try llama 3
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
-
|
6 |
|
7 |
# ACCESS_TOKEN = os.getenv('ACCESS_TOKEN')
|
8 |
"""
|
@@ -48,10 +48,16 @@ def respond(
|
|
48 |
# response += token
|
49 |
# yield response
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import requests
|
6 |
|
7 |
# ACCESS_TOKEN = os.getenv('ACCESS_TOKEN')
|
8 |
"""
|
|
|
48 |
# response += token
|
49 |
# yield response
|
50 |
|
51 |
+
### doesn't work
|
52 |
+
# input_ids = tokenizer.encode(message, return_tensors = 'pt')
|
53 |
+
# for output in model.generate(input_ids, stream=True):
|
54 |
+
# output_text = tokenizer.decode(output, skip_special_tokens=True)
|
55 |
+
# yield output_text
|
56 |
+
|
57 |
+
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
58 |
+
headers = {"Authorization": "Bearer "+os.environ['hf_token']}
|
59 |
+
response = requests.post(API_URL, headers=headers, json={"inputs":"message"})
|
60 |
+
return response.json()
|
61 |
|
62 |
|
63 |
|