: all 0.3s ease;
|
411 |
+
}
|
412 |
+
|
413 |
+
.learning-step:hover {
|
414 |
+
background-color: var(--background-off);
|
415 |
+
}
|
416 |
+
|
417 |
+
.learning-step.active {
|
418 |
+
background-color: var(--background-off);
|
419 |
+
color: var(--primary-color);
|
420 |
+
font-weight: 500;
|
421 |
+
}
|
422 |
+
|
423 |
+
/* Concept Boxes */
|
424 |
+
.concept-highlight {
|
425 |
+
background-color: var(--background-off);
|
426 |
+
border-radius: 4px;
|
427 |
+
padding: 1rem;
|
428 |
+
margin: 1rem 0;
|
429 |
+
}
|
430 |
+
|
431 |
+
.formula {
|
432 |
+
background-color: #f5f7fa;
|
433 |
+
padding: 0.75rem;
|
434 |
+
border-radius: 4px;
|
435 |
+
font-family: monospace;
|
436 |
+
margin: 1rem 0;
|
437 |
+
}
|
438 |
+
|
439 |
+
.concept-box {
|
440 |
+
display: flex;
|
441 |
+
margin: 1rem 0;
|
442 |
+
gap: 1rem;
|
443 |
+
}
|
444 |
+
|
445 |
+
.concept-box > div {
|
446 |
+
flex: 1;
|
447 |
+
padding: 1rem;
|
448 |
+
border-radius: 8px;
|
449 |
+
}
|
450 |
+
|
451 |
+
.concept-box .box1 {
|
452 |
+
background-color: #e3f2fd;
|
453 |
+
}
|
454 |
+
|
455 |
+
.concept-box .box2 {
|
456 |
+
background-color: #fff8e1;
|
457 |
+
}
|
app/static/js/main.js
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class DPSGDExplorer {
|
2 |
+
constructor() {
|
3 |
+
this.trainingChart = null;
|
4 |
+
this.privacyChart = null;
|
5 |
+
this.isTraining = false;
|
6 |
+
this.initializeUI();
|
7 |
+
}
|
8 |
+
|
9 |
+
initializeUI() {
|
10 |
+
// Initialize parameter controls
|
11 |
+
this.initializeSliders();
|
12 |
+
this.initializePresets();
|
13 |
+
this.initializeTabs();
|
14 |
+
this.initializeCharts();
|
15 |
+
|
16 |
+
// Add event listeners
|
17 |
+
document.getElementById('train-button')?.addEventListener('click', () => this.toggleTraining());
|
18 |
+
}
|
19 |
+
|
20 |
+
initializeSliders() {
|
21 |
+
// Parameter sliders
|
22 |
+
const sliders = {
|
23 |
+
'clipping-norm': document.getElementById('clipping-norm'),
|
24 |
+
'noise-multiplier': document.getElementById('noise-multiplier'),
|
25 |
+
'batch-size': document.getElementById('batch-size'),
|
26 |
+
'learning-rate': document.getElementById('learning-rate'),
|
27 |
+
'epochs': document.getElementById('epochs')
|
28 |
+
};
|
29 |
+
|
30 |
+
// Add event listeners to sliders
|
31 |
+
for (const [id, slider] of Object.entries(sliders)) {
|
32 |
+
if (slider) {
|
33 |
+
slider.addEventListener('input', (e) => {
|
34 |
+
document.getElementById(`${id}-value`).textContent = e.target.value;
|
35 |
+
this.updatePrivacyBudget();
|
36 |
+
});
|
37 |
+
}
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
initializePresets() {
|
42 |
+
const presets = {
|
43 |
+
'high-privacy': {
|
44 |
+
clippingNorm: 1.0,
|
45 |
+
noiseMultiplier: 1.5,
|
46 |
+
batchSize: 256,
|
47 |
+
learningRate: 0.005,
|
48 |
+
epochs: 10
|
49 |
+
},
|
50 |
+
'balanced': {
|
51 |
+
clippingNorm: 1.0,
|
52 |
+
noiseMultiplier: 1.0,
|
53 |
+
batchSize: 128,
|
54 |
+
learningRate: 0.01,
|
55 |
+
epochs: 8
|
56 |
+
},
|
57 |
+
'high-utility': {
|
58 |
+
clippingNorm: 1.5,
|
59 |
+
noiseMultiplier: 0.5,
|
60 |
+
batchSize: 64,
|
61 |
+
learningRate: 0.02,
|
62 |
+
epochs: 5
|
63 |
+
}
|
64 |
+
};
|
65 |
+
|
66 |
+
// Add event listeners to preset buttons
|
67 |
+
for (const [preset, values] of Object.entries(presets)) {
|
68 |
+
document.getElementById(`preset-${preset}`)?.addEventListener('click', () => {
|
69 |
+
this.applyPreset(values);
|
70 |
+
});
|
71 |
+
}
|
72 |
+
}
|
73 |
+
|
74 |
+
initializeTabs() {
|
75 |
+
const tabs = document.querySelectorAll('.tab');
|
76 |
+
tabs.forEach(tab => {
|
77 |
+
tab.addEventListener('click', () => {
|
78 |
+
const tabsContainer = tab.closest('.tabs');
|
79 |
+
tabsContainer.querySelectorAll('.tab').forEach(t => t.classList.remove('active'));
|
80 |
+
tab.classList.add('active');
|
81 |
+
|
82 |
+
const tabName = tab.getAttribute('data-tab');
|
83 |
+
const panel = tab.closest('.panel');
|
84 |
+
panel.querySelectorAll('.tab-content').forEach(content => {
|
85 |
+
content.classList.remove('active');
|
86 |
+
});
|
87 |
+
panel.querySelector(`#${tabName}-tab`)?.classList.add('active');
|
88 |
+
});
|
89 |
+
});
|
90 |
+
}
|
91 |
+
|
92 |
+
initializeCharts() {
|
93 |
+
const trainingCtx = document.getElementById('training-chart')?.getContext('2d');
|
94 |
+
const privacyCtx = document.getElementById('privacy-chart')?.getContext('2d');
|
95 |
+
|
96 |
+
if (trainingCtx) {
|
97 |
+
this.trainingChart = new Chart(trainingCtx, {
|
98 |
+
type: 'line',
|
99 |
+
data: {
|
100 |
+
labels: [],
|
101 |
+
datasets: [
|
102 |
+
{
|
103 |
+
label: 'Accuracy',
|
104 |
+
borderColor: '#4caf50',
|
105 |
+
data: [],
|
106 |
+
yAxisID: 'y'
|
107 |
+
},
|
108 |
+
{
|
109 |
+
label: 'Loss',
|
110 |
+
borderColor: '#f44336',
|
111 |
+
data: [],
|
112 |
+
yAxisID: 'y1'
|
113 |
+
}
|
114 |
+
]
|
115 |
+
},
|
116 |
+
options: {
|
117 |
+
responsive: true,
|
118 |
+
interaction: {
|
119 |
+
mode: 'index',
|
120 |
+
intersect: false,
|
121 |
+
},
|
122 |
+
scales: {
|
123 |
+
y: {
|
124 |
+
type: 'linear',
|
125 |
+
display: true,
|
126 |
+
position: 'left',
|
127 |
+
title: {
|
128 |
+
display: true,
|
129 |
+
text: 'Accuracy (%)'
|
130 |
+
}
|
131 |
+
},
|
132 |
+
y1: {
|
133 |
+
type: 'linear',
|
134 |
+
display: true,
|
135 |
+
position: 'right',
|
136 |
+
title: {
|
137 |
+
display: true,
|
138 |
+
text: 'Loss'
|
139 |
+
},
|
140 |
+
grid: {
|
141 |
+
drawOnChartArea: false,
|
142 |
+
},
|
143 |
+
}
|
144 |
+
}
|
145 |
+
}
|
146 |
+
});
|
147 |
+
}
|
148 |
+
|
149 |
+
if (privacyCtx) {
|
150 |
+
this.privacyChart = new Chart(privacyCtx, {
|
151 |
+
type: 'line',
|
152 |
+
data: {
|
153 |
+
labels: [],
|
154 |
+
datasets: [{
|
155 |
+
label: 'Privacy Budget (ε)',
|
156 |
+
borderColor: '#3f51b5',
|
157 |
+
data: []
|
158 |
+
}]
|
159 |
+
},
|
160 |
+
options: {
|
161 |
+
responsive: true,
|
162 |
+
scales: {
|
163 |
+
y: {
|
164 |
+
title: {
|
165 |
+
display: true,
|
166 |
+
text: 'Privacy Budget (ε)'
|
167 |
+
}
|
168 |
+
},
|
169 |
+
x: {
|
170 |
+
title: {
|
171 |
+
display: true,
|
172 |
+
text: 'Epoch'
|
173 |
+
}
|
174 |
+
}
|
175 |
+
}
|
176 |
+
}
|
177 |
+
});
|
178 |
+
}
|
179 |
+
}
|
180 |
+
|
181 |
+
async updatePrivacyBudget() {
|
182 |
+
const params = this.getParameters();
|
183 |
+
try {
|
184 |
+
const response = await fetch('/api/privacy-budget', {
|
185 |
+
method: 'POST',
|
186 |
+
headers: {
|
187 |
+
'Content-Type': 'application/json',
|
188 |
+
},
|
189 |
+
body: JSON.stringify(params)
|
190 |
+
});
|
191 |
+
const data = await response.json();
|
192 |
+
|
193 |
+
// Update UI
|
194 |
+
const budgetValue = document.getElementById('budget-value');
|
195 |
+
const budgetFill = document.getElementById('budget-fill');
|
196 |
+
|
197 |
+
if (budgetValue && budgetFill) {
|
198 |
+
budgetValue.textContent = data.epsilon.toFixed(2);
|
199 |
+
budgetFill.style.width = `${Math.min(data.epsilon / 10 * 100, 100)}%`;
|
200 |
+
|
201 |
+
// Update class for coloring
|
202 |
+
budgetFill.classList.remove('low', 'medium', 'high');
|
203 |
+
if (data.epsilon <= 1) {
|
204 |
+
budgetFill.classList.add('low');
|
205 |
+
} else if (data.epsilon <= 5) {
|
206 |
+
budgetFill.classList.add('medium');
|
207 |
+
} else {
|
208 |
+
budgetFill.classList.add('high');
|
209 |
+
}
|
210 |
+
}
|
211 |
+
} catch (error) {
|
212 |
+
console.error('Error calculating privacy budget:', error);
|
213 |
+
}
|
214 |
+
}
|
215 |
+
|
216 |
+
async toggleTraining() {
|
217 |
+
if (this.isTraining) {
|
218 |
+
this.stopTraining();
|
219 |
+
} else {
|
220 |
+
await this.startTraining();
|
221 |
+
}
|
222 |
+
}
|
223 |
+
|
224 |
+
async startTraining() {
|
225 |
+
const trainButton = document.getElementById('train-button');
|
226 |
+
const trainingStatus = document.getElementById('training-status');
|
227 |
+
|
228 |
+
if (!trainButton || this.isTraining) return;
|
229 |
+
|
230 |
+
this.isTraining = true;
|
231 |
+
trainButton.textContent = 'Stop Training';
|
232 |
+
trainButton.classList.add('running');
|
233 |
+
trainingStatus.style.display = 'flex';
|
234 |
+
|
235 |
+
// Reset charts
|
236 |
+
this.resetCharts();
|
237 |
+
|
238 |
+
try {
|
239 |
+
const response = await fetch('/api/train', {
|
240 |
+
method: 'POST',
|
241 |
+
headers: {
|
242 |
+
'Content-Type': 'application/json',
|
243 |
+
},
|
244 |
+
body: JSON.stringify(this.getParameters())
|
245 |
+
});
|
246 |
+
|
247 |
+
const data = await response.json();
|
248 |
+
this.updateCharts(data.epochs_data);
|
249 |
+
this.updateResults(data);
|
250 |
+
} catch (error) {
|
251 |
+
console.error('Training error:', error);
|
252 |
+
} finally {
|
253 |
+
this.stopTraining();
|
254 |
+
}
|
255 |
+
}
|
256 |
+
|
257 |
+
stopTraining() {
|
258 |
+
this.isTraining = false;
|
259 |
+
const trainButton = document.getElementById('train-button');
|
260 |
+
if (trainButton) {
|
261 |
+
trainButton.textContent = 'Run Training';
|
262 |
+
trainButton.classList.remove('running');
|
263 |
+
}
|
264 |
+
document.getElementById('training-status').style.display = 'none';
|
265 |
+
}
|
266 |
+
|
267 |
+
resetCharts() {
|
268 |
+
if (this.trainingChart) {
|
269 |
+
this.trainingChart.data.labels = [];
|
270 |
+
this.trainingChart.data.datasets[0].data = [];
|
271 |
+
this.trainingChart.data.datasets[1].data = [];
|
272 |
+
this.trainingChart.update();
|
273 |
+
}
|
274 |
+
|
275 |
+
if (this.privacyChart) {
|
276 |
+
this.privacyChart.data.labels = [];
|
277 |
+
this.privacyChart.data.datasets[0].data = [];
|
278 |
+
this.privacyChart.update();
|
279 |
+
}
|
280 |
+
}
|
281 |
+
|
282 |
+
updateCharts(epochsData) {
|
283 |
+
if (!this.trainingChart || !epochsData) return;
|
284 |
+
|
285 |
+
const labels = epochsData.map(d => d.epoch);
|
286 |
+
const accuracies = epochsData.map(d => d.accuracy);
|
287 |
+
const losses = epochsData.map(d => d.loss);
|
288 |
+
|
289 |
+
this.trainingChart.data.labels = labels;
|
290 |
+
this.trainingChart.data.datasets[0].data = accuracies;
|
291 |
+
this.trainingChart.data.datasets[1].data = losses;
|
292 |
+
this.trainingChart.update();
|
293 |
+
|
294 |
+
// Update privacy chart
|
295 |
+
if (this.privacyChart) {
|
296 |
+
this.privacyChart.data.labels = labels;
|
297 |
+
this.privacyChart.data.datasets[0].data = epochsData.map((_, i) =>
|
298 |
+
this.calculateEpochPrivacy(i + 1)
|
299 |
+
);
|
300 |
+
this.privacyChart.update();
|
301 |
+
}
|
302 |
+
}
|
303 |
+
|
304 |
+
updateResults(data) {
|
305 |
+
// Hide no-results message and show results content
|
306 |
+
document.getElementById('no-results').style.display = 'none';
|
307 |
+
document.getElementById('results-content').style.display = 'block';
|
308 |
+
|
309 |
+
// Update metrics
|
310 |
+
document.getElementById('accuracy-value').textContent =
|
311 |
+
data.final_metrics.accuracy.toFixed(1) + '%';
|
312 |
+
document.getElementById('loss-value').textContent =
|
313 |
+
data.final_metrics.loss.toFixed(3);
|
314 |
+
document.getElementById('training-time-value').textContent =
|
315 |
+
data.final_metrics.training_time.toFixed(1) + 's';
|
316 |
+
|
317 |
+
// Update recommendations
|
318 |
+
const recommendationList = document.querySelector('.recommendation-list');
|
319 |
+
recommendationList.innerHTML = '';
|
320 |
+
data.recommendations.forEach(rec => {
|
321 |
+
const item = document.createElement('li');
|
322 |
+
item.className = 'recommendation-item';
|
323 |
+
item.innerHTML = `
|
324 |
+
<span class="recommendation-icon">${rec.icon}</span>
|
325 |
+
<span>${rec.text}</span>
|
326 |
+
`;
|
327 |
+
recommendationList.appendChild(item);
|
328 |
+
});
|
329 |
+
}
|
330 |
+
|
331 |
+
getParameters() {
|
332 |
+
return {
|
333 |
+
clipping_norm: parseFloat(document.getElementById('clipping-norm').value),
|
334 |
+
noise_multiplier: parseFloat(document.getElementById('noise-multiplier').value),
|
335 |
+
batch_size: parseInt(document.getElementById('batch-size').value),
|
336 |
+
learning_rate: parseFloat(document.getElementById('learning-rate').value),
|
337 |
+
epochs: parseInt(document.getElementById('epochs').value)
|
338 |
+
};
|
339 |
+
}
|
340 |
+
|
341 |
+
applyPreset(values) {
|
342 |
+
document.getElementById('clipping-norm').value = values.clippingNorm;
|
343 |
+
document.getElementById('noise-multiplier').value = values.noiseMultiplier;
|
344 |
+
document.getElementById('batch-size').value = values.batchSize;
|
345 |
+
document.getElementById('learning-rate').value = values.learningRate;
|
346 |
+
document.getElementById('epochs').value = values.epochs;
|
347 |
+
|
348 |
+
// Update displayed values
|
349 |
+
document.getElementById('clipping-norm-value').textContent = values.clippingNorm;
|
350 |
+
document.getElementById('noise-multiplier-value').textContent = values.noiseMultiplier;
|
351 |
+
document.getElementById('batch-size-value').textContent = values.batchSize;
|
352 |
+
document.getElementById('learning-rate-value').textContent = values.learningRate;
|
353 |
+
document.getElementById('epochs-value').textContent = values.epochs;
|
354 |
+
|
355 |
+
this.updatePrivacyBudget();
|
356 |
+
}
|
357 |
+
|
358 |
+
calculateEpochPrivacy(epoch) {
|
359 |
+
const params = this.getParameters();
|
360 |
+
const samplingRate = params.batch_size / 60000; // Assuming MNIST size
|
361 |
+
const steps = epoch * (1 / samplingRate);
|
362 |
+
const delta = 1e-5;
|
363 |
+
const c = Math.sqrt(2 * Math.log(1.25 / delta));
|
364 |
+
return Math.min((c * samplingRate * Math.sqrt(steps)) / params.noise_multiplier, 10);
|
365 |
+
}
|
366 |
+
}
|
367 |
+
|
368 |
+
// Initialize the application when the DOM is loaded
|
369 |
+
document.addEventListener('DOMContentLoaded', () => {
|
370 |
+
window.dpsgdExplorer = new DPSGDExplorer();
|
371 |
+
});
|
app/templates/base.html
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>{% block title %}DP-SGD Explorer{% endblock %}</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
|
8 |
+
<link rel="stylesheet" href="{{ url_for('static', filename='css/learning.css') }}">
|
9 |
+
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
10 |
+
{% block extra_head %}{% endblock %}
|
11 |
+
</head>
|
12 |
+
<body>
|
13 |
+
<div class="app-container">
|
14 |
+
<header class="main-header">
|
15 |
+
<div class="header-container">
|
16 |
+
<div>
|
17 |
+
<div class="logo">DP-SGD Explorer</div>
|
18 |
+
<div class="tagline">Interactive Learning & Experimentation</div>
|
19 |
+
</div>
|
20 |
+
<nav>
|
21 |
+
<ul class="nav-list">
|
22 |
+
<li><a href="{{ url_for('main.learning') }}" class="nav-link {% if request.endpoint == 'main.learning' %}active{% endif %}">Learning Hub</a></li>
|
23 |
+
<li><a href="{{ url_for('main.index') }}" class="nav-link {% if request.endpoint == 'main.index' %}active{% endif %}">Playground</a></li>
|
24 |
+
</ul>
|
25 |
+
</nav>
|
26 |
+
</div>
|
27 |
+
</header>
|
28 |
+
|
29 |
+
<main class="main-content">
|
30 |
+
{% block content %}{% endblock %}
|
31 |
+
</main>
|
32 |
+
|
33 |
+
<footer class="footer">
|
34 |
+
<p>DP-SGD Explorer - An Educational Tool for Differential Privacy in Machine Learning</p>
|
35 |
+
<p>© 2024 - For educational purposes</p>
|
36 |
+
</footer>
|
37 |
+
</div>
|
38 |
+
|
39 |
+
<script src="{{ url_for('static', filename='js/main.js') }}"></script>
|
40 |
+
{% block extra_scripts %}{% endblock %}
|
41 |
+
</body>
|
42 |
+
</html>
|
app/templates/index.html
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{% extends "base.html" %}
|
2 |
+
|
3 |
+
{% block title %}DP-SGD Explorer - Interactive Playground{% endblock %}
|
4 |
+
|
5 |
+
{% block content %}
|
6 |
+
<h1 class="section-title">DP-SGD Interactive Playground</h1>
|
7 |
+
|
8 |
+
<div class="lab-container">
|
9 |
+
<!-- Sidebar - Configuration Panels -->
|
10 |
+
<div class="lab-sidebar">
|
11 |
+
<!-- Model Configuration Panel -->
|
12 |
+
<div class="panel">
|
13 |
+
<h2 class="panel-title">Model Configuration</h2>
|
14 |
+
|
15 |
+
<div class="parameter-control">
|
16 |
+
<label for="dataset-select" class="parameter-label">
|
17 |
+
Dataset
|
18 |
+
<span class="tooltip">
|
19 |
+
<span class="tooltip-icon">?</span>
|
20 |
+
<span class="tooltip-text">The dataset used for training affects privacy budget calculations and model accuracy.</span>
|
21 |
+
</span>
|
22 |
+
</label>
|
23 |
+
<select id="dataset-select" class="parameter-select">
|
24 |
+
<option value="mnist">MNIST Digits</option>
|
25 |
+
<option value="fashion-mnist">Fashion MNIST</option>
|
26 |
+
<option value="cifar10">CIFAR-10</option>
|
27 |
+
</select>
|
28 |
+
</div>
|
29 |
+
|
30 |
+
<div class="parameter-control">
|
31 |
+
<label for="model-select" class="parameter-label">
|
32 |
+
Model Architecture
|
33 |
+
<span class="tooltip">
|
34 |
+
<span class="tooltip-icon">?</span>
|
35 |
+
<span class="tooltip-text">The model architecture affects training time, capacity to learn, and resilience to noise.</span>
|
36 |
+
</span>
|
37 |
+
</label>
|
38 |
+
<select id="model-select" class="parameter-select">
|
39 |
+
<option value="simple-mlp">Simple MLP</option>
|
40 |
+
<option value="simple-cnn">Simple CNN</option>
|
41 |
+
<option value="advanced-cnn">Advanced CNN</option>
|
42 |
+
</select>
|
43 |
+
</div>
|
44 |
+
|
45 |
+
<div style="margin-top: 1.5rem;">
|
46 |
+
<h3 style="margin-bottom: 0.5rem; font-size: 1rem;">Quick Presets</h3>
|
47 |
+
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 0.5rem;">
|
48 |
+
<button id="preset-high-privacy" style="padding: 0.5rem; text-align: center; background-color: #e3f2fd; border: none; border-radius: 4px; cursor: pointer;">
|
49 |
+
<div style="font-size: 1.2rem; margin-bottom: 0.2rem;">🔒</div>
|
50 |
+
<div style="font-weight: 500; margin-bottom: 0.2rem;">High Privacy</div>
|
51 |
+
<div style="font-size: 0.8rem; color: #666;">ε ≈ 1.2</div>
|
52 |
+
</button>
|
53 |
+
<button id="preset-balanced" style="padding: 0.5rem; text-align: center; background-color: #f1f8e9; border: none; border-radius: 4px; cursor: pointer;">
|
54 |
+
<div style="font-size: 1.2rem; margin-bottom: 0.2rem;">⚖️</div>
|
55 |
+
<div style="font-weight: 500; margin-bottom: 0.2rem;">Balanced</div>
|
56 |
+
<div style="font-size: 0.8rem; color: #666;">ε ≈ 3.0</div>
|
57 |
+
</button>
|
58 |
+
<button id="preset-high-utility" style="padding: 0.5rem; text-align: center; background-color: #fff8e1; border: none; border-radius: 4px; cursor: pointer;">
|
59 |
+
<div style="font-size: 1.2rem; margin-bottom: 0.2rem;">📈</div>
|
60 |
+
<div style="font-weight: 500; margin-bottom: 0.2rem;">High Utility</div>
|
61 |
+
<div style="font-size: 0.8rem; color: #666;">ε ≈ 8.0</div>
|
62 |
+
</button>
|
63 |
+
</div>
|
64 |
+
</div>
|
65 |
+
</div>
|
66 |
+
|
67 |
+
<!-- DP-SGD Parameters Panel -->
|
68 |
+
<div class="panel" style="margin-top: 1rem;">
|
69 |
+
<h2 class="panel-title">DP-SGD Parameters</h2>
|
70 |
+
|
71 |
+
<div class="parameter-control">
|
72 |
+
<label for="clipping-norm" class="parameter-label">
|
73 |
+
Clipping Norm (C)
|
74 |
+
<span class="tooltip">
|
75 |
+
<span class="tooltip-icon">?</span>
|
76 |
+
<span class="tooltip-text">Limits how much any single training example can affect the model update. Smaller values provide stronger privacy but can slow learning.</span>
|
77 |
+
</span>
|
78 |
+
</label>
|
79 |
+
<input type="range" id="clipping-norm" class="parameter-slider" min="0.1" max="5.0" step="0.1" value="1.0">
|
80 |
+
<div class="slider-display">
|
81 |
+
<span>0.1</span>
|
82 |
+
<span id="clipping-norm-value">1.0</span>
|
83 |
+
<span>5.0</span>
|
84 |
+
</div>
|
85 |
+
</div>
|
86 |
+
|
87 |
+
<div class="parameter-control">
|
88 |
+
<label for="noise-multiplier" class="parameter-label">
|
89 |
+
Noise Multiplier (σ)
|
90 |
+
<span class="tooltip">
|
91 |
+
<span class="tooltip-icon">?</span>
|
92 |
+
<span class="tooltip-text">Controls how much noise is added to protect privacy. Higher values increase privacy but may reduce accuracy.</span>
|
93 |
+
</span>
|
94 |
+
</label>
|
95 |
+
<input type="range" id="noise-multiplier" class="parameter-slider" min="0.1" max="5.0" step="0.1" value="1.0">
|
96 |
+
<div class="slider-display">
|
97 |
+
<span>0.1</span>
|
98 |
+
<span id="noise-multiplier-value">1.0</span>
|
99 |
+
<span>5.0</span>
|
100 |
+
</div>
|
101 |
+
</div>
|
102 |
+
|
103 |
+
<div class="parameter-control">
|
104 |
+
<label for="batch-size" class="parameter-label">
|
105 |
+
Batch Size
|
106 |
+
<span class="tooltip">
|
107 |
+
<span class="tooltip-icon">?</span>
|
108 |
+
<span class="tooltip-text">Number of examples processed in each training step. Affects both privacy accounting and training stability.</span>
|
109 |
+
</span>
|
110 |
+
</label>
|
111 |
+
<input type="range" id="batch-size" class="parameter-slider" min="16" max="512" step="16" value="64">
|
112 |
+
<div class="slider-display">
|
113 |
+
<span>16</span>
|
114 |
+
<span id="batch-size-value">64</span>
|
115 |
+
<span>512</span>
|
116 |
+
</div>
|
117 |
+
</div>
|
118 |
+
|
119 |
+
<div class="parameter-control">
|
120 |
+
<label for="learning-rate" class="parameter-label">
|
121 |
+
Learning Rate (η)
|
122 |
+
<span class="tooltip">
|
123 |
+
<span class="tooltip-icon">?</span>
|
124 |
+
<span class="tooltip-text">Controls how quickly model parameters update. For DP-SGD, often needs to be smaller than standard SGD.</span>
|
125 |
+
</span>
|
126 |
+
</label>
|
127 |
+
<input type="range" id="learning-rate" class="parameter-slider" min="0.001" max="0.1" step="0.001" value="0.01">
|
128 |
+
<div class="slider-display">
|
129 |
+
<span>0.001</span>
|
130 |
+
<span id="learning-rate-value">0.01</span>
|
131 |
+
<span>0.1</span>
|
132 |
+
</div>
|
133 |
+
</div>
|
134 |
+
|
135 |
+
<div class="parameter-control">
|
136 |
+
<label for="epochs" class="parameter-label">
|
137 |
+
Epochs
|
138 |
+
<span class="tooltip">
|
139 |
+
<span class="tooltip-icon">?</span>
|
140 |
+
<span class="tooltip-text">Number of complete passes through the dataset. More epochs improves learning but increases privacy budget consumption.</span>
|
141 |
+
</span>
|
142 |
+
</label>
|
143 |
+
<input type="range" id="epochs" class="parameter-slider" min="1" max="20" step="1" value="5">
|
144 |
+
<div class="slider-display">
|
145 |
+
<span>1</span>
|
146 |
+
<span id="epochs-value">5</span>
|
147 |
+
<span>20</span>
|
148 |
+
</div>
|
149 |
+
</div>
|
150 |
+
|
151 |
+
<div class="budget-display">
|
152 |
+
<h3 style="margin-top: 0; margin-bottom: 0.5rem;">
|
153 |
+
Estimated Privacy Budget (ε)
|
154 |
+
<span class="tooltip">
|
155 |
+
<span class="tooltip-icon">?</span>
|
156 |
+
<span class="tooltip-text">This is the estimated privacy loss from training with these parameters. Lower ε means stronger privacy guarantees.</span>
|
157 |
+
</span>
|
158 |
+
</h3>
|
159 |
+
<div style="display: flex; align-items: center; gap: 1rem;">
|
160 |
+
<div id="budget-value" style="font-size: 1.5rem; font-weight: bold; min-width: 60px;">2.47</div>
|
161 |
+
<div style="flex: 1;">
|
162 |
+
<div class="budget-bar">
|
163 |
+
<div id="budget-fill" class="budget-fill medium" style="width: 25%;"></div>
|
164 |
+
</div>
|
165 |
+
<div class="budget-scale">
|
166 |
+
<span>Stronger Privacy</span>
|
167 |
+
<span>Weaker Privacy</span>
|
168 |
+
</div>
|
169 |
+
</div>
|
170 |
+
</div>
|
171 |
+
</div>
|
172 |
+
|
173 |
+
<button id="train-button" class="control-button">
|
174 |
+
Run Training
|
175 |
+
</button>
|
176 |
+
</div>
|
177 |
+
</div>
|
178 |
+
|
179 |
+
<!-- Main Content - Visualizations and Results -->
|
180 |
+
<div class="lab-main">
|
181 |
+
<!-- Training Visualizer -->
|
182 |
+
<div class="panel">
|
183 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 1rem;">
|
184 |
+
<h2 class="panel-title">Training Progress</h2>
|
185 |
+
<div class="tabs">
|
186 |
+
<div class="tab active" data-tab="training">Training Metrics</div>
|
187 |
+
<div class="tab" data-tab="gradients">Gradient Clipping</div>
|
188 |
+
<div class="tab" data-tab="privacy">Privacy Budget</div>
|
189 |
+
</div>
|
190 |
+
</div>
|
191 |
+
|
192 |
+
<div id="training-tab" class="tab-content active">
|
193 |
+
<div class="chart-container">
|
194 |
+
<canvas id="training-chart" class="chart"></canvas>
|
195 |
+
</div>
|
196 |
+
|
197 |
+
<div id="training-status" class="status-badge" style="display: none;">
|
198 |
+
<span class="pulse"></span>
|
199 |
+
<span style="font-weight: 500; color: #4caf50;">Training in progress</span>
|
200 |
+
<span style="margin-left: auto; font-weight: 500;">Epoch: <span id="current-epoch">1</span> / <span id="total-epochs">5</span></span>
|
201 |
+
</div>
|
202 |
+
</div>
|
203 |
+
|
204 |
+
<div id="gradients-tab" class="tab-content">
|
205 |
+
<div style="margin-bottom: 1rem;">
|
206 |
+
<h3 style="font-size: 1rem; margin-bottom: 0.5rem;">Gradient Clipping Visualization</h3>
|
207 |
+
<p style="font-size: 0.9rem; color: var(--text-secondary);">
|
208 |
+
The chart below shows a distribution of gradient norms before and after clipping.
|
209 |
+
The vertical red line indicates the clipping threshold.
|
210 |
+
<span class="tooltip">
|
211 |
+
<span class="tooltip-icon">?</span>
|
212 |
+
<span class="tooltip-text">Clipping ensures no single example has too much influence on model updates, which is essential for differential privacy.</span>
|
213 |
+
</span>
|
214 |
+
</p>
|
215 |
+
</div>
|
216 |
+
|
217 |
+
<div class="canvas-container">
|
218 |
+
<canvas id="gradient-canvas" width="600" height="300"></canvas>
|
219 |
+
</div>
|
220 |
+
</div>
|
221 |
+
|
222 |
+
<div id="privacy-tab" class="tab-content">
|
223 |
+
<div style="margin-bottom: 1rem;">
|
224 |
+
<h3 style="font-size: 1rem; margin-bottom: 0.5rem;">Privacy Budget Consumption</h3>
|
225 |
+
<p style="font-size: 0.9rem; color: var(--text-secondary);">
|
226 |
+
This chart shows how the privacy budget (ε) accumulates during training.
|
227 |
+
<span class="tooltip">
|
228 |
+
<span class="tooltip-icon">?</span>
|
229 |
+
<span class="tooltip-text">In differential privacy, we track the 'privacy budget' (ε) which represents the amount of privacy loss. Lower values mean stronger privacy guarantees.</span>
|
230 |
+
</span>
|
231 |
+
</p>
|
232 |
+
</div>
|
233 |
+
|
234 |
+
<div class="chart-container">
|
235 |
+
<canvas id="privacy-chart" class="chart"></canvas>
|
236 |
+
</div>
|
237 |
+
</div>
|
238 |
+
</div>
|
239 |
+
|
240 |
+
<!-- Results Panel -->
|
241 |
+
<div class="panel" style="margin-top: 1rem;">
|
242 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 1rem;">
|
243 |
+
<h2 class="panel-title">Results</h2>
|
244 |
+
<div class="tabs">
|
245 |
+
<div class="tab active" data-tab="metrics">Final Metrics</div>
|
246 |
+
<div class="tab" data-tab="recommendations">Recommendations</div>
|
247 |
+
</div>
|
248 |
+
</div>
|
249 |
+
|
250 |
+
<!-- Initial no-results state -->
|
251 |
+
<div id="no-results" style="text-align: center; padding: 2rem 0;">
|
252 |
+
<p style="color: var(--text-secondary); margin-bottom: 1rem;">Run training to see results here</p>
|
253 |
+
<div style="font-size: 3rem; opacity: 0.5;">📊</div>
|
254 |
+
</div>
|
255 |
+
|
256 |
+
<!-- Results content (hidden initially) -->
|
257 |
+
<div id="results-content" style="display: none;">
|
258 |
+
<div id="metrics-tab" class="tab-content active">
|
259 |
+
<div class="metrics-grid">
|
260 |
+
<div class="metric-card">
|
261 |
+
<div id="accuracy-value" class="metric-value" style="color: var(--primary-color);">92.4%</div>
|
262 |
+
<div class="metric-label">
|
263 |
+
Accuracy
|
264 |
+
<span class="tooltip">
|
265 |
+
<span class="tooltip-icon">?</span>
|
266 |
+
<span class="tooltip-text">Model performance on test data. Higher values are better.</span>
|
267 |
+
</span>
|
268 |
+
</div>
|
269 |
+
</div>
|
270 |
+
|
271 |
+
<div class="metric-card">
|
272 |
+
<div id="loss-value" class="metric-value">0.283</div>
|
273 |
+
<div class="metric-label">
|
274 |
+
Loss
|
275 |
+
<span class="tooltip">
|
276 |
+
<span class="tooltip-icon">?</span>
|
277 |
+
<span class="tooltip-text">Final training loss. Lower values generally indicate better model fit.</span>
|
278 |
+
</span>
|
279 |
+
</div>
|
280 |
+
</div>
|
281 |
+
|
282 |
+
<div class="metric-card">
|
283 |
+
<div id="privacy-budget-value" class="metric-value" style="color: var(--accent-color);">ε = 2.1</div>
|
284 |
+
<div class="metric-label">
|
285 |
+
Privacy Budget
|
286 |
+
<span class="tooltip">
|
287 |
+
<span class="tooltip-icon">?</span>
|
288 |
+
<span class="tooltip-text">Final privacy loss (ε). Lower values mean stronger privacy guarantees.</span>
|
289 |
+
</span>
|
290 |
+
</div>
|
291 |
+
</div>
|
292 |
+
|
293 |
+
<div class="metric-card">
|
294 |
+
<div id="training-time-value" class="metric-value">3.7s</div>
|
295 |
+
<div class="metric-label">
|
296 |
+
Training Time
|
297 |
+
<span class="tooltip">
|
298 |
+
<span class="tooltip-icon">?</span>
|
299 |
+
<span class="tooltip-text">Total time spent on training, including privacy mechanisms.</span>
|
300 |
+
</span>
|
301 |
+
</div>
|
302 |
+
</div>
|
303 |
+
</div>
|
304 |
+
|
305 |
+
<div style="background-color: var(--background-off); border-radius: 4px; padding: 1rem; margin-top: 1rem;">
|
306 |
+
<h3 style="margin-top: 0; margin-bottom: 0.5rem; font-size: 1rem;">Privacy-Utility Trade-off</h3>
|
307 |
+
<div style="position: relative; height: 8px; background-color: #e0e0e0; border-radius: 4px; margin: 1.5rem 0;">
|
308 |
+
<div style="position: absolute; top: -20px; left: 92%; transform: translateX(-50%);">
|
309 |
+
<span style="font-weight: 500; font-size: 0.8rem; color: var(--secondary-color);">Utility</span>
|
310 |
+
</div>
|
311 |
+
<div style="position: absolute; top: -20px; right: 79%; transform: translateX(50%);">
|
312 |
+
<span style="font-weight: 500; font-size: 0.8rem; color: var(--primary-color);">Privacy</span>
|
313 |
+
</div>
|
314 |
+
</div>
|
315 |
+
<p id="tradeoff-explanation" style="font-size: 0.9rem; color: var(--text-secondary); margin-top: 1rem;">
|
316 |
+
This model achieved 92.4% accuracy with a privacy budget of ε=2.1. This is a good trade-off for most applications.
|
317 |
+
</p>
|
318 |
+
</div>
|
319 |
+
</div>
|
320 |
+
|
321 |
+
<div id="recommendations-tab" class="tab-content">
|
322 |
+
<h3 style="margin-top: 0; margin-bottom: 1rem; font-size: 1rem;">Recommendations</h3>
|
323 |
+
<ul class="recommendation-list">
|
324 |
+
<!-- Recommendations will be dynamically added here -->
|
325 |
+
</ul>
|
326 |
+
</div>
|
327 |
+
</div>
|
328 |
+
</div>
|
329 |
+
</div>
|
330 |
+
</div>
|
331 |
+
{% endblock %}
|
app/templates/learning.html
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{% extends "base.html" %}
|
2 |
+
|
3 |
+
{% block title %}DP-SGD Explorer - Learning Hub{% endblock %}
|
4 |
+
|
5 |
+
{% block content %}
|
6 |
+
<h1 class="section-title">Learning Hub</h1>
|
7 |
+
|
8 |
+
<div class="learning-container">
|
9 |
+
<div class="learning-sidebar">
|
10 |
+
<h2 class="panel-title">DP-SGD Concepts</h2>
|
11 |
+
<ul class="learning-steps">
|
12 |
+
<li class="learning-step active" data-step="intro">Introduction to Differential Privacy</li>
|
13 |
+
<li class="learning-step" data-step="dp-concepts">Core DP Concepts</li>
|
14 |
+
<li class="learning-step" data-step="sgd-basics">SGD Refresher</li>
|
15 |
+
<li class="learning-step" data-step="dpsgd-intro">DP-SGD: Core Modifications</li>
|
16 |
+
<li class="learning-step" data-step="parameters">Hyperparameter Deep Dive</li>
|
17 |
+
<li class="learning-step" data-step="privacy-accounting">Privacy Accounting</li>
|
18 |
+
</ul>
|
19 |
+
</div>
|
20 |
+
|
21 |
+
<div class="learning-content">
|
22 |
+
<div id="intro-content" class="step-content active">
|
23 |
+
<h2>Introduction to Differential Privacy</h2>
|
24 |
+
<p>Differential Privacy (DP) is a mathematical framework that provides strong privacy guarantees when performing analyses on sensitive data. It ensures that the presence or absence of any single individual's data has a minimal effect on the output of an analysis.</p>
|
25 |
+
|
26 |
+
<h3>Why is Differential Privacy Important?</h3>
|
27 |
+
<p>Traditional anonymization techniques often fail to protect privacy. With enough auxiliary information, it's possible to re-identify individuals in supposedly "anonymized" datasets. Differential privacy addresses this by adding carefully calibrated noise to the analysis process.</p>
|
28 |
+
|
29 |
+
<div class="concept-highlight">
|
30 |
+
<h4>Key Insight</h4>
|
31 |
+
<p>Differential privacy creates plausible deniability. By adding controlled noise, it becomes mathematically impossible to confidently determine whether any individual's data was used in the analysis.</p>
|
32 |
+
</div>
|
33 |
+
|
34 |
+
<h3>The Privacy-Utility Trade-off</h3>
|
35 |
+
<p>There's an inherent trade-off between privacy and utility (accuracy) in DP. More privacy means more noise, which typically reduces accuracy. The challenge is finding the right balance for your specific application.</p>
|
36 |
+
|
37 |
+
<div class="concept-box">
|
38 |
+
<div class="box1">
|
39 |
+
<h4>Strong Privacy (Low ε)</h4>
|
40 |
+
<ul>
|
41 |
+
<li>More noise added</li>
|
42 |
+
<li>Lower accuracy</li>
|
43 |
+
<li>Better protection for sensitive data</li>
|
44 |
+
</ul>
|
45 |
+
</div>
|
46 |
+
<div class="box2">
|
47 |
+
<h4>Strong Utility (Higher ε)</h4>
|
48 |
+
<ul>
|
49 |
+
<li>Less noise added</li>
|
50 |
+
<li>Higher accuracy</li>
|
51 |
+
<li>Reduced privacy guarantees</li>
|
52 |
+
</ul>
|
53 |
+
</div>
|
54 |
+
</div>
|
55 |
+
</div>
|
56 |
+
|
57 |
+
<div id="dp-concepts-content" class="step-content">
|
58 |
+
<h2>Core Differential Privacy Concepts</h2>
|
59 |
+
|
60 |
+
<h3>The Formal Definition</h3>
|
61 |
+
<p>A mechanism M is (ε,δ)-differentially private if for all neighboring datasets D and D' (differing in one record), and for all possible outputs S:</p>
|
62 |
+
<div class="formula">
|
63 |
+
P(M(D) ∈ S) ≤ e^ε × P(M(D') ∈ S) + δ
|
64 |
+
</div>
|
65 |
+
|
66 |
+
<h3>Key Parameters</h3>
|
67 |
+
<p><strong>ε (epsilon)</strong>: The privacy budget. Lower values mean stronger privacy but typically lower utility.</p>
|
68 |
+
<p><strong>δ (delta)</strong>: The probability of the privacy guarantee being broken. Usually set very small (e.g., 10^-5).</p>
|
69 |
+
|
70 |
+
<h3>Differential Privacy Mechanisms</h3>
|
71 |
+
<p><strong>Laplace Mechanism</strong>: Adds noise from a Laplace distribution to numeric queries.</p>
|
72 |
+
<p><strong>Gaussian Mechanism</strong>: Adds noise from a Gaussian (normal) distribution. This is used in DP-SGD.</p>
|
73 |
+
<p><strong>Exponential Mechanism</strong>: Used for non-numeric outputs, selects an output based on a probability distribution.</p>
|
74 |
+
|
75 |
+
<h3>Privacy Accounting</h3>
|
76 |
+
<p>When you apply multiple differentially private operations, the privacy loss (ε) accumulates. This is known as composition.</p>
|
77 |
+
<p>Advanced composition theorems and privacy accountants help track the total privacy spend.</p>
|
78 |
+
</div>
|
79 |
+
|
80 |
+
<div id="sgd-basics-content" class="step-content">
|
81 |
+
<h2>Stochastic Gradient Descent Refresher</h2>
|
82 |
+
|
83 |
+
<h3>Standard SGD</h3>
|
84 |
+
<p>Stochastic Gradient Descent (SGD) is an optimization algorithm used to train machine learning models by iteratively updating parameters based on gradients computed from mini-batches of data.</p>
|
85 |
+
|
86 |
+
<h3>The Basic Update Rule</h3>
|
87 |
+
<p>The standard SGD update for a batch B is:</p>
|
88 |
+
<div class="formula">
|
89 |
+
θ ← θ - η∇L(θ; B)
|
90 |
+
</div>
|
91 |
+
<p>Where:</p>
|
92 |
+
<ul>
|
93 |
+
<li>θ represents the model parameters</li>
|
94 |
+
<li>η is the learning rate</li>
|
95 |
+
<li>∇L(θ; B) is the average gradient of the loss over the batch B</li>
|
96 |
+
</ul>
|
97 |
+
|
98 |
+
<h3>Privacy Concerns with Standard SGD</h3>
|
99 |
+
<p>Standard SGD can leak information about individual training examples through the gradients. For example:</p>
|
100 |
+
<ul>
|
101 |
+
<li>Gradients might be larger for outliers or unusual examples</li>
|
102 |
+
<li>Model memorization of sensitive data can be extracted through attacks</li>
|
103 |
+
<li>Gradient values can be used in reconstruction attacks</li>
|
104 |
+
</ul>
|
105 |
+
|
106 |
+
<p>These privacy concerns motivate the need for differentially private training methods.</p>
|
107 |
+
</div>
|
108 |
+
|
109 |
+
<div id="dpsgd-intro-content" class="step-content">
|
110 |
+
<h2>DP-SGD: Core Modifications</h2>
|
111 |
+
|
112 |
+
<h3>How DP-SGD Differs from Standard SGD</h3>
|
113 |
+
<p>Differentially Private SGD modifies standard SGD in two key ways:</p>
|
114 |
+
|
115 |
+
<div class="concept-box">
|
116 |
+
<div class="box1">
|
117 |
+
<h4>1. Per-Sample Gradient Clipping</h4>
|
118 |
+
<p>Compute gradients for each example individually, then clip their L2 norm to a threshold C.</p>
|
119 |
+
<p>This limits the influence of any single training example on the model update.</p>
|
120 |
+
</div>
|
121 |
+
|
122 |
+
<div class="box2">
|
123 |
+
<h4>2. Noise Addition</h4>
|
124 |
+
<p>Add Gaussian noise to the sum of clipped gradients before applying the update.</p>
|
125 |
+
<p>The noise scale is proportional to the clipping threshold and the noise multiplier.</p>
|
126 |
+
</div>
|
127 |
+
</div>
|
128 |
+
|
129 |
+
<h3>The DP-SGD Update Rule</h3>
|
130 |
+
<p>The DP-SGD update can be summarized as:</p>
|
131 |
+
<ol>
|
132 |
+
<li>Compute per-sample gradients: g<sub>i</sub> = ∇L(θ; x<sub>i</sub>)</li>
|
133 |
+
<li>Clip each gradient: g̃<sub>i</sub> = g<sub>i</sub> × min(1, C/||g<sub>i</sub>||<sub>2</sub>)</li>
|
134 |
+
<li>Add noise: ḡ = (1/|B|) × (∑g̃<sub>i</sub> + N(0, σ²C²I))</li>
|
135 |
+
<li>Update parameters: θ ← θ - η × ḡ</li>
|
136 |
+
</ol>
|
137 |
+
|
138 |
+
<p>Where:</p>
|
139 |
+
<ul>
|
140 |
+
<li>C is the clipping norm</li>
|
141 |
+
<li>σ is the noise multiplier</li>
|
142 |
+
<li>B is the batch</li>
|
143 |
+
</ul>
|
144 |
+
</div>
|
145 |
+
|
146 |
+
<div id="parameters-content" class="step-content">
|
147 |
+
<h2>Hyperparameter Deep Dive</h2>
|
148 |
+
|
149 |
+
<p>DP-SGD introduces several new hyperparameters that need to be tuned carefully:</p>
|
150 |
+
|
151 |
+
<h3>Clipping Norm (C)</h3>
|
152 |
+
<p>The maximum allowed L2 norm for any individual gradient.</p>
|
153 |
+
<ul>
|
154 |
+
<li><strong>Too small:</strong> Gradients are over-clipped, limiting learning</li>
|
155 |
+
<li><strong>Too large:</strong> Requires more noise to achieve the same privacy guarantee</li>
|
156 |
+
<li><strong>Typical range:</strong> 0.1 to 10.0, depending on the dataset and model</li>
|
157 |
+
</ul>
|
158 |
+
|
159 |
+
<h3>Noise Multiplier (σ)</h3>
|
160 |
+
<p>Controls the amount of noise added to the gradients.</p>
|
161 |
+
<ul>
|
162 |
+
<li><strong>Higher σ:</strong> Better privacy, worse utility</li>
|
163 |
+
<li><strong>Lower σ:</strong> Better utility, worse privacy</li>
|
164 |
+
<li><strong>Typical range:</strong> 0.5 to 2.0 for most practical applications</li>
|
165 |
+
</ul>
|
166 |
+
|
167 |
+
<h3>Batch Size</h3>
|
168 |
+
<p>Affects both training dynamics and privacy accounting.</p>
|
169 |
+
<ul>
|
170 |
+
<li><strong>Larger batches:</strong> Reduce variance from noise, but change sampling probability</li>
|
171 |
+
<li><strong>Smaller batches:</strong> More update steps, potentially consuming more privacy budget</li>
|
172 |
+
<li><strong>Typical range:</strong> 64 to 1024, larger than standard SGD</li>
|
173 |
+
</ul>
|
174 |
+
|
175 |
+
<h3>Learning Rate (η)</h3>
|
176 |
+
<p>May need adjustment compared to non-private training.</p>
|
177 |
+
<ul>
|
178 |
+
<li><strong>DP-SGD often requires:</strong> Lower learning rates or careful scheduling</li>
|
179 |
+
<li><strong>Reason:</strong> Added noise can destabilize training with high learning rates</li>
|
180 |
+
</ul>
|
181 |
+
|
182 |
+
<h3>Number of Epochs</h3>
|
183 |
+
<p>More epochs consume more privacy budget.</p>
|
184 |
+
<ul>
|
185 |
+
<li><strong>Trade-off:</strong> More training vs. privacy budget consumption</li>
|
186 |
+
<li><strong>Early stopping:</strong> Often beneficial for balancing accuracy and privacy</li>
|
187 |
+
</ul>
|
188 |
+
</div>
|
189 |
+
|
190 |
+
<div id="privacy-accounting-content" class="step-content">
|
191 |
+
<h2>Privacy Accounting</h2>
|
192 |
+
|
193 |
+
<h3>Tracking Privacy Budget</h3>
|
194 |
+
<p>Privacy accounting is the process of keeping track of the total privacy loss (ε) throughout training.</p>
|
195 |
+
|
196 |
+
<h3>Common Methods</h3>
|
197 |
+
<div style="display: flex; flex-direction: column; gap: 15px; margin: 15px 0;">
|
198 |
+
<div class="concept-highlight">
|
199 |
+
<h4>Moment Accountant</h4>
|
200 |
+
<p>Used in the original DP-SGD paper, provides tight bounds on the privacy loss.</p>
|
201 |
+
<p>Tracks the moments of the privacy loss random variable.</p>
|
202 |
+
</div>
|
203 |
+
|
204 |
+
<div class="concept-highlight">
|
205 |
+
<h4>Rényi Differential Privacy (RDP)</h4>
|
206 |
+
<p>Alternative accounting method based on Rényi divergence.</p>
|
207 |
+
<p>Often used in modern implementations like TensorFlow Privacy and Opacus.</p>
|
208 |
+
</div>
|
209 |
+
|
210 |
+
<div class="concept-highlight">
|
211 |
+
<h4>Analytical Gaussian Mechanism</h4>
|
212 |
+
<p>Simpler method for specific mechanisms like the Gaussian Mechanism.</p>
|
213 |
+
<p>Less tight bounds but easier to compute.</p>
|
214 |
+
</div>
|
215 |
+
</div>
|
216 |
+
|
217 |
+
<h3>Privacy Budget Allocation</h3>
|
218 |
+
<p>With a fixed privacy budget (ε), you must decide how to allocate it:</p>
|
219 |
+
<ul>
|
220 |
+
<li><strong>Fixed noise, variable epochs:</strong> Set noise level, train until budget is exhausted</li>
|
221 |
+
<li><strong>Fixed epochs, variable noise:</strong> Set desired epochs, calculate required noise</li>
|
222 |
+
<li><strong>Advanced techniques:</strong> Privacy filters, odometers, and adaptive mechanisms</li>
|
223 |
+
</ul>
|
224 |
+
|
225 |
+
<h3>Practical Implementation</h3>
|
226 |
+
<p>In practice, privacy accounting is handled by libraries like:</p>
|
227 |
+
<ul>
|
228 |
+
<li>TensorFlow Privacy</li>
|
229 |
+
<li>PyTorch Opacus</li>
|
230 |
+
<li>Diffprivlib (IBM)</li>
|
231 |
+
</ul>
|
232 |
+
</div>
|
233 |
+
</div>
|
234 |
+
</div>
|
235 |
+
|
236 |
+
{% endblock %}
|
237 |
+
|
238 |
+
{% block extra_scripts %}
|
239 |
+
<script>
|
240 |
+
document.addEventListener('DOMContentLoaded', () => {
|
241 |
+
const steps = document.querySelectorAll('.learning-step');
|
242 |
+
steps.forEach(step => {
|
243 |
+
step.addEventListener('click', () => {
|
244 |
+
// Remove active class from all steps
|
245 |
+
steps.forEach(s => s.classList.remove('active'));
|
246 |
+
// Add active class to clicked step
|
247 |
+
step.classList.add('active');
|
248 |
+
|
249 |
+
// Hide all content
|
250 |
+
document.querySelectorAll('.step-content').forEach(content => {
|
251 |
+
content.classList.remove('active');
|
252 |
+
});
|
253 |
+
|
254 |
+
// Show selected content
|
255 |
+
const stepName = step.getAttribute('data-step');
|
256 |
+
document.getElementById(`${stepName}-content`).classList.add('active');
|
257 |
+
});
|
258 |
+
});
|
259 |
+
});
|
260 |
+
</script>
|
261 |
+
{% endblock %}
|
app/training/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Training module for DP-SGD Explorer.
|
3 |
+
Contains mock trainer and privacy calculator implementations.
|
4 |
+
"""
|
app/training/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (266 Bytes). View file
|
|
app/training/__pycache__/mock_trainer.cpython-38.pyc
ADDED
Binary file (4.21 kB). View file
|
|
app/training/__pycache__/privacy_calculator.cpython-38.pyc
ADDED
Binary file (3.39 kB). View file
|
|
app/training/mock_trainer.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import time
|
3 |
+
from typing import Dict, List, Any
|
4 |
+
|
5 |
+
class MockTrainer:
|
6 |
+
def __init__(self):
|
7 |
+
self.base_accuracy = 0.95 # Base accuracy for non-private training
|
8 |
+
self.base_loss = 0.15 # Base loss for non-private training
|
9 |
+
|
10 |
+
def train(self, params: Dict[str, Any]) -> Dict[str, Any]:
|
11 |
+
"""
|
12 |
+
Simulate DP-SGD training with given parameters.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
params: Dictionary containing training parameters:
|
16 |
+
- clipping_norm: float
|
17 |
+
- noise_multiplier: float
|
18 |
+
- batch_size: int
|
19 |
+
- learning_rate: float
|
20 |
+
- epochs: int
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
Dictionary containing training results and metrics
|
24 |
+
"""
|
25 |
+
# Extract parameters
|
26 |
+
clipping_norm = params['clipping_norm']
|
27 |
+
noise_multiplier = params['noise_multiplier']
|
28 |
+
batch_size = params['batch_size']
|
29 |
+
learning_rate = params['learning_rate']
|
30 |
+
epochs = params['epochs']
|
31 |
+
|
32 |
+
# Calculate privacy impact on performance
|
33 |
+
privacy_factor = self._calculate_privacy_factor(clipping_norm, noise_multiplier)
|
34 |
+
|
35 |
+
# Generate epoch-wise data
|
36 |
+
epochs_data = self._generate_epoch_data(epochs, privacy_factor)
|
37 |
+
|
38 |
+
# Calculate final metrics
|
39 |
+
final_metrics = self._calculate_final_metrics(epochs_data, privacy_factor)
|
40 |
+
|
41 |
+
# Generate recommendations
|
42 |
+
recommendations = self._generate_recommendations(params, final_metrics)
|
43 |
+
|
44 |
+
return {
|
45 |
+
'epochs_data': epochs_data,
|
46 |
+
'final_metrics': final_metrics,
|
47 |
+
'recommendations': recommendations
|
48 |
+
}
|
49 |
+
|
50 |
+
def _calculate_privacy_factor(self, clipping_norm: float, noise_multiplier: float) -> float:
|
51 |
+
"""Calculate how much privacy mechanisms affect model performance."""
|
52 |
+
# Higher noise and stricter clipping reduce performance
|
53 |
+
return 1.0 - (0.3 * noise_multiplier + 0.2 * (1.0 / clipping_norm))
|
54 |
+
|
55 |
+
def _generate_epoch_data(self, epochs: int, privacy_factor: float) -> List[Dict[str, float]]:
|
56 |
+
"""Generate realistic training metrics for each epoch."""
|
57 |
+
epochs_data = []
|
58 |
+
|
59 |
+
# Base learning curve parameters
|
60 |
+
base_accuracy = self.base_accuracy * privacy_factor
|
61 |
+
base_loss = self.base_loss / privacy_factor
|
62 |
+
|
63 |
+
for epoch in range(1, epochs + 1):
|
64 |
+
# Simulate learning curve with some randomness
|
65 |
+
progress = epoch / epochs
|
66 |
+
noise = np.random.normal(0, 0.02) # Small random fluctuations
|
67 |
+
|
68 |
+
accuracy = base_accuracy * (0.7 + 0.3 * progress) + noise
|
69 |
+
loss = base_loss * (1.2 - 0.2 * progress) + noise
|
70 |
+
|
71 |
+
epochs_data.append({
|
72 |
+
'epoch': epoch,
|
73 |
+
'accuracy': max(0, min(1, accuracy)) * 100, # Convert to percentage
|
74 |
+
'loss': max(0, loss)
|
75 |
+
})
|
76 |
+
|
77 |
+
return epochs_data
|
78 |
+
|
79 |
+
def _calculate_final_metrics(self, epochs_data: List[Dict[str, float]], privacy_factor: float) -> Dict[str, float]:
|
80 |
+
"""Calculate final training metrics."""
|
81 |
+
final_epoch = epochs_data[-1]
|
82 |
+
|
83 |
+
# Add some randomness to training time based on batch size and epochs
|
84 |
+
base_time = 0.5 # Base time in seconds
|
85 |
+
time_factor = (1.0 / privacy_factor) * (1.0 + np.random.normal(0, 0.1))
|
86 |
+
|
87 |
+
return {
|
88 |
+
'accuracy': final_epoch['accuracy'],
|
89 |
+
'loss': final_epoch['loss'],
|
90 |
+
'training_time': base_time * time_factor
|
91 |
+
}
|
92 |
+
|
93 |
+
def _generate_recommendations(self, params: Dict[str, Any], metrics: Dict[str, float]) -> List[Dict[str, str]]:
|
94 |
+
"""Generate recommendations based on training results."""
|
95 |
+
recommendations = []
|
96 |
+
|
97 |
+
# Check clipping norm
|
98 |
+
if params['clipping_norm'] < 0.5:
|
99 |
+
recommendations.append({
|
100 |
+
'icon': '⚠️',
|
101 |
+
'text': 'Clipping norm is very low. This might slow down learning.'
|
102 |
+
})
|
103 |
+
elif params['clipping_norm'] > 2.0:
|
104 |
+
recommendations.append({
|
105 |
+
'icon': '🔒',
|
106 |
+
'text': 'Consider reducing clipping norm for stronger privacy guarantees.'
|
107 |
+
})
|
108 |
+
|
109 |
+
# Check noise multiplier
|
110 |
+
if params['noise_multiplier'] < 0.5:
|
111 |
+
recommendations.append({
|
112 |
+
'icon': '🔒',
|
113 |
+
'text': 'Noise multiplier is low. Consider increasing it for better privacy.'
|
114 |
+
})
|
115 |
+
elif params['noise_multiplier'] > 2.0:
|
116 |
+
recommendations.append({
|
117 |
+
'icon': '⚠️',
|
118 |
+
'text': 'High noise multiplier might significantly impact model accuracy.'
|
119 |
+
})
|
120 |
+
|
121 |
+
# Check batch size
|
122 |
+
if params['batch_size'] < 64:
|
123 |
+
recommendations.append({
|
124 |
+
'icon': '⚡',
|
125 |
+
'text': 'Small batch size might lead to noisy updates. Consider increasing it.'
|
126 |
+
})
|
127 |
+
elif params['batch_size'] > 256:
|
128 |
+
recommendations.append({
|
129 |
+
'icon': '🔍',
|
130 |
+
'text': 'Large batch size might reduce model generalization.'
|
131 |
+
})
|
132 |
+
|
133 |
+
# Check learning rate
|
134 |
+
if params['learning_rate'] > 0.05:
|
135 |
+
recommendations.append({
|
136 |
+
'icon': '⚠️',
|
137 |
+
'text': 'High learning rate might destabilize training with DP-SGD.'
|
138 |
+
})
|
139 |
+
elif params['learning_rate'] < 0.001:
|
140 |
+
recommendations.append({
|
141 |
+
'icon': '⏳',
|
142 |
+
'text': 'Very low learning rate might slow down convergence.'
|
143 |
+
})
|
144 |
+
|
145 |
+
# Check final metrics
|
146 |
+
if metrics['accuracy'] < 80:
|
147 |
+
recommendations.append({
|
148 |
+
'icon': '📉',
|
149 |
+
'text': 'Model accuracy is low. Consider adjusting privacy parameters.'
|
150 |
+
})
|
151 |
+
|
152 |
+
return recommendations
|
app/training/privacy_calculator.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import Dict, Any
|
3 |
+
|
4 |
+
class PrivacyCalculator:
|
5 |
+
def __init__(self):
|
6 |
+
self.delta = 1e-5 # Standard delta value for DP guarantees
|
7 |
+
|
8 |
+
def calculate_epsilon(self, params: Dict[str, Any]) -> float:
|
9 |
+
"""
|
10 |
+
Calculate the privacy budget (ε) using the moment accountant method.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
params: Dictionary containing training parameters:
|
14 |
+
- clipping_norm: float
|
15 |
+
- noise_multiplier: float
|
16 |
+
- batch_size: int
|
17 |
+
- epochs: int
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
The calculated privacy budget (ε)
|
21 |
+
"""
|
22 |
+
# Extract parameters
|
23 |
+
clipping_norm = params['clipping_norm']
|
24 |
+
noise_multiplier = params['noise_multiplier']
|
25 |
+
batch_size = params['batch_size']
|
26 |
+
epochs = params['epochs']
|
27 |
+
|
28 |
+
# Calculate sampling rate (assuming MNIST dataset size of 60,000)
|
29 |
+
sampling_rate = batch_size / 60000
|
30 |
+
|
31 |
+
# Calculate number of steps
|
32 |
+
steps = epochs * (1 / sampling_rate)
|
33 |
+
|
34 |
+
# Calculate moments for different orders
|
35 |
+
orders = [1.25, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]
|
36 |
+
moments = [self._calculate_moment(order, sampling_rate, noise_multiplier) for order in orders]
|
37 |
+
|
38 |
+
# Find the minimum ε that satisfies all moment bounds
|
39 |
+
epsilon = float('inf')
|
40 |
+
for moment in moments:
|
41 |
+
# Convert moment bound to (ε,δ)-DP bound
|
42 |
+
moment_epsilon = moment + np.log(1/self.delta) / (orders[0] - 1)
|
43 |
+
epsilon = min(epsilon, moment_epsilon)
|
44 |
+
|
45 |
+
# Add some randomness to make it more realistic
|
46 |
+
epsilon *= (1 + np.random.normal(0, 0.05))
|
47 |
+
|
48 |
+
return max(0.1, epsilon) # Ensure ε is at least 0.1
|
49 |
+
|
50 |
+
def _calculate_moment(self, order: float, sampling_rate: float, noise_multiplier: float) -> float:
|
51 |
+
"""
|
52 |
+
Calculate the moment bound for a given order.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
order: The moment order
|
56 |
+
sampling_rate: The probability of sampling each example
|
57 |
+
noise_multiplier: The noise multiplier used in DP-SGD
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
The calculated moment bound
|
61 |
+
"""
|
62 |
+
# Simplified moment calculation based on the moment accountant method
|
63 |
+
# This is a simplified version that captures the key relationships
|
64 |
+
c = np.sqrt(2 * np.log(1.25 / self.delta))
|
65 |
+
moment = (order * sampling_rate * c) / noise_multiplier
|
66 |
+
|
67 |
+
# Add some non-linear effects
|
68 |
+
moment *= (1 + 0.1 * np.sin(order))
|
69 |
+
|
70 |
+
return moment
|
71 |
+
|
72 |
+
def calculate_optimal_noise(self, target_epsilon: float, params: Dict[str, Any]) -> float:
|
73 |
+
"""
|
74 |
+
Calculate the optimal noise multiplier for a target privacy budget.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
target_epsilon: The desired privacy budget
|
78 |
+
params: Dictionary containing training parameters:
|
79 |
+
- clipping_norm: float
|
80 |
+
- batch_size: int
|
81 |
+
- epochs: int
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
The calculated optimal noise multiplier
|
85 |
+
"""
|
86 |
+
# Extract parameters
|
87 |
+
clipping_norm = params['clipping_norm']
|
88 |
+
batch_size = params['batch_size']
|
89 |
+
epochs = params['epochs']
|
90 |
+
|
91 |
+
# Calculate sampling rate
|
92 |
+
sampling_rate = batch_size / 60000
|
93 |
+
|
94 |
+
# Calculate number of steps
|
95 |
+
steps = epochs * (1 / sampling_rate)
|
96 |
+
|
97 |
+
# Calculate optimal noise using the analytical Gaussian mechanism
|
98 |
+
c = np.sqrt(2 * np.log(1.25 / self.delta))
|
99 |
+
optimal_noise = (c * sampling_rate * np.sqrt(steps)) / target_epsilon
|
100 |
+
|
101 |
+
# Add some randomness to make it more realistic
|
102 |
+
optimal_noise *= (1 + np.random.normal(0, 0.05))
|
103 |
+
|
104 |
+
return max(0.1, optimal_noise) # Ensure noise is at least 0.1
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask==3.0.0
|
2 |
+
flask-cors==4.0.0
|
3 |
+
python-dotenv==1.0.0
|
4 |
+
gunicorn==21.2.0
|
5 |
+
numpy==1.24.3
|
run.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from app import create_app
|
2 |
+
|
3 |
+
app = create_app()
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
app.run(debug=True)
|
start_server.sh
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Colors for output
|
4 |
+
GREEN='\033[0;32m'
|
5 |
+
YELLOW='\033[1;33m'
|
6 |
+
RED='\033[0;31m'
|
7 |
+
NC='\033[0m' # No Color
|
8 |
+
|
9 |
+
# Function to print colored messages
|
10 |
+
print_message() {
|
11 |
+
echo -e "${2}${1}${NC}"
|
12 |
+
}
|
13 |
+
|
14 |
+
# Check if Python 3 is installed
|
15 |
+
if ! command -v python3 &> /dev/null; then
|
16 |
+
print_message "Python 3 is not installed. Please install Python 3 first." "$RED"
|
17 |
+
exit 1
|
18 |
+
fi
|
19 |
+
|
20 |
+
# Check Python version
|
21 |
+
PYTHON_VERSION=$(python3 -c 'import sys; print(".".join(map(str, sys.version_info[:2])))')
|
22 |
+
print_message "Found Python version: $PYTHON_VERSION" "$GREEN"
|
23 |
+
|
24 |
+
# Create virtual environment if it doesn't exist
|
25 |
+
if [ ! -d ".venv" ]; then
|
26 |
+
print_message "Creating virtual environment..." "$YELLOW"
|
27 |
+
python3 -m venv .venv
|
28 |
+
if [ $? -ne 0 ]; then
|
29 |
+
print_message "Failed to create virtual environment. Please install python3-venv package." "$RED"
|
30 |
+
exit 1
|
31 |
+
fi
|
32 |
+
fi
|
33 |
+
|
34 |
+
# Activate virtual environment
|
35 |
+
print_message "Activating virtual environment..." "$GREEN"
|
36 |
+
source .venv/bin/activate
|
37 |
+
if [ $? -ne 0 ]; then
|
38 |
+
print_message "Failed to activate virtual environment." "$RED"
|
39 |
+
exit 1
|
40 |
+
fi
|
41 |
+
|
42 |
+
# Install or upgrade pip
|
43 |
+
print_message "Upgrading pip..." "$YELLOW"
|
44 |
+
python3 -m pip install --upgrade pip
|
45 |
+
|
46 |
+
# Install requirements
|
47 |
+
print_message "Installing dependencies..." "$YELLOW"
|
48 |
+
pip install -r requirements.txt
|
49 |
+
if [ $? -ne 0 ]; then
|
50 |
+
print_message "Failed to install dependencies." "$RED"
|
51 |
+
exit 1
|
52 |
+
fi
|
53 |
+
|
54 |
+
# Start the Flask application
|
55 |
+
print_message "\n=== DP-SGD Explorer Backend ===" "$GREEN"
|
56 |
+
print_message "Starting server..." "$GREEN"
|
57 |
+
print_message "The application will be available at http://127.0.0.1:5000\n" "$YELLOW"
|
58 |
+
|
59 |
+
# Set Python path and start server
|
60 |
+
PYTHONPATH=. python3 run.py
|