apply_plotly_theme() with gr.Blocks(title="Verbatify — Analyse NPS", css=VB_CSS) as demo: gr.HTML('
Verbatify — Analyse NPS
Émotions • Thématiques • Occurrences • Synthèse
') # ... le reste inchangé ... # -*- coding: utf-8 -*- """ NPS Assurance — Gradio (Paste-only, NPS inféré) - Entrée : verbatims collés (1 ligne = 1 verbatim, score NPS optionnel après un séparateur, ex: "|") - Sorties : émotion (pos/neutre/neg), thématiques, occurrences, résumé Markdown, graphiques Plotly - IA (facultatif) : OpenAI pour sentiment/thèmes/synthèse (fallback vers HuggingFace si dispo, puis règles lexicales) - NPS inféré : si une note manque, elle est déduite du sentiment (cohérente avec NPS) - Tolérant : si OpenAI ou unidecode ne sont pas installés, l’app continue avec des fallback """ import os, re, json, collections, tempfile, zipfile from typing import List, Dict, Optional import pandas as pd import gradio as gr import plotly.express as px import plotly.graph_objects as go import plotly.io as pio # charge le CSS de marque VB_CSS = open("verbatify.css","r",encoding="utf-8").read() def apply_plotly_theme(): import plotly.graph_objects as go pio.templates["verbatify"] = go.layout.Template( layout=go.Layout( font=dict(family="Manrope, system-ui, -apple-system, Segoe UI, Roboto, Arial, sans-serif", size=13, color="#0F172A"), paper_bgcolor="white", plot_bgcolor="white", colorway=["#7C3AED","#06B6D4","#2563EB","#10B981","#EF4444","#F59E0B","#14B8A6","#F43F5E"], xaxis=dict(gridcolor="#E2E8F0", zerolinecolor="#E2E8F0"), yaxis=dict(gridcolor="#E2E8F0", zerolinecolor="#E2E8F0"), legend=dict(borderwidth=0, bgcolor="rgba(255,255,255,0)") ) ) pio.templates.default = "verbatify" # --- unidecode (fallback si paquet absent) --- try: from unidecode import unidecode except Exception: import unicodedata def unidecode(x): try: return unicodedata.normalize('NFKD', str(x)).encode('ascii','ignore').decode('ascii') except Exception: return str(x) # ---------------- Thésaurus ASSURANCE ---------------- THEMES = { "Remboursements santé":[r"\bremboursement[s]?\b", r"\bt[eé]l[eé]transmission\b", r"\bno[eé]mie\b", r"\bprise\s*en\s*charge[s]?\b", r"\btaux\s+de\s+remboursement[s]?\b", r"\b(ameli|cpam)\b", r"\bcompl[eé]mentaire\s+sant[eé]\b", r"\bmutuelle\b", r"\battestation[s]?\b", r"\bcarte\s+(mutuelle|tiers\s*payant)\b"], "Tiers payant / Réseau de soins":[r"\btiers\s*payant\b", r"\br[ée]seau[x]?\s+de\s+soins\b", r"\b(optique|dentaire|hospitalisation|pharmacie)\b", r"\bitelis\b", r"\bsant[eé]clair\b", r"\bkalixia\b"], "Sinistres / Indemnisation":[r"\bsinistre[s]?\b", r"\bindemni(sation|ser)\b", r"\bexpertis[ea]\b", r"\bd[eé]claration\s+de\s+sinistre\b", r"\bconstat\b", r"\bbris\s+de\s+glace\b", r"\bassistance\b", r"\bd[ée]pannage\b"], "Adhésion / Contrat":[r"\badh[eé]sion[s]?\b", r"\bsouscription[s]?\b", r"\baffiliation[s]?\b", r"\bcontrat[s]?\b", r"\bavenant[s]?\b", r"\bcarence[s]?\b", r"\brenouvellement[s]?\b", r"\br[eé]siliation[s]?\b"], "Garanties / Exclusions / Franchise":[r"\bgarantie[s]?\b", r"\bexclusion[s]?\b", r"\bplafond[s]?\b", r"\bfranchise[s]?\b", r"\bconditions\s+g[eé]n[eé]rales\b", r"\bnotice\b"], "Cotisations / Facturation":[r"\bcotisation[s]?\b", r"\bpr[eé]l[eè]vement[s]?\b", r"\bech[eé]ancier[s]?\b", r"\bfacture[s]?\b", r"\berreur[s]?\s+de\s+facturation\b", r"\bremboursement[s]?\b", r"\bRIB\b", r"\bIBAN\b"], "Délais & Suivi dossier":[r"\bd[eé]lai[s]?\b", r"\btraitement[s]?\b", r"\bsuivi[s]?\b", r"\brelance[s]?\b", r"\bretard[s]?\b"], "Espace client / App / Connexion":[r"\bespace\s+client\b", r"\bapplication\b", r"\bapp\b", r"\bsite\b", r"\bconnexion\b", r"\bidentifiant[s]?\b", r"\bmot\s+de\s+passe\b", r"\bpaiement\s+en\s+ligne\b", r"\bbogue[s]?\b", r"\bbug[s]?\b", r"\bnavigation\b", r"\binterface\b", r"\bUX\b"], "Support / Conseiller":[r"\bSAV\b", r"\bservice[s]?\s+client[s]?\b", r"\bconseiller[s]?\b", r"\b[rR][eé]ponse[s]?\b", r"\bjoignable[s]?\b", r"\brapp?el\b"], "Communication / Transparence":[r"\binformation[s]?\b", r"\bcommunication\b", r"\btransparence\b", r"\bclart[eé]\b", r"\bcourrier[s]?\b", r"\bmail[s]?\b", r"\bnotification[s]?\b"], "Prix":[r"\bprix\b", r"\bcher[s]?\b", r"\bco[uû]t[s]?\b", r"\btarif[s]?\b", r"\bcomp[eé]titif[s]?\b", r"\babusif[s]?\b", r"\bbon\s+rapport\s+qualit[eé]\s*prix\b"], "Offre / Gamme":[r"\boffre[s]?\b", r"\bgamme[s]?\b", r"\bdisponibilit[eé][s]?\b", r"\bdevis\b", r"\bchoix\b", r"\bcatalogue[s]?\b"], "Produit/Qualité":[r"\bqualit[eé]s?\b", r"\bfiable[s]?\b", r"\bconforme[s]?\b", r"\bnon\s+conforme[s]?\b", r"\bd[eé]fectueux?[es]?\b", r"\bperformant[e]?[s]?\b"], "Agence / Accueil":[r"\bagence[s]?\b", r"\bboutique[s]?\b", r"\baccueil\b", r"\bconseil[s]?\b", r"\battente\b", r"\bcaisse[s]?\b"], } # --------------- Sentiment (fallback règles) --------------- POS_WORDS = {"bien":1.0,"super":1.2,"parfait":1.4,"excellent":1.5,"ravi":1.2,"satisfait":1.0, "rapide":0.8,"efficace":1.0,"fiable":1.0,"simple":0.8,"facile":0.8,"clair":0.8,"conforme":0.8, "sympa":0.8,"professionnel":1.0,"réactif":1.0,"reactif":1.0,"compétent":1.0,"competent":1.0, "top":1.2,"recommande":1.2,"recommandé":1.2,"bon":0.8} NEG_WORDS = {"mauvais":-1.2,"horrible":-1.5,"nul":-1.2,"lent":-0.8,"cher":-0.9,"arnaque":-1.5, "déçu":-1.2,"decu":-1.2,"incompétent":-1.3,"bug":-0.9,"bogue":-0.9,"problème":-1.0, "probleme":-1.0,"attente":-0.6,"retard":-0.9,"erreur":-1.0,"compliqué":-0.8,"complique":-0.8, "défectueux":-1.3,"defectueux":-1.3,"non conforme":-1.2,"impossible":-1.0,"difficile":-0.7} NEGATIONS = [r"\bpas\b", r"\bjamais\b", r"\bplus\b", r"\baucun[e]?\b", r"\brien\b", r"\bni\b", r"\bgu[eè]re\b"] INTENSIFIERS = [r"\btr[eè]s\b", r"\bvraiment\b", r"\bextr[eê]mement\b", r"\bhyper\b"] DIMINISHERS = [r"\bun[e]?\s+peu\b", r"\bassez\b", r"\bplut[oô]t\b", r"\bl[eé]g[eè]rement\b"] INTENSIFIER_W, DIMINISHER_W = 1.5, 0.7 # --------------- OpenAI (optionnel, robuste) --------------- OPENAI_AVAILABLE = False try: from openai import OpenAI if os.getenv("OPENAI_API_KEY"): _client = OpenAI() OPENAI_AVAILABLE = True except Exception: OPENAI_AVAILABLE = False # ---------------- Utils ---------------- def normalize(t:str)->str: if not isinstance(t,str): return "" return re.sub(r"\s+"," ",t.strip()) def to_analyzable(t:str)->str: return unidecode(normalize(t.lower())) def window_has(patterns:List[str], toks:List[str], i:int, w:int=3)->bool: s=max(0,i-w); e=min(len(toks),i+w+1); win=" ".join(toks[s:e]) return any(re.search(p,win) for p in patterns) def lexical_sentiment_score(text:str)->float: toks = to_analyzable(text).split(); score=0.0 for i,t in enumerate(toks): base = POS_WORDS.get(t,0.0) or NEG_WORDS.get(t,0.0) if not base and istr: return "positive" if s>=0.3 else ("negatif" if s<=-0.3 else "neutre") def detect_themes_regex(text:str): t=to_analyzable(text); counts={} for th,pats in THEMES.items(): c=sum(len(re.findall(p,t)) for p in pats) if c>0: counts[th]=c return list(counts.keys()), counts def nps_bucket(s): try: v=int(s) except: return "inconnu" return "promoter" if v>=9 else ("passive" if v>=7 else ("detractor" if v>=0 else "inconnu")) def compute_nps(series): vals=[] for x in series.dropna().tolist(): try: v=int(x) if 0<=v<=10: vals.append(v) except: pass if not vals: return None tot=len(vals); pro=sum(1 for v in vals if v>=9); det=sum(1 for v in vals if v<=6) return 100.0*(pro/tot - det/tot) def anonymize(t:str)->str: if not isinstance(t,str): return "" t=re.sub(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}","[email]",t) t=re.sub(r"\b(?:\+?\d[\s.-]?){7,}\b","[tel]",t) return t # --------- Coller du texte → DataFrame ---------- def df_from_pasted(text:str, sep="|", has_score=False) -> pd.DataFrame: lines = [l.strip() for l in (text or "").splitlines() if l.strip()] rows = [] for i, line in enumerate(lines, 1): if has_score and sep in line: verb, score = line.split(sep, 1) rows.append({"id": i, "comment": verb.strip(), "nps_score": pd.to_numeric(score.strip(), errors="coerce")}) else: rows.append({"id": i, "comment": line.strip(), "nps_score": None}) return pd.DataFrame(rows) # --------- OpenAI helpers (optionnels) ---------- def openai_json(model:str, system:str, user:str, temperature:float=0.0) -> Optional[dict]: if not OPENAI_AVAILABLE: return None try: resp = _client.chat.completions.create( model=model, temperature=temperature, messages=[{"role":"system","content":system},{"role":"user","content":user}], ) txt = resp.choices[0].message.content.strip() m = re.search(r"\{.*\}", txt, re.S) return json.loads(m.group(0) if m else txt) except Exception: return None def oa_sentiment(comment:str, model:str, temperature:float=0.0) -> Optional[dict]: system = "Tu es un classifieur FR. Réponds strictement en JSON." user = f'Texte: {comment}\nDonne "label" parmi ["positive","neutre","negatif"] et "score" entre -4 et 4. JSON.' return openai_json(model, system, user, temperature) def oa_themes(comment:str, model:str, temperature:float=0.0) -> Optional[dict]: system = "Tu maps le texte client vers un thésaurus assurance. Réponds strictement en JSON." user = f"Texte: {comment}\nThésaurus: {json.dumps(list(THEMES.keys()), ensure_ascii=False)}\nRetourne {{'themes': [...], 'counts': {{...}}}}" return openai_json(model, system, user, temperature) def oa_summary(nps:Optional[float], dist:Dict[str,int], themes_df:pd.DataFrame, model:str, temperature:float=0.2) -> Optional[str]: system = "Tu es un analyste CX FR. Donne une synthèse courte et actionnable en Markdown." top = [] if themes_df is None else themes_df.head(6).to_dict(orient="records") user = f"Données: NPS={None if nps is None else round(nps,1)}, Répartition={dist}, Thèmes={json.dumps(top, ensure_ascii=False)}" j = openai_json(model, system, user, temperature) if isinstance(j, dict) and "text" in j: return j["text"] if isinstance(j, dict): return ' '.join(str(v) for v in j.values()) return None # --------- HuggingFace sentiment (optionnel) def make_hf_pipe(): try: from transformers import pipeline return pipeline("text-classification", model="cmarkea/distilcamembert-base-sentiment", tokenizer="cmarkea/distilcamembert-base-sentiment") except Exception: return None # --------- Inférence de note NPS à partir du sentiment ---------- def infer_nps_from_sentiment(label: str, score: float) -> int: """ label: 'positive' | 'neutre' | 'negatif' score: [-4..+4] Retourne 0..10 aligné avec NPS (detractor ≤6, passive 7–8, promoter ≥9). """ # Mise à l’échelle douce: [-4..+4] -> [0..10] scaled = int(round((float(score) + 4.0) * 1.25)) # -4 -> 0, 0 -> 5, +4 -> 10 scaled = max(0, min(10, scaled)) if label == "positive": return max(9, scaled) # garantir promoter if label == "negatif": return min(6, scaled) # garantir detractor return 8 if score >= 0 else 7 # neutre # --------- Graphiques ---------- def fig_nps_gauge(nps: Optional[float]) -> go.Figure: v = 0.0 if nps is None else float(nps) return go.Figure(go.Indicator(mode="gauge+number", value=v, gauge={"axis":{"range":[-100,100]}, "bar":{"thickness":0.3}}, title={"text":"NPS (−100 à +100)"})) def fig_sentiment_bar(dist: Dict[str,int]) -> go.Figure: order = ["negatif","neutre","positive"] x = [o for o in order if o in dist]; y = [dist.get(o,0) for o in x] return px.bar(x=x, y=y, labels={"x":"Sentiment","y":"Nombre"}, title="Répartition des émotions") def fig_top_themes(themes_df: pd.DataFrame, k: int) -> go.Figure: if themes_df is None or themes_df.empty: return go.Figure() d = themes_df.head(k); fig = px.bar(d, x="theme", y="total_mentions", title=f"Top {k} thèmes — occurrences") fig.update_layout(xaxis_tickangle=-30); return fig def fig_theme_balance(themes_df: pd.DataFrame, k: int) -> go.Figure: if themes_df is None or themes_df.empty: return go.Figure() d = themes_df.head(k) d2 = d.melt(id_vars=["theme"], value_vars=["verbatims_pos","verbatims_neg"], var_name="type", value_name="count") d2["type"] = d2["type"].map({"verbatims_pos":"Positifs","verbatims_neg":"Négatifs"}) fig = px.bar(d2, x="theme", y="count", color="type", barmode="stack", title=f"Top {k} thèmes — balance Pos/Neg") fig.update_layout(xaxis_tickangle=-30); return fig # --------- Analyse principale (paste-only) ---------- def analyze_text(pasted_txt, has_sc, sep_chr, do_anonymize, use_oa_sent, use_oa_themes, use_oa_summary, oa_model, oa_temp, top_k): df = df_from_pasted(pasted_txt or "", sep=sep_chr or "|", has_score=bool(has_sc)) if df.empty: raise gr.Error("Colle au moins un verbatim (une ligne).") if do_anonymize: df["comment"]=df["comment"].apply(anonymize) # Si OpenAI indisponible, on bascule silencieusement if (use_oa_sent or use_oa_themes or use_oa_summary) and not OPENAI_AVAILABLE: use_oa_sent = use_oa_themes = use_oa_summary = False hf_pipe = make_hf_pipe() def hf_sent(text:str): if hf_pipe is None or not text.strip(): return None try: res=hf_pipe(text); lab=str(res[0]["label"]).lower(); p=float(res[0].get("score",0.5)) if "1" in lab or "2" in lab: return {"label":"negatif","score":-4*p} if "3" in lab: return {"label":"neutre","score":0.0} return {"label":"positive","score":4*p} except Exception: return None rows=[] theme_agg=collections.defaultdict(lambda:{"mentions":0,"pos":0,"neg":0}) used_hf=False; used_oa=False any_inferred=False for idx, r in df.iterrows(): cid=r.get("id", idx+1); comment=normalize(str(r["comment"])) # Sentiment: OpenAI -> HF -> règles sent=None if use_oa_sent: sent=oa_sentiment(comment, oa_model, float(oa_temp or 0.0)); used_oa = used_oa or bool(sent) if not sent: hf=hf_sent(comment) if hf: sent=hf; used_hf=True if not sent: s=float(lexical_sentiment_score(comment)) sent={"label":lexical_sentiment_label(s),"score":s} # Thèmes: regex (+ fusion OpenAI) themes, counts = detect_themes_regex(comment) if use_oa_themes: tjson=oa_themes(comment, oa_model, float(oa_temp or 0.0)) if isinstance(tjson, dict): used_oa=True for th, c in (tjson.get("counts",{}) or {}).items(): if th in THEMES and int(c) > 0: counts[th] = max(counts.get(th, 0), int(c)) themes = [th for th, c in counts.items() if c > 0] # Note NPS : donnée ou inférée given = r.get("nps_score", None) try: given = int(given) if given is not None and str(given).strip() != "" else None except Exception: given = None if given is None: inferred = infer_nps_from_sentiment(sent["label"], float(sent["score"])) nps_final = inferred nps_source = "inferred" any_inferred = True else: nps_final = given nps_source = "given" bucket = nps_bucket(nps_final) for th, c in counts.items(): theme_agg[th]["mentions"] += c if sent["label"] == "positive": theme_agg[th]["pos"] += 1 elif sent["label"] == "negatif": theme_agg[th]["neg"] += 1 rows.append({ "id": cid, "comment": comment, "nps_score_given": given, "nps_score_inferred": nps_final if given is None else None, "nps_score_final": nps_final, "nps_source": nps_source, "nps_bucket": bucket, "sentiment_score": round(float(sent["score"]), 3), "sentiment_label": sent["label"], "sentiment_source": "openai" if (use_oa_sent and used_oa) else ("huggingface" if used_hf else "rules"), "themes": ", ".join(themes) if themes else "", "theme_counts_json": json.dumps(counts, ensure_ascii=False) }) out_df=pd.DataFrame(rows) nps=compute_nps(out_df["nps_score_final"]) dist=out_df["sentiment_label"].value_counts().to_dict() # Stats par thème trs=[] for th, d in theme_agg.items(): trs.append({"theme":th,"total_mentions":int(d["mentions"]), "verbatims_pos":int(d["pos"]),"verbatims_neg":int(d["neg"]), "net_sentiment":int(d["pos"]-d["neg"])}) themes_df=pd.DataFrame(trs).sort_values(["total_mentions","net_sentiment"],ascending=[False,False]) # Synthèse method = "OpenAI + HF + règles" if (use_oa_sent and used_hf) else ("OpenAI + règles" if use_oa_sent else ("HF + règles" if used_hf else "Règles")) nps_label = "NPS global (inféré)" if any_inferred else "NPS global" lines=[ "# Synthèse NPS & ressentis clients", f"- **Méthode** : {method}", f"- **{nps_label}** : {nps:.1f}" if nps is not None else f"- **{nps_label}** : n/a" ] if dist: tot=sum(dist.values()); pos=dist.get("positive",0); neg=dist.get("negatif",0); neu=dist.get("neutre",0) lines.append(f"- **Répartition émotions** : positive {pos}/{tot}, neutre {neu}/{tot}, négative {neg}/{tot}") if not themes_df.empty: lines.append("\n## Thèmes les plus cités") for th,m in themes_df.head(5)[["theme","total_mentions"]].values.tolist(): lines.append(f"- **{th}** : {m} occurrence(s)") summary_md="\n".join(lines) if use_oa_summary: md = oa_summary(nps, dist, themes_df, oa_model, float(oa_temp or 0.0)) if md: summary_md = md + "\n\n---\n" + summary_md # Exports tmpdir=tempfile.mkdtemp(prefix="nps_gradio_") enriched=os.path.join(tmpdir,"enriched_comments.csv") themes=os.path.join(tmpdir,"themes_stats.csv") summ=os.path.join(tmpdir,"summary.md") out_df.to_csv(enriched,index=False,encoding="utf-8-sig") themes_df.to_csv(themes,index=False,encoding="utf-8-sig") with open(summ,"w",encoding="utf-8") as f: f.write(summary_md) zip_path=os.path.join(tmpdir,"nps_outputs.zip") with zipfile.ZipFile(zip_path,"w",zipfile.ZIP_DEFLATED) as z: z.write(enriched,arcname="enriched_comments.csv") z.write(themes,arcname="themes_stats.csv") z.write(summ,arcname="summary.md") # Panneaux & Graphes def make_panels(dfT: pd.DataFrame): if dfT is None or dfT.empty: return "—","—","—" pos_top = dfT.sort_values(["verbatims_pos","total_mentions"], ascending=[False,False]).head(4) neg_top = dfT.sort_values(["verbatims_neg","total_mentions"], ascending=[False,False]).head(4) def bullets(df, col, label): lines=[f"**{label}**"] for _, r in df.iterrows(): lines.append(f"- **{r['theme']}** — {int(r[col])} verbatims") return "\n".join(lines) ench_md = bullets(pos_top, "verbatims_pos", "Points d’enchantement") irr_md = bullets(neg_top, "verbatims_neg", "Irritants") RECO_RULES = { "Délais & Suivi dossier": "Réduire les délais (SLA), suivi proactif.", "Cotisations / Facturation": "Clarifier factures, alerter anomalies.", "Espace client / App / Connexion": "Corriger login/MDP, QA navigateurs.", "Support / Conseiller": "Améliorer joignabilité, scripts, rappel auto.", "Communication / Transparence": "Notifications étapes clés, messages clairs.", "Sinistres / Indemnisation": "Transparence délais + suivi dossier.", } rec_lines=["**Recommandations**"] for _, r in neg_top.iterrows(): rec_lines.append(f"- **{r['theme']}** — {RECO_RULES.get(r['theme'],'Plan d’action dédié')}") return ench_md, irr_md, "\n".join(rec_lines) ench_md, irr_md, reco_md = make_panels(themes_df) fig_gauge = fig_nps_gauge(nps) fig_emots = fig_sentiment_bar(dist) k = max(1, int(top_k or 10)) fig_top = fig_top_themes(themes_df, k) fig_bal = fig_theme_balance(themes_df, k) return (summary_md, themes_df.head(100), out_df.head(200), [enriched, themes, summ, zip_path], ench_md, irr_md, reco_md, fig_gauge, fig_emots, fig_top, fig_bal) # ---------------- UI ---------------- with gr.Blocks(title="NPS — Analyse (Assurance)") as demo: gr.Markdown("## 🔎 NPS — Analyse sémantique (Assurance)\nCollez vos verbatims (1 par ligne). Option : note NPS après `|`.") with gr.Column(): pasted = gr.Textbox(label="Verbatims (un par ligne)", lines=10, placeholder="Exemple :\nRemboursement rapide, télétransmission OK | 10\nConnexion impossible à l’app | 3\nDélais corrects | 7") with gr.Row(): has_score = gr.Checkbox(label="J’ai un score NPS par ligne", value=False) sep = gr.Textbox(label="Séparateur score", value="|", scale=1) with gr.Row(): anon=gr.Checkbox(label="Anonymiser emails / téléphones", value=True) use_oa_sent=gr.Checkbox(label="OpenAI pour le sentiment", value=False) use_oa_themes=gr.Checkbox(label="OpenAI pour les thèmes", value=False) use_oa_summary=gr.Checkbox(label="OpenAI pour la synthèse", value=False) with gr.Row(): oa_model=gr.Textbox(label="Modèle OpenAI", value="gpt-4o-mini") oa_temp=gr.Slider(label="Température", minimum=0.0, maximum=1.0, value=0.1, step=0.1) top_k=gr.Slider(label="Top thèmes (K) pour les graphes", minimum=5, maximum=20, value=10, step=1) run=gr.Button("Lancer l'analyse", variant="primary") with gr.Row(): ench_panel=gr.Markdown(); irr_panel=gr.Markdown(); reco_panel=gr.Markdown() summary=gr.Markdown(label="Synthèse") themes_table=gr.Dataframe(label="Thèmes — statistiques") enriched_table=gr.Dataframe(label="Verbatims enrichis (aperçu)") files_out=gr.Files(label="Téléchargements (CSV & ZIP)") with gr.Row(): plot_nps = gr.Plot(label="NPS — Jauge") plot_sent= gr.Plot(label="Répartition des émotions") with gr.Row(): plot_top = gr.Plot(label="Top thèmes — occurrences") plot_bal = gr.Plot(label="Top thèmes — balance Pos/Neg") run.click( analyze_text, inputs=[pasted, has_score, sep, anon, use_oa_sent, use_oa_themes, use_oa_summary, oa_model, oa_temp, top_k], outputs=[summary, themes_table, enriched_table, files_out, ench_panel, irr_panel, reco_panel, plot_nps, plot_sent, plot_top, plot_bal] ) if __name__=="__main__": demo.launch(share=False, show_api=False) gr.HTML('')